
 
 

        
 

 

 



 
 

THE MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE 

ODESSA STATE ENVIRONMENTAL UNIVERSITY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methodical instructions  

for practical work, test performance, distance  

learning of PhD students in the discipline “Computational Methods  

of optics and dynamics of quantum and laser systems. Part 3”.  

(Training of PhD students  of the specialty:  

104 –“Physics and astronomy”) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Odessa 2021 



 
 

 

 

Methodical instructions for practical work, test performance, distance 

learning of PhD students  in the discipline “Computational Methods of optics 

and dynamics of quantum and laser systems. Part 3”. 

 (Training specialty: 104 - “Physics and Astronomy”) 

 

 

 

 

Compiler:  

Svinarenko A.A., d.f.-m.s. (Hab.Dr.), prof., prof. of the department of higher 

and applied mathematics (OSENU) 

Khetselius O.Yu., d.f.-m.s. (Hab.Dr.), prof., prof. of the department of higher 

and applied mathematics (OSENU) 

 

 

 

 

 

 

Editor:  

Svinarenko A.A., d.f.-m.s. (Hab.Dr.), prof., prof. of the department of higher 

and applied mathematics (OSENU) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

PREFACE 

 

The discipline "Computational methods of optics and dynamics of 

quantum and laser systems" is a mandatory discipline in the cycle of 

professional training of graduate students (3rd level of education) in the 

specialty 104- Physics and astronomy. 

It is aimed at mastering (providing) a number of planned competencies, 

including the study of the modern apparatus of optics and dynamics of quantum 

and laser systems, as well as the development of new computational methods 

and algorithms for numerical study of energy and spectroscopic characteristics 

of atoms, molecules, solids , the main properties of quantum and laser systems, 

systems in general in the field of optics and laser physics and new developed 

computational methods in order to achieve scientific results that create 

potentially new knowledge in computational applied mathematics. 

The place of the discipline in the structural and logical scheme of its 

teaching: the knowledge gained in the study of this discipline is used in writing 

dissertations, the subject of which is related to the development of new 

computational methods and algorithms for studying energy and spectroscopic 

characteristics of atoms, molecules, solids, basic properties quantum and laser 

systems. The basic concepts of the discipline are the basic tools of a specialist in 

the field of optics and laser physics. 

The purpose of the discipline is to master (provide) a number of 

competencies, in particular, to achieve relevant knowledge, understanding and 

ability to use methods of data analysis and statistics at the latest level, the ability 

to use standard and build new software based on new mathematical approaches. 

-study, adapt, improve computational methods and algorithms for numerical 

study of the characteristics of linear and nonlinear processes in complex 

quantum and classical systems. 

The total amount of study time for the study of the discipline is 150 hours. 

for full-time and part-time education, respectively. 

After mastering this discipline, the graduate student must be able to use 

modern or personally developed new computational methods, in particular, to 

analyses, model, predict, program the dynamics of classical and quantum 

systems with the formulation of appropriate computer experiments. 

The main topics: Numerical methods in the problems of modeling the 

processes of heat transfer, convection, radiation, energy and mass transfer. 
 

 

 

 

 

 



 
 

Topics: Numerical methods in the problems of modeling the 

processes of heat transfer, convection, radiation, energy and mass 

transfer. 

Топіки: Чисельні методи в задачах моделювання процесів теплообміну, 

конвекції, випромінювання, переносу енергії і маси. (ЗБ- Л2.3) 

 

 

1. Introduction. 

 

One of the most actual and important problems of the modern physics of 

aerodispersed systems, atmospheric and climate systems is study of an  energy-, 

heat-, mass-transfer in natural continuous environments such as atmosphere or 

other geospheres. The most of different simplified approaches that allow to 

estimate the temporal and spatial structure of air ventilation in an atmosphere, 

significantly use as the simple molecular diffusion models  as system of 

regression equations [1-14].  

Disadvantages of these approaches are well known and became very 

critical if the atmosphere contains elements of convective instability.  In our 

previous papers [7, 15-18]  we have developed an advanced approach to the 

simulation of heat and air ventilation in atmosphere of an industrial region (so 

called local scale atmospheric circulation complex-field (LACCF) approach). 

