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PREFACE 

 

The discipline "Fractal geometry and the theory of chaos" is a selective 

discipline in the cycle of professional training for postgraduate (PhD) students 

(third level of education) in specialty 113- Applied Mathematics. 

It is aimed at assimilating (assuring) a number of planned competencies, 

including the study of the modern apparatus of fractal geometry and chaos 

theory, as well as new methods and algorithms of mathematical physics of 

complex chaotic systems with possible generalizations on various classes of 

mathematical, physical-chemical, cybernetic, socio-economic and ecological 

systems, the use of modern scientific methods and the achievement of scientific 

results that create potentially new knowledge in the theory and practice of 

chaotic phenomena. 

The place of discipline in the structural-logical scheme of its teaching: 

the acquired knowledge in the study of this discipline is used in the writing of 

dissertations, the topics of which are related to the study of fractal properties and 

the regular and chaotic dynamics of various classes of mathematical, physical 

and chemical, cybernetic, socio-economic and environmental systems. The basic 

concepts of discipline are a well-known toolkit of an experienced specialist in 

the field of applied mathematics. 

The purpose of studying the discipline is the assimilation (assurance) of 

a number of competencies, in particular, the mastery of a modern apparatus of 

fractal geometry and chaos theory, the ability to develop new and improve 

existing mathematical methods of analysis, modeling and prediction on the 

oscillatory fractal geometry and elements of the theory of chaos of the regular 

and chaotic dynamics (evolution) of complex systems. 

The total amount of study time involved in studying discipline is 300 

hours for stationer form and 300 hours for the extramural studies. 

After mastering this discipline, the postgraduate student must be able to 

use contemporary or develop new approaches, in particular on the basis of 

fractal geometry and chaos theory, to analyze, simulate, predict, and program 

the regular and chaotic dynamics of complex systems from the post-emerging 

computer experiments.  

These methodical instructions are for the second-year PhD students and 

tests performance in the discipline «Fractal geometry and a Chaos theory».  

The main topic Chaotic dynamics of dissipative systems. Elements of the 

theory of quantum chaos. Chaos in the dynamics of molecular systems in an 

electromagnetic field. 
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Methodical instructions for practical work of PhD students, tests 

performance and distance learning in the discipline  

«Fractal geometry and a chaos theory», Part 5 

Topic: Chaotic dynamics of dissipative systems. Elements of the 

theory of quantum chaos. Chaos in the dynamics of molecular systems in an 

electromagnetic field. 

Topic: Хаотична динаміка дисипативних систем. Елементи теорії 

квантового хаосу Хаос в динаміці молекулярних систем в 

електромагнітному полі.  ЗБ- Л4 

 

 

1. Introduction 

To date, the obvious is the fact that the overwhelming number of so -called 

geophysical, environmental, etc. systems, or, more formally, the systems studied 

earth sciences are very complex, and this feature is manifested at different 

spatial and temporal scale levels [1-59]. In this regard, the study of their 

fundamental properties is still far from satisfactory. As an example of problems 

whose solution lies in the problems considered in the article, it should be noted 

the analysis and prediction of the influence of anthropogenic impact on the 

atmosphere of the industrial city , the development of adequate schemes 

modeling the properties of the fields of concentration of the air basin industrial 

city [10]. Naturally, the task list for studying the dynamics of complex systems 

is not limited to the above examples. It is not difficult to understand that 

examples of such systems are the atmosphere, turbulent flows in a variety of 

environments, physical and chemical systems, biological populations, and 

finally, the society as a communication system and its subsystems: economic, 

political and other social systems [1-10].  

Most important, the fundamental issue in the description of the dynamics of the 

system is its ability to forecast its future evolution, i.e. predictability of behavior. 

