
  

 

 

        
 

 



  

 

 

THE MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE 

ODESSA STATE ENVIRONMENTAL UNIVERSITY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methodical instructions  

for practical work, test performance, distance learning of PhD students   

in the discipline “MATHEMATICAL AND PHYSICAL MODELS 

OF QUANTUM AND NEURAL NETWORKS”, Part 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Odessa 2021 



  

 

 

 

 

Methodical instructions for practical work, test performance, distance 

learning of PhD students  in the discipline “MATHEMATICAL AND 

PHYSICAL MODELS OF QUANTUM AND NEURAL NETWORKS, Part 1.  

(Training specialty: 113 - “Applied mathematics” and others) 

 

 

 

Compiler:  

Glushkov O.V., D.f.-m.s.(Hab.Dr.),  prof., Head of the department of higher and 

applied mathematics (OSENU) 

Khetselіus O.Yu., D.f.-m.s.(Hab.Dr.), prof., prof. of the department of higher 

and applied mathematics (OSENU) 

Svinarenko A.A., D.f.-m.s.(Hab.Dr.), prof., prof. of the department of higher 

and applied mathematics (OSENU) 

Buyadzhi V.V., C.f.-m.s.(PhD), assoc.-prof. of the department of higher and 

applied mathematics (OSENU) 

Ignatenko a.V. , C.f.-m.s.(PhD), assoc.-prof. of the department of higher and 

applied mathematics (OSENU) 

 

 

Editor:  

Khetselіus O.Yu., D.f.-m.s.(Hab.Dr.), prof., prof. of the department of higher 

and applied mathematics (OSENU) 

 

Reviewer: 

P’yanova I.Yu., c.phil.s. (PhD), assoc.-prof., Head of the department of Foreign 

Languages (OSENU)



 

 

PREFACE 

Discipline " MATHEMATICAL AND PHYSICAL MODELS OF 

QUANTUM AND NEURAL NETWORKS " is an elective discipline in the 

cycle of professional training of graduate students (third level of education) in 

the specialty 113- Applied Mathematics. 

It is aimed at mastering (providing) a number of planned competencies, 

including the study of the modern apparatus of quantum and neural networks 

and on their basis to build new computational algorithms and software systems 

for mathematical modeling of linear and nonlinear processes in complex systems 

with regular and chaotic dynamics 

The place of the discipline in the structural and logical scheme of its 

teaching: the knowledge gained in the study of this discipline is used in writing 

dissertations, the subject of which is related to the study of properties and 

regular and chaotic dynamics of various [classes of mathematical, physical 

chemical, cybernetic, socio-economic and environmental systems. The basic 

concepts of the discipline are the desired toolkit of an experienced specialist in 

the field of applied mathematics. 

The purpose of studying the discipline is to master (provide) a number of 

competencies, in particular, the ability to develop new and improve existing 

mathematical and physical models of quantum and neural networks and build 

new computational algorithms and software for mathematical modeling of linear 

and nonlinear processes in complex systems. regular and chaotic dynamics. 

After mastering this discipline, the graduate student must be able to 

improve existing modern mathematical and physical models of quantum and 

neural networks, as well as build new efficient models, and on their basis to 

develop new computational algorithms and software for analysis, mathematical 

modeling and prediction of linear and nonlinear processes in complex systems 

with regular and chaotic dynamics. The study of the discipline "Mathematical 

and Physical Models of Quantum and Neural Networks" is conducted in the 

second year of study (4th semester; full-time and part-time forms of study) and 

includes lectures and practical classes. Types of control of current knowledge - 

tests and term papers, surveys, tests.   Topics of these issue: Topic: Conceptual 

aspects of building software implementations of neural network models. 

Algorithmic model of the system. Algorithm of software model functioning. 

Object-oriented model of the system. System testing. Computer experiments on 

modeling the dynamics of neural networks 



 

 

Topic: Conceptual aspects of building software implementations of neural 

network models. Algorithmic model of the system. Algorithm of software model 

functioning. Object-oriented model of the system. System testing. Computer 

experiments on modeling the dynamics of neural networks and chaos theory 

algorythms 

Topic: Концептуальні аспекти побудови програмних реалізацій моделей 

нейронних мереж. Алгоритмічна модель системи. Алгоритм 

функціонування програмної моделі. Об'єктно-орієнтована модель системи. 