The approach includes an improved theory of atmospheric circulation in 

combination with the hydrodynamic forecast model (with quantitatively correct 

account of turbulence in the atmosphere at local scales) and the Arakawa-

Schubert model of cloud convection. Here we present a new theoretical 

approach to dynamics of heat-mass-transfer, thermal turbulence (as in a heat 

island zone as in a city’s periphery) and air ventilation in atmosphere of an 

industrial city.   

Spectrum of thermal turbulence of an industrial city’s zone. The modified 

approximation of “shallow water”  is used, but, in contrast to the standard 

difference methods of solution, in further we will use the spectral expansion 

algorithm [7, 15].  

The necessary solution, for example, for the vx-ivy component for the 

city’s heat island has the form of expansion into series on the Bessel functions.  

As usually, we attribute the movement to the polar coordinates (r,) in the area 

located within the zone of action of the thermal “cap” (or “heat island”) of the 

city [7]. Flowchart of the ventilation over  the urban region territory by air flows 

in a presence of the cloud’s convection is presented in Figure 1 and explains the 

key physical processes [16].  

 

 

 

 



 
 

 

 

The system of equations of motion is as follows [7]:       
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(where u,v,w - components of wind speed,  - angular velocity of rotation of the 

circulation ring around the city heat island; g is acceleration of gravity,  is  free 

surface  

level of the shallow water equations (1)) with boundary conditions: 

 

 
(2) 

 
 

where P - is the atmospheric pressure, H - height of the thermal head or free 

level. 

Lateral boundary condition:  corresponds to the absence of disturbances 

at the boundary of the circulation ring. In a single-layer fluid approximation: 

  

 
Figure 1. Flowchart of air mass transfer between the city and its periphery 

 



 
 

 
 

Equation (2) can be rewritten as follows:  

 
(4) 

Equation (1) are transformed into independent ones with respect to u and v: 
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Applying the operator  to equation (5), and excluding u and v, taking 

into account advection, we obtain a nonlinear differential equation with respect 

to : 
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Here:     
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 set the temperature and baroclinic modes.  The solution of 

equation (6) is divided into the solution of a homogeneous differential equation: 
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and further determination of a total solution in the form as a superposition of 

particular solutions of the equation (7). The natural definition of particular 

solution is as follows: . Its substitution to Eq.(7) allows to 

obtain:  
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     Equation (8) coincides with the Bessel equation and, as it is known, its  own 

solutions will also be the Bessel functions: ’( r)=Jm( xr).   The total solution 

can be presented as follows:  
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where m,n  is “n” root of the function Jm( r).  It is known that it is directly 

related to frequency σm,n if  x in a particular solution is identified with m,n  in 

a complete solution. The constants Am,n, Bm,n are then determined either from 

the initial level for t=0 for the function , which in this case is a solution of the 

homogeneous equation (7), or according to the method of solving the 

inhomogeneous equation (6), but without satisfying, in the general case, the 

initial condition [19].  

The series (10) is simultaneously the Fourier-Bessel series for the 

function (r,). Further, one can easily get: 
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The initial function of the thermal relief of an industrial city and the fields 

associated with it are determined by the following Fourier-Bessel series: 
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It is interesting to note that further, for example, the diffusion of 

impurities in atmosphere of industrial city inside the city’s heat island from 

some point sources is read by the method of simple advection according to the 

values of the velocity projection calculated by formulas (11).  

One could also directly use the equation of molecular (wave) diffusion. 

The vertical rise of the impurity is calculated by the formula (2b).  

Application of the theory of a plane complex field for calculating air circulation 

in an industrial city’s periphery.  

Within the new geophysical approach [16-18], an air flux speed over a 

city’s periphery in a case of convective instability can be found by method of 

plane complex field theory (in analogy with the Karman vortices chain model) 

[6,7]:  
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Here k –circulation on the vortex elements, created by clouds, kb – co-ordinates 

of these elements,   – circulation on the standard Karman  chain vortices of, l  – 

distance between standard vortices of the Karman  chain,   - co-ordinate of the 

convective perturbations line (or front divider) centre, kl−0  – co-ordinate of 

beginning of the convective perturbation line,  kl+0 – co-ordinate of end of this 

line. The indicated parameters are the input model ones and explained in details 

in Ref. [7].  

 Naturally, we further assume that possible convective disturbances on the 

periphery of an industrial city approach it in the form of convective ridges. The 

required ridges of cloudiness can be set in the problem in the field of the 

velocity of vertical currents and associated currents of involvement by formula 

(15).  