Recently, the theory of dynamical systems is intensively developed,  and, in 

particular, speech is about the application of methods of the theory to the 

analysis of complex systems that provide description of their evolutionary 

dynamics by means solving system of differential equations. If the studied 

system is more complicated then the greater the equations is necessary for its 

adequate description. Meanwhile, examples of the systems described by  a small 
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amount of equations, are known nevertheless, theses systems exhibit a 

complicated behavior. Probably the best-known examples of such systems are 

the Lorenz system, the Sinai billiard, etc. They are described, for example, three 

equations (i.e., in consideration included three independent variables), but the 

dynamics of their behavior over time shows elements of chaos (so-called 

"deterministic chaos"). In particular, Lorentz was able to identify the cause of 

the chaotic behavior of the system associated with a difference in the initial 

conditions. Even microscopic deviation between the two systems at the 

beginning of the process of evolution leads to an exponential accumulation of 

errors and, accordingly, their stochastic divergence (as a result, the inability to 

accurately predict changes in meteorology forecast for a sufficiently long period 

of time).  

During the analysis of the observed dynamics of some characteristic 

parameters of the systems over time it is difficult to say to what class belongs to 

the system and what will be its evolution in the future. In recent years for the 

analysis of time series of fundamental dynamic parameters  there are with 

varying degrees of success developed and implemented a variety of methods, in 

particular, the nonlinear spectral and trend analysis , the study of Markov chains, 

wavelet and multifractal analysis, the formalism of the matrix memory and the 

method of evolution propagators etc. Most of the cited approaches are  defined 

as the methods of a chaos theory. In the theory of dynamical systems methods 

have been developed that allow for the recording of time series of one of the 

parameters to recover some dynamic characteristics of the system. In recent 

years a considerable number of works, including an analysis from the 

perspective of the theory of dynamical systems and chaos, fractal sets, is 

devoted to time series analysis of geophysical characteristics, environmental, 

etc. systems [1-10]. In a series of papers [10-18] the authors have attempted to 

apply some of these methods in a variety of environmental and hydrodynamic 

problems. In particular, it is about analyzing and forecasting the anthropogenic 

impact on the atmosphere of the industrial city. An important result concerning 

temporal changes in the concentrations of nitrogen dioxide, sulfur dioxide, dust, 

etc. in the atmosphere of a number of industrial cities, is that the system 

(atmosphere) exhibits a manifestation of low-dimensional chaos. In connection 

with this, there is an extremely important task on development of new, more 



9 

 

effective approaches to the nonlinear modeling and prediction of chaotic 

processes in geophysical and environmental systems.  

The essence of new effective approach: Nonlinear modeling of chaotic 

processes is based on the concept of a compact geometric attractor, which 

evolve with measurements. We present an advanced approach to analysis and 

forecasting nonlinear dynamics of chaotic systems, based on conceptions of a 

chaos methods and neural networks modeling. As example, a few 

geophysical systems are studied. Since the orbit is continuously rolled on 

itself due to the action of dissipative forces and the nonlinear part of the 

dynamics can be found in the neighborhood of any point of the orbit y (n) 

other points of the orbit yr(n), r = 1, 2, ..., N, that arrive neighborhood y (n) 

in a completely different times than n. Then you can build different types of 

interpolation functions that take into account all the neighborhoods of the 

phase space, and explain how these neighborhoods evolve from y (n) to a 

whole family of points about y(n+1). Use of the information about the phase 

space in the simulation of the evolution of the physical process in time can be 

considered as a major innovation in the modeling of chaotic processes. This 

concept can be achieved by constructing a parameterized non-linear function 

F (x, a), which transform y (n) to y(n+1) = F[y(n),a], and then use different 

criteria for determining the parameters a . Further, since there is the notion of 

local neighborhoods, we can create a model of the process occurring in the 

neighborhood, at the neighborhood and by combining together these local 

models to construct a global non-linear model to describe most of the 

structure of the attractor. As an illustrative example of using the prediction 

model, the dynamics of the nitrates  concentrations in the Small Carpathians 

river’s watersheds in the Earthen Slovakia during 1969-1996 years is 

predicted.  

