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PREFACE

The discipline "Computational methods of optics and dynamics of
qguantum and laser systems" is a mandatory discipline in the cycle of
professional training of graduate students (3rd level of education) in the
specialty 104- Physics and astronomy.

It is aimed at mastering (providing) a number of planned competencies,
including the study of the modern apparatus of optics and dynamics of quantum
and laser systems, as well as the development of new computational methods
and algorithms for numerical study of energy and spectroscopic characteristics
of atoms, molecules, solids , the main properties of quantum and laser systems,
systems in general in the field of optics and laser physics and new developed
computational methods in order to achieve scientific results that create
potentially new knowledge in computational applied mathematics.

The place of the discipline in the structural and logical scheme of its
teaching: the knowledge gained in the study of this discipline is used in writing
dissertations, the subject of which is related to the development of new
computational methods and algorithms for studying energy and spectroscopic
characteristics of atoms, molecules, solids, basic properties quantum and laser
systems. The basic concepts of the discipline are the basic tools of a specialist in
the field of optics and laser physics.

The purpose of the discipline is to master (provide) a number of
competencies, in particular, to achieve relevant knowledge, understanding and
ability to use methods of data analysis and statistics at the latest level, the ability
to use standard and build new software based on new mathematical approaches.
-study, adapt, improve computational methods and algorithms for numerical
study of the characteristics of linear and nonlinear processes in complex
quantum and classical systems.

The total amount of study time for the study of the discipline is 150 hours.
for full-time and part-time education, respectively.

After mastering this discipline, the graduate student must be able to use
modern or personally developed new computational methods, in particular, to
analyses, model, predict, program the dynamics of classical and quantum
systems with the formulation of appropriate computer experiments.

The main topics: Numerical methods in the problems of modeling the
processes of heat transfer, convection, radiation, energy and mass transfer.



Topics: Numerical methods in the problems of modeling the
processes of heat transfer, convection, radiation, energy and mass
transfer.
Tomiku: YncenbHi METOIM B 3aJja4ax MOJICIIOBAHHS MPOIIECIB TEILIOOOMIHY,
KOHBEKIIi1, BUIIPOMIHIOBaHHSI, IepeHocy eHeprii i macu. (3b- J12.3)

1. Introduction.

One of the most actual and important problems of the modern physics of
aerodispersed systems, atmospheric and climate systems is study of an energy-,
heat-, mass-transfer in natural continuous environments such as atmosphere or
other geospheres. The most of different simplified approaches that allow to
estimate the temporal and spatial structure of air ventilation in an atmosphere,
significantly use as the simple molecular diffusion models as system of
regression equations [1-14].

Disadvantages of these approaches are well known and became very

critical if the atmosphere contains elements of convective instability. In our
previous papers [7, 15-18] we have developed an advanced approach to the
simulation of heat and air ventilation in atmosphere of an industrial region (so
called local scale atmospheric circulation complex-field (LACCF) approach).
The approach includes an improved theory of atmospheric circulation in
combination with the hydrodynamic forecast model (with quantitatively correct
account of turbulence in the atmosphere at local scales) and the Arakawa-
Schubert model of cloud convection. Here we present a new theoretical
approach to dynamics of heat-mass-transfer, thermal turbulence (as in a heat
island zone as in a city’s periphery) and air ventilation in atmosphere of an
industrial city.
Spectrum of thermal turbulence of an industrial city’s zone. The modified
approximation of “shallow water” is used, but, in contrast to the standard
difference methods of solution, in further we will use the spectral expansion
algorithm [7, 15].

The necessary solution, for example, for the vx-ivy component for the
city’s heat island has the form of expansion into series on the Bessel functions.
As usually, we attribute the movement to the polar coordinates (r,0) in the area
located within the zone of action of the thermal “cap” (or “heat island™) of the
city [7]. Flowchart of the ventilation over the urban region territory by air flows
in a presence of the cloud’s convection is presented in Figure 1 and explains the
key physical processes [16].
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Figure 1. Flowchart of air mass transfer between the city and its periphery

The system of equations of motion is as follows [7]:
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(where u,v,w - components of wind speed, m - angular velocity of rotation of the

circulation ring around the city heat island; g is acceleration of gravity,  is free
surface
level of the shallow water equations (1)) with boundary conditions:
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where P - is the atmospheric pressure, H - height of the thermal head or free
level.