The model stability of a front segment or a convective line in the general 

dynamics of the atmosphere can be formulated by combining solution (11) with 

the formula of the theory of a plane complex field (15): 
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Here the coordinates 
// ,r  are located in the zone of action of the functional 

ensemble of the front or the line of convective instability; the coordinates 

11 ,...,, aaa mm − , "contouring" the said section of the frontal section include the 

coordinates 
// ,r in the immediate vicinity. The consistency of the coefficients 

, ,,m n m nA B
 with the similarity coefficients 11 ,...,,  −mm  of the Laurent series in a 

certain neighborhood with nearby coordinate points 11 ,...,, aaa mm −  determines the 

stability at the time point of the physical process specified by the complex 

velocity potential in the process of thermal circulation at the boundary of the 

city’s thermal ring with the general solution of the thermal circulation model 

given by series (2).  

The area of solution of the problem (1) – (2) in this case belongs to the 

line of maximum speeds in the zone of the thermal circulation ring of the city. 

The multipole coefficients 11 ,...,,  −mm  specify the total contribution of focal 

convection beyond the lines of convective perturbations. Next, one could find 

the spectral agreement between the wave numbers that define the functional 

element in the Fourier-Bessel series with the element source of the theory of a 

plane field: 
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In this case, the linearity of the circulation model is actually used. Further one 

can write: 
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Here NM ,  are the wave numbers of the two-dimensional harmonic: 

),( /

,

)( , rJe nmn

tmi mn 
+

which best approximates the functional field of the dipole in 

the circle of convergence of the Taylor series. As a result, the spectrum in the 

Fourier-Bessel series is consistent with the source with weight 1C . Of course, 

here we are talking about coordinate wise matching of the spectral mode with a 

source in a small subdomain of the total solution. In other subareas, the desired 

solution may be inconsistent. Nevertheless, it is possible to achieve fairly good 

agreement across the formula (17) with the coefficients 11 ,...,,  −mm  and 

spectral modes: nmnm BA ,, ,
. Thus, in fact, the problem is not solved at a specific 

point, but on average along the convergence ring of the Laurent series. 

Coordinates 
// ,r  are recalculated when calculating into a coordinate   on a 

complex plane. An additional way to clarify the stability of the front section or 

the line of convective disturbance in the field of action of the thermal circulation 

of the city is based on the formula (theory of complex variable functions):  
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Here, obviously, the Laurent series with convergence in the ring in the 

neighborhood of the point )(a is already applied. Further, we can represent the 

vortex chain formula in the form of successive vortex sources in the field of the 

complex velocity potential   in the complex plane with the coordinate z : 
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Here l  is the distance between the vortices in the Karman chain; kzzz ,...,, 20  are  

the complex coordinates of the centers of the vortices, the coordinates kz−  were 

introduced by Karman, but can be eliminated in relation to atmospheric 



 
 

disturbances if the coordinate 0z  coincides with a certain center of intense 

convection of the intramass manifestation: =  – circulation along the 

contour of an individual element of the vortex chain, where   is a projection of 

the vortex element onto the normal to the surface of a certain section separating 

the zone of intramass convection from the rest of the solution area;  is the area 

of the normal section of the elementary vortex in the chain.  

Specific model applications of the presented approach will be considered in 

subsequent works. It is interesting to remind that the processes in the thermal 

"cap" or heat island zone can be defined by analogy with the known soliton of 

fogging as a "locale", which has its own wave and turbulent (or chaotic) 

structure. These structures are rigidly connected to each other. Namely, the 

energy spectra of harmonics of the Fourier or Fourier-Bessel transforms can be 

understood both as a wave spectrum and as a spectrum of turbulent vortices (c.g. 

[19-21]).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Tests performance 

 

Task Option 1. 

 

1). Give the key definitions of numerical methods in problems of modeling of 

processes of heat exchange, convection, radiation, heat transfer, energy and 

mass. Explain:  the definitions and key features : i). The numerical details of the 

standard difference methods of solution of the master system ii) The numerical 

details of the modified approximation of “shallow water” , iii) The numerical 

details of the spectral expansion algorithm iv) elements of theory of a plane 

complex field; iv). The numerical details of the geophysical approach, method 

of plane complex field 

2) Find the solution of the modified system of the “shallow water” equations 

using the spectral expansion algorithm and standard difference methods.  