2. Method  

2.1.  Basic idea 

The basic idea of the construction of our approach to prediction of chaotic 

properties of complex systems is in the use of the traditional concept of a 

compact geometric attractor in which evolves the measurement data, plus the 

implementation of neural network algorithms. The existing so far in the theory 

of chaos prediction models are based on the concept of an attractor, and are 
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described in a number of papers (e.g. [1-10]). The meaning of the concept is in 

fact a study of the evolution of the attractor in the phase space of the system and, 

in a sense, modeling ("guessing") time-variable evolution.. From a mathematical 

point of view, it is a fact that in the phase space of the system an orbit 

continuously rolled on itself due to the action of dissipative forces and the 

nonlinear part of the dynamics, so it is possible to stay in the neighborhood of 

any point of the orbit y (n) other points of the orbit yr (n), r = 1, 2, ..., NB, which 

come in the neighborhood y (n) in a completely different times than n. Of 

course, then one could try to build different types of interpolation functions that 

take into account all the neighborhoods of the phase space and at the same time 

explain how the neighborhood evolve from y (n) to a whole family of points 

about y (n+1). Use of the information about the phase space in the simulation of 

the evolution of some geophysical (environmental, etc.) of the process in time 

can be regarded as a fundamental element in the simulation of random 

processes. In terms of the modern theory of neural systems, and neuro-

informatics (e.g. [11]), the process of modeling the evolution of the system can 

be generalized to describe some evolutionary dynamic neuro-equations (miemo-

dynamic equations). Imitating the further evolution of a complex system as the 

evolution of a neural network with the corresponding elements of the self-study, 

self- adaptation, etc., it becomes possible to significantly improve the prediction 

of evolutionary dynamics of a chaotic system. Considering the neural network 

(in this case, the appropriate term "geophysical" neural network) with a certain 

number of neurons, as usual, we can introduce the operators Sij synaptic neuron 

to neuron ui uj, while the corresponding synaptic matrix is reduced to a 

numerical matrix strength of synaptic connections: W = | | wij | |. The operator is 

described by the standard activation neuro-equation determining the evolution of 

a neural network in time: 

                                               
=

−=
N

j

ijiji swsigns
1

' ),(                                      (1) 

 

where 1< i <N. Of course, there can be more complicated versions of the 

equations of evolution of a neural network. Here it is important for us another 

proven fact related to information behavior neuro-dynamical system. From the 

point of view of the theory of chaotic dynamical systems, the state of the neuron 

(the chaos-geometric interpretation of the forces of synaptic interactions, etc.) 
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can be represented by currents in the phase space of the system and its the 

topological structure is obviously determined by the number and position of 

attractors. To determine the asymptotic behavior of the system it becomes 

crucial information aspect of the problem, namely, the fact of being the initial 

state to the basin of attraction of a particular attractor. Modeling each 

geophysical attractor by a record in memory, the process of the evolution of 

neural network, transition from the initial state to the (following) the final state 

is a model for the reconstruction of the full record of distorted information, or an 

associative model of pattern recognition is implemented.  The domain of 

attraction of attractors are separated by  separatrices or certain surfaces in the 

phase space. Their structure, of course, is quite complex, but mimics the chaotic 

properties of the studied object. Then, as usual, the next step is a natural 

construction parameterized nonlinear function F (x, a), which transforms:   

 

                                           y(n) →     y(n + 1) = F(y(n), a),  

 

and then to use the different ( including neural network) criteria for determining 

the parameters a (see below). The easiest way to implement this program is in 

considering the original local neighborhood, enter the model(s) of the process 

occurring in the neighborhood, at the neighborhood and by combining together 

these local models, designing on a global nonlinear model. The latter describes 

most of the structure of the attractor.  

Although, according to a classical theorem by Kolmogorov-Arnold -Moser, the 

dynamics evolves in a multidimensional space, the size and the structure of 

which is predetermined by the initial conditions, this, however, does not indicate 

a functional choice of model elements in full compliance with the source of 

random data. One of the most common forms of the local model is the model of 

the Schreiber type [3] (see also [10]).  

 

2.2.  Construction of the model prediction 

Nonlinear modeling of chaotic processes is based on the concept of a compact 

geometric attractor, which evolve with measurements. Since the orbit is 

continually folded back on itself by the dissipative forces and the non-linear part 

of the dynamics, some orbit points yr(k), r = 1, 2, …, NB can be found in the 
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neighbourhood of any orbit point y(k), at that the points yr(k) arrive in the 

neighbourhood of y(k) at quite different times than k. Then one could build the 

different types of interpolation functions that take into account all the 

neighborhoods of the phase space, and explain how these neighborhoods evolve 

from y (n) to a whole family of points about y (n + 1). Use of the information 

about the phase space in modeling the evolution of the physical process in time 

can be regarded as a major innovation in the modeling of chaotic processes. 