Тестування системи. Комп'ютерні експерименти з моделювання динаміки 

нейронних мереж  (ЗБ- Л2) 

 

1 Introduction 

It is very well known now that multiple physical, chemical, biological, social 

systems  could demonstrate the typical chaotic behaviour [1-2].  Here one could 

remind a great majority of different systems, which  are formally very complex, 

and this feature is manifested at different spatial and temporal scale levels [1-

15]. It is not difficult to understand that examples of such systems are the 

chemical systems, biological populations, cybernetical (neurocybernetical), 

communication, at last social, psychological and physiological etc systems and 

its subsystems.  

Most important, the fundamental issue in the description of the dynamics of the 

system is its ability to forecast its future evolution, i.e. predictability of behavior. 

Recently, the theory of dynamical systems is intensively developed, and, in 

particular, speech is about application of methods of the theory to the analysis of 

complex systems that provide description of their evolutionary dynamics by 

means solving system of differential equations. If the studied system is more 

complicated then the greater the equations is necessary for its adequate 

description. Meanwhile, examples of the systems described by a small amount 

of equations, are known nevertheless, theses systems exhibit a complicated 

behavior. 

Probably the best-known examples of such systems are the Lorenz system, the 

Sinai billiard, etc. They are described, for example, three equations (i.e., in 

consideration included three independent variables), but the dynamics of their 

behavior over time shows elements of chaos (so-called "deterministic chaos"). In 

particular, Lorentz was able to identify the cause of the chaotic behavior of the 

system associated with a difference in the initial conditions. Even microscopic 



 

 

deviation between the two systems at the beginning of the process of evolution 

leads to an exponential accumulation of errors and, accordingly, their stochastic 

divergence. During the analysis of the observed dynamics of some characteristic 

parameters of the systems over time it is difficult to say to what class belongs to 

the system and what will be its evolution in the future. Many interesting 

examples can be reminded in the modern statistical physics, physics of non-

ordered semiconductors etc. In recent years for the analysis of time series of 

fundamental dynamic parameters  there are with varying degrees of success 

developed and implemented a variety of methods, in particular, the nonlinear 

spectral and trend analysis , the study of Markov chains, wavelet and 

multifractal analysis, the formalism of the matrix memory and the method of 

evolution propagators etc. Most of the cited approaches are defined as the 

methods of a chaos theory.  

In the theory of dynamical systems methods have been developed that 

allow for the recording of time series of one of the parameters to recover some 

dynamic characteristics of the system. In recent years a considerable number of 

works, including an analysis from the perspective of the theory of dynamical 

systems and chaos, fractal sets, is devoted to time series analysis of dynamical 

characteristics of physics and other systems [1-53]. In a series of papers [10-16] 

the authors have attempted to apply some of these methods in a variety of the 

physical, geophysical, hydrodynamic problems. In connection with this, there is 

an extremely important task on development of new, more effective approaches 

to the nonlinear modelling and prediction of chaotic processes in different 

complex systems.  

In this work we present a new, advanced approach to nonlinear simulation and 

forecasting chaotic evolutionary dynamics during perception and tuition 

processes.   New approach to analyze and predict the nonlinear perception and 

tuition dynamics is based on the concept of geometric attractors, chaos theory 

methods and algorithms of the quantum neural network simulation. Using phase 

space information on the evolution of the perception and tuition processes in 

time and results of the of quantum neural network modelling techniques can be 

considered as one of the fundamentally new approaches in the construction of 

global nonlinear models of the most effective and accurate description of the 

structure of the corresponding attractor and in further optimal realizations of the 

perception and tuition processes. 