Lateral boundary condition: ¢,., =0 corresponds to the absence of disturbances
at the boundary of the circulation ring. In a single-layer fluid approximation:
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Equation (2) can be rewritten as follows:

E LﬂP J‘ [ﬂ_u Eﬂ'_b-l_ ]dz { Lﬂg [E_I_LEH
gt  gp Bt o r ag r a8 gr rof
(4)
Equation (1) are transformed into independent ones with respect to u and v:
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Applying the operator {:T+ +0*) to equation (5), and excluding u and v, taking
into account advection, we obtain a nonlinear differential equation with respect
to C:
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where T and 0t set the temperature and baroclinic modes. The solution of
equation (6) is divided into the solution of a homogeneous differential equation:
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and further determination of a total solution in the form as a superposition of
particular solutions of the equation (7). The natural definition of particular
solution is as follows: ¢ = {'(r)cos (m& — ot). Its substitution to Eq.(7) allows to
obtain:
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Equation (8) coincides with the Bessel equation and, as it is known, its own
solutions will also be the Bessel functions: £’( r)=Jm( xr). The total solution
can be presented as follows:

X
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where Am,n is “n” root of the function Jm( r). It is known that it is directly
related to frequency om,n if X in a particular solution is identified with Am,n in
a complete solution. The constants Am,n, Bm,n are then determined either from
the initial level for t=0 for the function ¢, which in this case is a solution of the
homogeneous equation (7), or according to the method of solving the
inhomogeneous equation (6), but without satisfying, in the general case, the
initial condition [19].
The series (10) is simultaneously the Fourier-Bessel series for the
function £(r,0). Further, one can easily get:
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The initial function of the thermal relief of an industrial city and the fields
associated with it are determined by the following Fourier-Bessel series:
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It is interesting to note that further, for example, the diffusion of
impurities in atmosphere of industrial city inside the city’s heat island from
some point sources is read by the method of simple advection according to the
values of the velocity projection calculated by formulas (11).

One could also directly use the equation of molecular (wave) diffusion.
The vertical rise of the impurity is calculated by the formula (2b).

Application of the theory of a plane complex field for calculating air circulation
in an industrial city’s periphery.

Within the new geophysical approach [16-18], an air flux speed over a
city’s periphery in a case of convective instability can be found by method of
plane complex field theory (in analogy with the Karman vortices chain model)
[6,7]:

v, —iv, :ﬂzi{ L oyt 1 )}+i[2rk|n(g—bk)];
de 27 (¢-¢, T ¢—6o—kl ¢-g+kI"] d¢'i3

(15)

Here Tx—circulation on the vortex elements, created by clouds, b _ co-ordinates

of these elements, I' — circulation on the standard Karman chain vortices of, | —
distance between standard vortices of the Karman chain, ¢ - co-ordinate of the

convective perturbations line (or front divider) centre, o —KI'_ co-ordinate of

beginning of the convective perturbation line, %o * Kl _ co-ordinate of end of this
line. The indicated parameters are the input model ones and explained in details
in Ref. [7].

Naturally, we further assume that possible convective disturbances on the
periphery of an industrial city approach it in the form of convective ridges. The
required ridges of cloudiness can be set in the problem in the field of the
velocity of vertical currents and associated currents of involvement by formula
(15).