This concept can be achieved by constructing a parameterized nonlinear 

function F (x, a), which transform y (n) to y (n + 1) = F (y (n), a), and then using 

different criteria for determining the parameters a. Further, since there is the 

notion of local neighborhoods, one could  create a model of the process 

occurring in the neighborhood, at the neighborhood and by combining together 

these local models to construct a global nonlinear model that describes most of 

the structure of the attractor. 

Indeed, in some ways the most important deviation from the linear model is to 

realize that the dynamics evolve in a multidimensional space, the size and the 

structure of which is dictated by the data. However, the data do not provide 

"hints" as to which model to select the source to match the random data. And the 

most simple polynomial models, and a very complex integrated models can lead 

to the asymptotic time orbits of strange attractors, so for part of the simulation is 

connected with physics. Therefore, physics is "reduced" to fit the algorithmic 

data without any interpretation of the data. There is an opinion that there is no 

algorithmic solutions on how to choose a model for a mere data. 

As shown Schreiber [3], the most common form of the local model is very 

simple : 

   

=

−−+=+
Ad

j

n
j

n jnsaanns
1

)()(
0 ))1(()(

                                                                    

(2) 

where  n - the time period for which a forecast . The coefficients )(k

ja , may be 

determined by a least-squares procedure, involving only points s(k) within a 

small neighbourhood around the reference point. Thus, the coefficients will vary 

throughout phase space. The fit procedure amounts to solving (dA + 1) linear 

equations for the (dA + 1) unknowns. When fitting the parameters a, several 

problems are encountered that seem purely technical in the first place but are 

related to the nonlinear properties of the system. If the system is low-
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dimensional, the data that can be used for fitting will locally not span all the 

available dimensions but only a subspace, typically. Therefore, the linear system 

of equations to be solved for the fit will be ill conditioned. However, in the 

presence of noise the equations are not formally ill-conditioned but still the part 

of the solution that relates the noise directions to the future point is meaningless 

. Note that the method presented here is not only because, as noted above, the 

choice of fitting requires no knowledge of physics of the process itself. Other 

modeling techniques are described, for example, in [3,10]. 

Assume the functional form of the display is selected, wherein the polynomials 

used or other basic functions. Now, we define a characteristic which is a 

measure of the quality of the curve fit to the data and determines how accurately 

match y (k + 1) with F (y (k), a), calling it by a local deterministic error: 

 

  D(k) = y(k + 1) − F(y(k), a).                                                          (3) 

 

The cost function for this error is called W (). If the mapping F (y, a), 

constructed by us, is local, then one has for each adjacent to y (k) point, y (r) (k) 

(r = 1, 2, ..., NB), 

    
)(r

D (k) = y(r, k + 1) − F(y(r)(k), a),                                                                (4) 

 

where y (r, k + 1) - a point in the phase space which evolves y (r, k). To measure 

the quality of the curve fit to the data, the local cost function is given by 
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                                                                          (5) 

and the parameters identified by minimizing W (, k), will depend on a. 

Furthermore, formally the neural network algorithm is launched, in particular, in 

order to make training  the neural network system equivalent to the 

reconstruction and interim forecast the state of the neural network (respectively, 

adjusting the values of the coefficients). The starting point is a formal 

knowledge of the time series of the main dynamic parameters of a chaotic 

system, and then to identify the state vector of the matrix of synaptic interactions 

| | wij | | etc. Of course, the main difficulty here lies in the implementation of the 
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process of learning neural network to simulate the complete process of change in 

the topological structure of the phase space of the system and use the output 

results of the neural network to adjust the coefficients of the function display. 

The complexity of the local task, but obviously much less than the complexity of 

predicting the original chaotic processes in geophysical or other dynamic 

systems . 