 



 

 

2 New Conception to Analysis of Chaotic Processes in Complex Systems: 

Neural networks and compact geometric attractor algorithms 

 

 

The basic idea of the construction of our approach to prediction of chaotic 

processes in complex systems during perception and tuition processes is in the 

use of the traditional concept of a compact geometric attractor in which evolves 

the measurement data, plus the implementation of neural network algorithms. 

The existing so far in the theory of chaos prediction models are based on the 

concept of an attractor, and are described in a number of papers (e.g. [1-8]). The 

meaning of the concept is in fact a study of the evolution of the attractor in the 

phase space of the system and, in a sense, modelling ("guessing") time-variable 

evolution. 

From a mathematical point of view, it is a fact that in the phase space of 

the system an orbit continuously rolled on itself due to the action of dissipative 

forces and the nonlinear part of the dynamics, so it is possible to stay in the 

neighborhood of any point of the orbit y (n) other points of the orbit yr (n), r = 1, 

2, ..., NB, which come in the neighborhood y (n) in a completely different times 

than n. Of course, then one could try to build different types of interpolation 

functions that take into account all the neighborhoods of the phase space and at 

the same time explain how the neighborhood evolve from y (n) to a whole 

family of points about y (n+1). Use of the information about the phase space in 

the simulation of the evolution of some physical (geophysical etc.) process in 

time can be regarded as a fundamental element in the simulation of random 

processes.  

In terms of the modern theory of neural systems, and neuro-informatics (e.g. 

[11]), the process of modelling the evolution of the system can be generalized to 

describe some evolutionary dynamic neuro-equations (miemo-dynamic 

equations). Imitating the further evolution of a complex system as the evolution 

of a neural network with the corresponding elements of the self-study, self- 

adaptation, etc., it becomes possible to significantly improve the prediction of 

evolutionary dynamics of a chaotic system. Considering the neural network (in 

this case, the appropriate term "geophysical" neural network) with a certain 

number of neurons, as usual, we can introduce the operators Sij synaptic neuron 

to neuron ui uj, while the corresponding synaptic matrix is reduced to a 

numerical matrix strength of synaptic connections: W = | | wij | |. The operator is 



 

 

described by the standard activation neuro-equation determining the evolution of 

a neural network in time: 

                                                             
=

−=
N

j

ijiji swsigns
1

' ),(                               (1) 

where 1<i<N.  

Of course, there can be more complicated versions of the equations of evolution 

of a neural network. Here it is important for us another proven fact related to 

information behavior of a neuro-dynamical system. From the point of view of 

the theory of chaotic dynamical systems, the state of the neuron (the chaos-

geometric interpretation of the forces of synaptic interactions, etc.) can be 

represented by currents in the phase space of the system and its the topological 

structure is obviously determined by the number and position of attractors. To 

determine the asymptotic behavior of the system it becomes crucial a 

information aspect of the problem, namely, the fact of being the initial state to 

the basin of attraction of a particular attractor.  

Modelling each physical attractor by a record in memory, the process of the 

evolution of neural network, transition from the initial state to the (following) 

the final state is a model for the reconstruction of the full record of distorted 

information, or an associative model of pattern recognition is implemented.  The 

domain of attraction of attractors are separated by separatrices or certain 

surfaces in the phase space. Their structure, of course, is quite complex, but 

mimics the chaotic properties of the studied object. Then, as usual, the next step 

is a natural construction parameterized nonlinear function F (x, a), which 

transforms:   

    y(n) →     y(n + 1) = F(y(n), a),                         (2) 

 

and then to use the different ( including neural network) criteria for determining 

the parameters a (see below). The easiest way to implement this program is in 

considering the original local neighborhood, enter the model(s) of the process 

occurring in the neighborhood, at the neighborhood and by combining together 

these local models, designing on a global nonlinear model. The latter describes 

most of the structure of the attractor.  

Although, according to a classical theorem by Kolmogorov-Arnold -Moser, the 

dynamics evolves in a multidimensional space, the size and the structure of 

which is predetermined by the initial conditions, this, however, does not indicate 

a functional choice of model elements in full compliance with the source of 



 

 

random data. One of the most common forms of the local model is the model of 

the Schreiber type [3] (see also [10]).  