The model stability of a front segment or a convective line in the general
dynamics of the atmosphere can be formulated by combining solution (11) with
the formula of the theory of a plane complex field (15):
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Here the coordinates r',o' are located in the zone of action of the functional
ensemble of the front or the line of convective instability; the coordinates

&m- &m0 moontouring” the said section of the frontal section include the

coordinates '+ in the immediate vicinity. The consistency of the coefficients

AnnrBrn with the similarity coefficients “m 9191 of the Laurent series in a

certain neighborhood with nearby coordinate points m' @13 determines the
stability at the time point of the physical process specified by the complex
velocity potential in the process of thermal circulation at the boundary of the
city’s thermal ring with the general solution of the thermal circulation model
given by series (2).

The area of solution of the problem (1) — (2) in this case belongs to the
line of maximum speeds in the zone of the thermal circulation ring of the city.

The multipole coefficients “m 191 gpecify the total contribution of focal
convection beyond the lines of convective perturbations. Next, one could find
the spectral agreement between the wave numbers that define the functional
element in the Fourier-Bessel series with the element source of the theory of a
plane field:
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In this case, the linearity of the circulation model is actually used. Further one
can write:
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Here M:N  are the wave numbers of the two-dimensional harmonic:

ei(mWfO’n,mt)J (ﬂ, r./), . : . . . .
ntmat 2which best approximates the functional field of the dipole in

the circle of convergence of the Taylor series. As a result, the spectrum in the

Fourier-Bessel series is consistent with the source with weight C.. Of course,
here we are talking about coordinate wise matching of the spectral mode with a
source in a small subdomain of the total solution. In other subareas, the desired
solution may be inconsistent. Nevertheless, it is possible to achieve fairly good

agreement across the formula (17) with the coefficients “m'@ma% and

spectral modes: AnnsBon Thus, in fact, the problem is not solved at a specific
point, but on average along the convergence ring of the Laurent series.

Coordinates "'+ are recalculated when calculating into a coordinate ° on a
complex plane. An additional way to clarify the stability of the front section or
the line of convective disturbance in the field of action of the thermal circulation
of the city is based on the formula (theory of complex variable functions):
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Here, obviously, the Laurent series with convergence in the ring in the

neighborhood of the point @is already applied. Further, we can represent the
vortex chain formula in the form of successive vortex sources in the field of the

complex velocity potential @ in the complex plane with the coordinate z :

Z-1 = z-1 Z—-1
do _ T qprl 0)]+Z[In(—k) +In(E=22) D+ const;
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Here | is the distance between the vortices in the Karman chain; Zo*%2 %« are
the complex coordinates of the centers of the vortices, the coordinates “-+ were

introduced by Karman, but can be eliminated in relation to atmospheric



disturbances if the coordinate o coincides with a certain center of intense
convection of the intramass manifestation: I =€o — circulation along the
contour of an individual element of the vortex chain, where Q is a projection of
the vortex element onto the normal to the surface of a certain section separating
the zone of intramass convection from the rest of the solution area; ¢ is the area
of the normal section of the elementary vortex in the chain.

Specific model applications of the presented approach will be considered in
subsequent works. It is interesting to remind that the processes in the thermal
"cap"” or heat island zone can be defined by analogy with the known soliton of
fogging as a "locale", which has its own wave and turbulent (or chaotic)
structure. These structures are rigidly connected to each other. Namely, the
energy spectra of harmonics of the Fourier or Fourier-Bessel transforms can be
understood both as a wave spectrum and as a spectrum of turbulent vortices (c.g.
[19-21]).



Tests performance
Task Option 1.

1). Give the key definitions of numerical methods in problems of modeling of
processes of heat exchange, convection, radiation, heat transfer, energy and
mass. Explain: the definitions and key features : i). The numerical details of the
standard difference methods of solution of the master system ii) The numerical
details of the modified approximation of “shallow water” , iii) The numerical
details of the spectral expansion algorithm iv) elements of theory of a plane
complex field; iv). The numerical details of the geophysical approach, method
of plane complex field

2) Find the solution of the modified system of the “shallow water” equations
using the spectral expansion algorithm and standard difference methods.

3).To apply the spectral algorithm to numerical realization of the problem 2. To
perform its pracrical realization (using Fortran Power Station , Version 4.0; PC

Code: “Supersystem” for computational solving this equation. Use the data set
N1.