2. 3.  The illustrative example: polarization time series for molecular 

systems in electromagnetic field   

The typical theoretical time dependence of polarization for ZrO molecule in the 

field in a chaotic regime is presented in Figure 1. 

 

 

Figure 1. The typical theoretical time-dependence of polarization p(t) of the 

ZrO molecule in a  linearly polarized field (see parameters in text). 

 

The polarization is normalized to the intensity of the field interaction with the 

molecule. The next step is application of the chaos-geometric approach to 

analysis of the  temporal dynamics of the molecule interacting with a resonant 

linearly polarized field. The concrete  step is an analysis of the corresponding  

time series with  the n=7.6103 and t=510-14s. In Table 3 we list the computed 

values of the correlation dimension d2, the Kaplan-York attractor dimension 

(dL), the Lyapunov’s exponents (i, i=1-3), the Kolmogorov entropy (Kentr), and 

the Gottwald-Melbourne  parameter.  
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Table 3. The correlation dimension d2, Lyapunov’s exponents (i, i=1,2),  

Kaplan-York attractor dimension (dL), Kolmogorov entropy (Kentr), the 

Gottwald-Melbourne  parameter KGW 

 

Molecule d2 1 2 dL Kentr KGW 

ZrO 2.76 0.147 0.018 2.53 0.165 0.73 

 

Analysis of the presented data allows to make conclusions that the dynamics of 

the ZrO molecule in a resonant linearly polarized electromagnetic field has the 

elements of a deterministic chaos (the strange attractor) and this conclusion is 

entirely agreed with the results of modelling for other diatomic molecules [17-

22].  

As example of using an approach to predict the polarization time dependence 

(see above), in Figure 2 we present the original theoretical (solid line) and 

predicted (dotted line) lines of polarization p(t)  for  the ZrO molecule in a 

linearly polarized field (one thousand twenty points). 

 

 

Figure 2. The original theoretical (solid line) and predicted (dotted line) time 

dependence lines of polarization ( )p t   of the ZrO molecule in a linearly polarized 

field.     

 

Despite some difference between the forecast and the actual data, in any case the 

presented results can be considered quite satisfactory. 
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 3. Tests performance 

Test Option 1. 

1). Give the key definitions of united conceptions of a chaos methods and neural 

networks modeling  in dynamics of classical and quantum systems on example 

of the molecular systems in the resonant electromagnetic field: i) mathematical 

and physical essense, ii) united conceptions of a chaos methods and neural 

networks modeling , iii) spectral statistics on molecular parameters, iv) 

definitions of a chaos topological and dynamical invariants. V). forecasing of 

the polarization tine series  

2). Explain all definitions om the example of the concrete quantum system: 

molecule of NdO preliminarily describing the corresponding features of  

spectrum of a molecule from pointwiew of fractal geometry and a chaos theory.  

3). To perform its pracrical realization (using Fortran Power Station , Version 

4.0; PC Code: “Supermolecule” for the atom from the first task of the option (all 

necessary numerical parameters should be self-taken ) and calculate a chaos 

phenomenon topological and dynamical invariants for the corresponding 

molecular system in a  field. Provide forecasing of the polarization tine series of 

the NdO. 

Test Option 2. 

1). Give the key definitions of united conceptions of a chaos methods and neural 

networks modeling  in dynamics of classical and quantum systems on example 

of the molecular systems in the resonant electromagnetic field: i) mathematical 

and physical essense, ii) united conceptions of a chaos methods and neural 

networks modeling , iii) spectral statistics on molecular parameters, iv) 

definitions of a chaos topological and dynamical invariants. V). forecasing of 

the polarization tine series  

2). Explain all definitions om the example of the concrete quantum system: 

molecule of CeO preliminarily describing the corresponding features of  

spectrum of a molecule from pointwiew of fractal geometry and a chaos theory.  

3). To perform its pracrical realization (using Fortran Power Station , Version 

4.0; PC Code: “Supermolecule” for the atom from the first task of the option (all 

necessary numerical parameters should be self-taken ) and calculate a chaos 

phenomenon topological and dynamical invariants for the corresponding 

molecular system in a  field. Provide forecasing of the polarization tine series of 

the CeO. 
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Test Option 3. 