 

                                         3 Construction of the model prediction 

 

Nonlinear modelling of chaotic processes during perception and tuition 

processes can be based on the concept of a compact geometric attractor, which 

evolve with measurements. Since the orbit is continually folded back on itself by 

the dissipative forces and the non-linear part of the dynamics, some orbit points 

yr(k), r = 1, 2, …, NB can be found in the neighbourhood of any orbit point y(k), 

at that the points yr(k) arrive in the neighbourhood of y(k) at quite different 

times than k. Then one could build the different types of interpolation functions 

that take into account all the neighborhoods of the phase space, and explain how 

these neighborhoods evolve from y (n) to a whole family of points about y (n + 

1). Use of the information about the phase space in modelling the evolution of 

the physical process in time can be regarded as a major innovation in the 

modelling of chaotic processes. 

This concept can be achieved by constructing a parameterized nonlinear 

function F(x, a), which transform y(n) to y(n+1)=F(y(n), a), and then using 

different criteria for determining the parameters a. Further, since there is the 

notion of local neighborhoods, one could  create a model of the process 

occurring in the neighborhood, at the neighborhood and by combining together 

these local models to construct a global nonlinear model that describes most of 

the structure of the attractor. 

Indeed, in some ways the most important deviation from the linear model is to 

realize that the dynamics evolve in a multidimensional space, the size and the 

structure of which is dictated by the data. However, the data do not provide 

"hints" as to which model to select the source to match the random data. And the 

most simple polynomial models, and a very complex integrated models can lead 

to the asymptotic time orbits of strange attractors, so for part of the simulation is 

connected with physics. Therefore, physics is "reduced" to fit the algorithmic 

data without any interpretation of the data. There is an opinion that there is no 

algorithmic solutions on how to choose a model for a mere data. 

The  most common form of the local model is given by the Schreiber algorithm 

[3] with using functi0onal dependences with some  coefficients )(k

ja ,which  may 

be determined by a least-squares procedure, involving only points s(k) within a 



 

 

small neighbourhood around the reference point. Thus, the coefficients will vary 

throughout phase space. The fit procedure amounts to solving (dA + 1) linear 

equations for the (dA + 1) unknowns.  

When fitting the parameters a, several problems are encountered that 

seem purely technical in the first place but are related to the nonlinear properties 

of the system. If the system is low-dimensional, the data that can be used for 

fitting will locally not span all the available dimensions but only a subspace, 

typically. Therefore, the linear system of equations to be solved for the fit will 

be ill conditioned. However, in the presence of noise the equations are not 

formally ill-conditioned but still the part of the solution that relates the noise 

directions to the future point is meaningless . Note that the method presented 

here is not only because, as noted above, the choice of fitting requires no 

knowledge of physics of the process itself. Other modelling techniques are 

described, for example, in [3,10]. 

Furthermore, formally the neural network algorithm is launched, in 

particular, in order to make training  the neural network system equivalent to the 

reconstruction and interim forecast the state of the neural network (respectively, 

adjusting the values of the coefficients).  

The starting point is a formal knowledge of the time series of the main dynamic 

parameters of a chaotic system, and then to identify the state vector of the matrix 

of the synaptic interactions ||wij|| etc. Of course, the main difficulty here lies in 

the implementation of the process of learning neural network to simulate the 

complete process of change in the topological structure of the phase space of the 

system and use the output results of the neural network to adjust the coefficients 

of the function display. The complexity of the local task, but obviously much 

less than the complexity of predicting the original chaotic processes in physical 

or other dynamic systems.  

 

 4 Dynamics of multilayers neural networks on basis of photon echo: 

Some numerical realizations 

  

  This subchapter is devoted to description of our algorithm of the program 

realization of the photon echo based quantum neural networks and its using for 

simulation of the tuition process. Currently there is a considerable interest in the 

development of neuro-computers, i.e. physical realizations of neural network 

models [10,17].  