3).To apply the spectral algorithm to numerical realization of the problem 2.  To 

perform its pracrical realization (using Fortran Power Station , Version 4.0; PC 

Code: “Supersystem” for computational solving this equation. Use the data set 

N1. 

 

 

Task Option 2. 

 

1). Give the key definitions of numerical methods in problems of modeling of 

processes of heat exchange, convection, radiation, heat transfer, energy and 

mass. Explain:  the definitions and key features : i). The numerical details of the 

standard difference methods of solution of the master system ii) The numerical 

details of the modified approximation of “shallow water” , iii) The numerical 

details of the spectral expansion algorithm iv) elements of theory of a plane 

complex field; iv). The numerical details of the geophysical approach, method 

of plane complex field 

2) Find the solution of the modified system of the “shallow water” equations 

using the spectral expansion algorithm and standard difference methods.  

3).To apply the spectral algorithm to numerical realization of the problem 2.  To 

perform its pracrical realization (using Fortran Power Station , Version 4.0; PC 

Code: “Supersystem” for computational solving this equation. Use the data set 

N2 



 
 

Task Option 3. 

 

1). Give the key definitions of numerical methods in problems of modeling of 

processes of heat exchange, convection, radiation, heat transfer, energy and 

mass. Explain:  the definitions and key features : i). The numerical details of the 

standard difference methods of solution of the master system ii) The numerical 

details of the modified approximation of “shallow water” , iii) The numerical 

details of the spectral expansion algorithm iv) elements of theory of a plane 

complex field; iv). The numerical details of the geophysical approach, method 

of plane complex field 

2) Find the solution of the modified system of the “shallow water” equations 

using the spectral expansion algorithm and standard difference methods.  

3).To apply the spectral algorithm to numerical realization of the problem 2.  To 

perform its pracrical realization (using Fortran Power Station , Version 4.0; PC 

Code: “Supersystem” for computational solving this equation. Use the data set 

N3. 

 

Task Option 4. 

 

 

1). Give the key definitions of numerical methods in problems of modeling of 

processes of heat exchange, convection, radiation, heat transfer, energy and 

mass. Explain:  the definitions and key features : i). The numerical details of the 

standard difference methods of solution of the master system ii) The numerical 

details of the modified approximation of “shallow water” , iii) The numerical 

details of the spectral expansion algorithm iv) elements of theory of a plane 

complex field; iv). The numerical details of the geophysical approach, method 

of plane complex field 

2) Find the solution of the modified system of the “shallow water” equations 

using the spectral expansion algorithm and standard difference methods.  

3).To apply the spectral algorithm to numerical realization of the problem 2.  To 

perform its pracrical realization (using Fortran Power Station , Version 4.0; PC 

Code: “Supersystem” for computational solving this equation. Use the data set 

N4 

 

 



 
 

Task Option 5. 

 

1). Give the key definitions of numerical methods in problems of modeling of 

processes of heat exchange, convection, radiation, heat transfer, energy and 

mass. Explain:  the definitions and key features : i). The numerical details of the 

standard difference methods of solution of the master system ii) The numerical 

details of the modified approximation of “shallow water” , iii) The numerical 

details of the spectral expansion algorithm iv) elements of theory of a plane 

complex field; iv). The numerical details of the geophysical approach, method 

of plane complex field 

2) Find the solution of the modified system of the “shallow water” equations 

using the spectral expansion algorithm and standard difference methods.  

3).To apply the spectral algorithm to numerical realization of the problem 2.  To 

perform its pracrical realization (using Fortran Power Station , Version 4.0; PC 

Code: “Supersystem” for computational solving this equation. Use the data set 

N5. 

 

 

Task Option 6. 

 

1). Give the key definitions of numerical methods in problems of modeling of 

processes of heat exchange, convection, radiation, heat transfer, energy and 

mass. Explain:  the definitions and key features : i). The numerical details of the 

standard difference methods of solution of the master system ii) The numerical 

details of the modified approximation of “shallow water” , iii) The numerical 

details of the spectral expansion algorithm iv) elements of theory of a plane 

complex field; iv). The numerical details of the geophysical approach, method 

of plane complex field 

2) Find the solution of the modified system of the “shallow water” equations 

using the spectral expansion algorithm and standard difference methods.  

3).To apply the spectral algorithm to numerical realization of the problem 2.  To 

perform its pracrical realization (using Fortran Power Station , Version 4.0; PC 

Code: “Supersystem” for computational solving this equation. Use the data set 

N6 
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