Task Option 2.

1). Give the key definitions of numerical methods in problems of modeling of
processes of heat exchange, convection, radiation, heat transfer, energy and
mass. Explain: the definitions and key features : i). The numerical details of the
standard difference methods of solution of the master system ii) The numerical
details of the modified approximation of “shallow water” , iii) The numerical
details of the spectral expansion algorithm iv) elements of theory of a plane
complex field; iv). The numerical details of the geophysical approach, method
of plane complex field

2) Find the solution of the modified system of the “shallow water” equations
using the spectral expansion algorithm and standard difference methods.

3).To apply the spectral algorithm to numerical realization of the problem 2. To
perform its pracrical realization (using Fortran Power Station , Version 4.0; PC
Code: “Supersystem” for computational solving this equation. Use the data set
N2



Task Option 3.

1). Give the key definitions of numerical methods in problems of modeling of
processes of heat exchange, convection, radiation, heat transfer, energy and
mass. Explain: the definitions and key features : i). The numerical details of the
standard difference methods of solution of the master system ii) The numerical
details of the modified approximation of “shallow water” , iii) The numerical
details of the spectral expansion algorithm iv) elements of theory of a plane
complex field; iv). The numerical details of the geophysical approach, method
of plane complex field

2) Find the solution of the modified system of the “shallow water” equations
using the spectral expansion algorithm and standard difference methods.

3).To apply the spectral algorithm to numerical realization of the problem 2. To
perform its pracrical realization (using Fortran Power Station , Version 4.0; PC

Code: “Supersystem” for computational solving this equation. Use the data set
N3.

Task Option 4.

1). Give the key definitions of numerical methods in problems of modeling of
processes of heat exchange, convection, radiation, heat transfer, energy and
mass. Explain: the definitions and key features : i). The numerical details of the
standard difference methods of solution of the master system ii) The numerical
details of the modified approximation of “shallow water” , iii) The numerical
details of the spectral expansion algorithm iv) elements of theory of a plane
complex field; iv). The numerical details of the geophysical approach, method
of plane complex field

2) Find the solution of the modified system of the “shallow water” equations
using the spectral expansion algorithm and standard difference methods.

3).To apply the spectral algorithm to numerical realization of the problem 2. To
perform its pracrical realization (using Fortran Power Station , Version 4.0; PC
Code: “Supersystem” for computational solving this equation. Use the data set
N4



Task Option 5.

1). Give the key definitions of numerical methods in problems of modeling of
processes of heat exchange, convection, radiation, heat transfer, energy and
mass. Explain: the definitions and key features : i). The numerical details of the
standard difference methods of solution of the master system ii) The numerical
details of the modified approximation of “shallow water” , iii) The numerical
details of the spectral expansion algorithm iv) elements of theory of a plane
complex field; iv). The numerical details of the geophysical approach, method
of plane complex field

2) Find the solution of the modified system of the “shallow water” equations
using the spectral expansion algorithm and standard difference methods.

3).To apply the spectral algorithm to numerical realization of the problem 2. To
perform its pracrical realization (using Fortran Power Station , Version 4.0; PC

Code: “Supersystem” for computational solving this equation. Use the data set
N5.

Task Option 6.

1). Give the key definitions of numerical methods in problems of modeling of
processes of heat exchange, convection, radiation, heat transfer, energy and
mass. Explain: the definitions and key features : i). The numerical details of the
standard difference methods of solution of the master system ii) The numerical
details of the modified approximation of “shallow water” , iii) The numerical
details of the spectral expansion algorithm iv) elements of theory of a plane
complex field; iv). The numerical details of the geophysical approach, method
of plane complex field

2) Find the solution of the modified system of the “shallow water” equations
using the spectral expansion algorithm and standard difference methods.

3).To apply the spectral algorithm to numerical realization of the problem 2. To
perform its pracrical realization (using Fortran Power Station , Version 4.0; PC
Code: “Supersystem” for computational solving this equation. Use the data set
N6
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