 

 

 Now the main features of the neural network are being actively developed . It 

is known that the optimal neural network must be multilayered one, with a 

possibility to implement learning, feedback and controlled noise. Key elements 

 are as follows: matrix linkages, which should act as a one-dimensional or 

two-dimensional transducer image and model neuron, giving a binary or 

continuous sigmoid response to incoming stimulation. Although notable 

progress in the study of the features of quantum multilayer neural networks has 

been achieved, however, many important issues concerning their basic 

characteristics, operational models , information capacity, storage and recovery 

implementations chains induced sequentially in time , the possibility of learning, 

feedback , noise exposure etc. , until now are far from adequate resolution . This 

is especially true of neural networks based on photon echo [10]. Using the effect 

of photon echo (or multiphoton echo) is a new physical principle for 

implementation of a neural network to information processing. The basic aspects 

of theory of the photon echo based neural networks are stated previously (see, 

for example, [10,17-20]). So here we mention only the essential elements.  

 Photon echo is a nonlinear optical effect, in fact this is the phenomenon of 

the four wave interaction in a nonlinear medium with a time delay between the 

laser pulses. Exciting sequence of optical pulses pass through the appropriate 

medium and call for the environment  photon echo signal after a certain time 

interval. 

   It is necessary that the medium was resonant , i.e. the carrier frequency of 

the optical pulses was close to the frequency of the excited transition. Interaction 

of light with a resonant medium should occur in a relatively short intervals , 

shorter than the "phase memory". Duration light pulses must be much less than 

the minimum relaxation time in the environment (condition of coherent 

interaction ) . the effect of the three-pulse stimulated photon echo has the 

necessary properties for use as a photon echo new physical principle 

implementations of neural networks.  

 One promising approach to the realization of an optical neural network is the 

inner product scheme [10,17].  

 Schematic diagram of the optical images for processing sequence is as 

follows:  {Input→ Cumulative matrix F1→Correlation region→ Cumulative 

matrix F2→Output→ Threshold Device }.  

 The first pulse has an amplitude equal to unity over the entire plane of the 

medium, the second pulse defines the vectors of memory, incoming in the form 



 

 

of vertical columns and providing accumulation of the memory matrix 21 FF =  of 

the size (Np) in the environment.  

  The third pulse, whose amplitude is determined by a recognized one - 

dimensional image, comes to the input of the system and is uniformly 

distributed over the medium to the horizontal direction . As a result, there are 

arisen the stimulated echo-signals, which are collected in a horizontally disposed 

one-dimensional array in the correlation region . In the first phase there are 

calculated the inner product between the input vector and memory vectors.  

 Expression for the stimulated photon echo signal is:  

 

                                                            in
j

m
j
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mu ~)( .                                       (3) 

 

The amplitude of the first pulse is equal to unity and is omitted here. Further the 

inner product weigh the corresponding memory vectors p ,...,1 , accumulated in 

the matrix F2.  

 This operation leads to a stimulated echo signals, which are then summed, 

resulting in a one-dimensional distribution of amplitude: 
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This ratio, threshold conversion and feedback determine the dynamics of the 

Hopfield neural network with the Hebb coupling matrix.  

  The photon echo based implementation allows to replace the resolution of 

images in the space by a time resolution.  

 As result processing two-dimensional arrays is possible. Similarly, one has 

for the output signal amplitude as follows:  
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 To account for an effect of delay it is necessary to include the lag variables  

into network dynamics: 
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where the connection matrix (corresponding to the variables lag) have the form: 
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Here s is number of chains in the network , Qk is the number of images in the k-

th chain. If l=0, then we have a network with instant response. Note that the 

need for storing states in previous times in neural networks with l> 0 makes it 

difficult for their implementation by the known methods with the exception of 

the method, based on the effect of photon echo . In order to obtain an 

opportunity to make modeling  invariant pattern recognition and get the most 

information capacity one should use the neural networks of higher orders. We 

have developed a software package for numerical modeling of the dynamics of 

the photon echo neural network.  

It has the following key features: multi-layering, possibility of introducing 

training, feedback and controlled noise. There are possible the different variants 

of the connections matrix determination and binary or continuous sigmoid 

response (and so on) of the model neurons.  