1). Give the key definitions of united conceptions of a chaos methods and neural 

networks modeling  in dynamics of classical and quantum systems on example 

of the molecular systems in the resonant electromagnetic field: i) mathematical 

and physical essense, ii) united conceptions of a chaos methods and neural 

networks modeling , iii) spectral statistics on molecular parameters, iv) 

definitions of a chaos topological and dynamical invariants. V). forecasing of 

the polarization tine series  

2). Explain all definitions om the example of the concrete quantum system: 

molecule of ZrO preliminarily describing the corresponding features of  

spectrum of a molecule from pointwiew of fractal geometry and a chaos theory.  

3). To perform its pracrical realization (using Fortran Power Station , Version 

4.0; PC Code: “Supermolecule” for the atom from the first task of the option (all 

necessary numerical parameters should be self-taken ) and calculate a chaos 

phenomenon topological and dynamical invariants for the corresponding 

molecular system in a  field. Provide forecasing of the polarization tine series of 

the ErO. 

Test Option 4. 

1). Give the key definitions of united conceptions of a chaos methods and neural 

networks modeling  in dynamics of classical and quantum systems on example 

of the molecular systems in the resonant electromagnetic field: i) mathematical 

and physical essense, ii) united conceptions of a chaos methods and neural 

networks modeling , iii) spectral statistics on molecular parameters, iv) 

definitions of a chaos topological and dynamical invariants. V). forecasing of 

the polarization tine series  

2). Explain all definitions om the example of the concrete quantum system: 

molecule of CeO preliminarily describing the corresponding features of  

spectrum of a molecule from pointwiew of fractal geometry and a chaos theory.  

3). To perform its pracrical realization (using Fortran Power Station , Version 

4.0; PC Code: “Supermolecule” for the atom from the first task of the option (all 

necessary numerical parameters should be self-taken ) and calculate a chaos 

phenomenon topological and dynamical invariants for the corresponding 

molecular system in a  field. Provide forecasing of the polarization tine series of 

the ErO. 
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Test Option 5. 

1). Give the key definitions of united conceptions of a chaos methods and neural 

networks modeling  in dynamics of classical and quantum systems on example 

of the molecular systems in the resonant electromagnetic field: i) mathematical 

and physical essense, ii) united conceptions of a chaos methods and neural 

networks modeling , iii) spectral statistics on molecular parameters, iv) 

definitions of a chaos topological and dynamical invariants. V). forecasing of 

the polarization tine series  

2). Explain all definitions om the example of the concrete quantum system: 

molecule of GdO preliminarily describing the corresponding features of  

spectrum of a molecule from pointwiew of fractal geometry and a chaos theory.  

3). To perform its pracrical realization (using Fortran Power Station , Version 

4.0; PC Code: “Supermolecule” for the atom from the first task of the option (all 

necessary numerical parameters should be self-taken ) and calculate a chaos 

phenomenon topological and dynamical invariants for the corresponding 

molecular system in a  field. Provide forecasing of the polarization tine series of 

the GdO. 

Test Option 6. 

1). Give the key definitions of united conceptions of a chaos methods and neural 

networks modeling  in dynamics of classical and quantum systems on example 

of the molecular systems in the resonant electromagnetic field: i) mathematical 

and physical essense, ii) united conceptions of a chaos methods and neural 

networks modeling , iii) spectral statistics on molecular parameters, iv) 

definitions of a chaos topological and dynamical invariants. V). forecasing of 

the polarization tine series  

2). Explain all definitions om the example of the concrete quantum system: 

molecule of PmO preliminarily describing the corresponding features of  

spectrum of a molecule from pointwiew of fractal geometry and a chaos theory.  

3). To perform its pracrical realization (using Fortran Power Station , Version 

4.0; PC Code: “Supermolecule” for the atom from the first task of the option (all 

necessary numerical parameters should be self-taken ) and calculate a chaos 

phenomenon topological and dynamical invariants for the corresponding 

molecular system in a  field. Provide forecasing of the polarization tine series of 

the PmO. 
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