In order to imitate a tuition process we have carried out numerical 

simulation of the neural networks  for recognizing a series of patterns (number 

of layers  N=3-5, number of images р=320; the error function:  
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where O(p,k) −  neural networks output k for image p and t(p,k) is the trained 

image р for output к; SSE is determined from a procedure of minimization; the 

output error is   

 

                                                      RMS=sqrt(SSE/Pmax);   

As neuronal function there is used function of the form: )]exp(1/[1)( xxf −+= . 

In our calculation there is tested the function  f(x,T)=exp[(xT)4] too.  

The results of the PC simulation (with using our neural networks package 

NNW-13-2003 [10]) of dynamics of the quantum multilayer neural networks 

with the input rectangular and sinusoidal pulses.are.listed.in.fig.1,2. 
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Fig. 1.  The results of modeling the multi-layer neural networks with a 

rectangular pulse input 

 

Fig. 3 demonstrates the results of modeling the dynamics of multilayer 

neural network for the case of noisy input sequence. The input signal was the 

Gaussian-like  pulse with adding a noise with intensity D. At a certain value of 

the parameter D (the variation interval .0001-0.0040 ) the network training 

process and signal playback is optimal.  

The optimal value of D is 0.0017 . A coherency of input and output is 

optimal for the indicated optimal noise level. 

Thus, a stochastic resonance effect is in fact discovered in our PC experiment. In 

our view, this phenomenon is apparently typical for the neural network system. 

Obviously, one should search for the same effect for human tuition process.  

Analysis of the PC experiment results allows to make conclusion about 

sufficiently high-quality processing the input signals of very different shapes 

and complexity by a photon echo based neural network. 

 



 

 

 

Fig. 2. The results of modeling the dynamics of multilayer neural networks with 

sinusoidal input pulse 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.
05 0.

2
0.

35 0.
5

0.
65 0.

8
0.

95 1.
1

1.
25 1.

4
1.

55 1.
7

1.
85 2

2.
15 2.

3
2.

45 2.
6

2.
75 2.

9
3.

05 3.
2

3.
35 3.

5
3.

65 3.
8

3.
95 4.

1
4.

25 4.
4

4.
55 4.

7
4.

85 5

Сигнал с шумом Результат  

Fig. 3. The results of modeling the dynamics of multilayer neural for the case of 

noisy input sequence. 

 



 

 

5 Some comments 

It is considered a new approach to nonlinear modelling and prediction of chaotic 

processes during perception and tuition processes on the basis of the neural 

networks algorythms, which is based on two key functional elements. Besides 

using other elements of starting chaos theory method, the proposed approach 

includes the application of the concept of a compact geometric attractor, and one 

of the neural network algorithms, or, in a more general definition of a model of 

artificial intelligence. The meaning of the latter is precisely the application of 

neural network to simulate the evolution of the attractor in phase space, and 

training most neural network to predict (or rather, correct) the necessary 

coefficients of the parametric form of functional display. In result one could get 

possibilities to analyze and predict the nonlinear (for example, perception and 

tuition) dynamics based on the concept of geometric attractors, chaos theory 

methods and algorithms for quantum neural network simulation [10,21]. Using 

phase space information on the evolution of the perception and tuition processes 

in time and results of the of quantum neural network modelling techniques can 

be considered as one of the fundamentally new approaches in the construction of 

global nonlinear models of the most effective and accurate description of the 

structure of the corresponding attractor and in further optimal realizations of the 

perception and tuition processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

2. Task options for self-sufficient work 

 

Task Option 1. 

 

1). Explaine the conceptual aspects of building software implementations of 

neural network models. Algorithmic model of the system. Algorithm of software 

model functioning. Object-oriented model of the system. System testing.  

2) Explain the main blocks of dynamics of multilayers neural networks on basis of 

photon echo: Some numerical realizations. As example, explain the algorithms 

of multilayer neural networks based on the photon echo and elements of chaos 

theory methods.  

3). To perform its pracrical realization (using Fortran Power Station , Version 

4.0; PC Code: “Superatom-Stark” and PC Code: “Geochaos”-NNW31  for 

modeling the dynamics of multilayer quantum neural networks (all necessary 

numerical parameters should be self-taken; the input pulse is Gaussian);      

 

 

Task Option 2. 

1). Explaine the conceptual aspects of building software implementations of 

neural network models. Algorithmic model of the system. Algorithm of software 

model functioning. Object-oriented model of the system. System testing.  

2) Explain the main blocks of dynamics of multilayers neural networks on basis of 

photon echo: Some numerical realizations. As example, explain the algorithms 

of multilayer neural networks based on the photon echo and elements of chaos 

theory methods.  

3). To perform its pracrical realization (using Fortran Power Station , Version 

4.0; PC Code: “Superatom-Stark” and PC Code: “Geochaos”-NNW31  for 

modeling the dynamics of multilayer quantum neural networks (all necessary 

numerical parameters should be self-taken; the input pulse is Lorentzian);      

 

 

 

 

 

 

 



 

 

Task Option 3. 

 

1). Explaine the conceptual aspects of building software implementations of 

neural network models. Algorithmic model of the system. Algorithm of software 

model functioning. Object-oriented model of the system. System testing.  

2) Explain the main blocks of dynamics of multilayers neural networks on basis of 

photon echo: Some numerical realizations. As example, explain the algorithms 

of multilayer neural networks based on the photon echo and elements of chaos 

theory methods.  

3). To perform its pracrical realization (using Fortran Power Station , Version 

4.0; PC Code: “Superatom-Stark” and PC Code: “Geochaos”-NNW31  for 

modeling the dynamics of multilayer quantum neural networks (all necessary 

numerical parameters should be self-taken; the input pulse is the soliton-like);      

 

 

Task Option 4. 

 

1). Explaine the conceptual aspects of building software implementations of 

neural network models. Algorithmic model of the system. Algorithm of software 

model functioning. Object-oriented model of the system. System testing.  

2) Explain the main blocks of dynamics of multilayers neural networks on basis of 

photon echo: Some numerical realizations. As example, explain the algorithms 

of multilayer neural networks based on the photon echo and elements of chaos 

theory methods.  

3). To perform its pracrical realization (using Fortran Power Station , Version 

4.0; PC Code: “Superatom-Stark” and PC Code: “Geochaos”-NNW31  for 

modeling the dynamics of multilayer quantum neural networks (all necessary 

numerical parameters should be self-taken; the input pulse is exponential);      

 

 

 

 

 

 

 

 



 

 

Task Option 5. 

 

1). Explaine the conceptual aspects of building software implementations of 

neural network models. Algorithmic model of the system. Algorithm of software 

model functioning. Object-oriented model of the system. System testing.  

2) Explain the main blocks of dynamics of multilayers neural networks on basis of 

photon echo: Some numerical realizations. As example, explain the algorithms 

of multilayer neural networks based on the photon echo and elements of chaos 

theory methods.  

3). To perform its pracrical realization (using Fortran Power Station , Version 

4.0; PC Code: “Superatom-Stark” and PC Code: “Geochaos”-NNW31  for 

modeling the dynamics of multilayer quantum neural networks (all necessary 

numerical parameters should be self-taken; the input pulse is exponential-sin);      

 

 

Task Option 6. 

1). Explaine the conceptual aspects of building software implementations of 

neural network models. Algorithmic model of the system. Algorithm of software 

model functioning. Object-oriented model of the system. System testing.  

2) Explain the main blocks of dynamics of multilayers neural networks on basis of 

photon echo: Some numerical realizations. As example, explain the algorithms 

of multilayer neural networks based on the photon echo and elements of chaos 

theory methods.  

3). To perform its pracrical realization (using Fortran Power Station , Version 

4.0; PC Code: “Superatom-Stark” and PC Code: “Geochaos”-NNW31  for 

modeling the dynamics of multilayer quantum neural networks (all necessary 

numerical parameters should be self-taken; the input pulse is exponential-cos);      
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