International Research-to-Practice Conference Climate Services: Science and Education

> September 22-24, 2021 Odesa, Ukraine

Conference Proceedings

Co-funded by the Erasmus+ Programme of the European Union

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE ODESSA STATE ENVIRONMENTAL UNIVERSITY

INTERNATIONAL RESEARCH-TO-PRACTICE CONFERENCE ON 'CLIMATE SERVICES: SCIENCE AND EDUCATION'

22-24 September 2021 Odesa, Ukraine

Conference Proceedings

Odesa

Odessa State Environmental University

2021

UDC 378:551.58 *I 73*

I 73 International Research-to-Practice Conference on 'Climate Services : Science and Education': Conference Proceedings. Odesa : Odessa State Environmental University, 2021. 144 p.

ISBN 978-966-186-162-5

The proceedings of the international research-to-practice conference on 'Climate Services: Science and Education' are presented in the collected volume. The reports cover the principle results of researches in the field of issues of climate services in the climate-sensitive economic sectors; education in climate services; climate risks and adaptation to climate change on regional and local levels.

Supported by the Erasmus+ Programme of the European Union. The publication reflects the authors' view, the EACEA and the European Commission are not responsible for any use that may be made of the information it contains.

E d i t o r s : Yuriy S. Tuchkovenko, DSc (Geography) Valeriya Ovcharuk, DSc (Geography) Inna Khomenko, PhD (Geography)

ISBN 978-966-186-162-5

© Odessa State Environmental University, 2021

INTERNATIONAL ORGANISING COMMITTEE

Enric Aguilar	Rovira i Virgili University, Spain
Hanna Lappalainen	University of Helsinki, Finland
Svyatoslav Tyuryakov	University of Helsinki, Finland
Iryna Bashmakova	University of Helsinki, Finland
Alexander Baklanov	Science and Innovation Department of World Meteorological Organization, Switzerland, affiliated professor at University of Copenhagen
Patrick Parrish, retired	World Meteorological Organization Education and Training Office, Switzerland
Marina Baldi	WMO Regional Training Centre, Italy
Eduard Podgaiskii	WMO-CGMS Virtual Laboratory for Training and Education in Satellite Meteorology
Anna Timofeeva	WMO Executive Council Capacity Development Panel
Valentina Khan	North EurAsia Climate Centre
Kalev Sepp	Estonian Life Science University, Estonia
Anton Shkaruba	Estonian Life Science University, Estonia
Svitlana Krakovska	Ukrainian Hydrometeorological Institute, Ukraine
Mykola Kulbida	Ukrainian Hydrometeorological Center, Ukraine
Sergiy Snizhko	Taras Shevchenko National University of Kyiv, Ukraine
Sergiy Stepanenko	Odessa State Environmental University, Ukraine

LOCAL ORGANISING COMMITTEE AT OSENU

Sergiy Stepanenko	Chair, Rector, Professor
Valerii Khokhlov	Vice-Chair, Vice-Rector for Studies and Methodology, Professor
Valeriya Ovcharuk	Vice-Chair, Director of Hydrometeorological Institute, Professor
Inna Khomenko	Secretary, Associate Professor of Department of Meteorology and Climatology
Mykola Berlinskyi	Head of Department of Oceanography and Marine Nature Management, Professor
Mariia Krachkovska	Vice-Rector for Administrative Activity
Nataliia Loboda	Head of Department of Hydroecology and Water Research, Professor
Maryna Pohorelova	Senior Lecturer of Department of Land Hydrology
Anatolii Polovyi	Head of Department of Agrometeorology and Agroecology, Professor
Oleh Prokofiev	Head of Department of Meteorology and Climatology, Associate Professor
Yurii Tuchkovenko	Vice-Rector for Research, Professor
Oleg Shabliy	Head of Foreign Relations Department
Zhannetta Shakirzanova	Head of Department of Land Hydrology, Professor

TABLE OF CONTENTS

Section I. Issues of Climate Services in Climate-Sensitive Economic Sectors

Achasov, A., A. Achasova	
Visual Decoding of Eroded Soils to the Sentinel Images	11
Amin, G., P. Nasr, H. Sewilam	
An Experimental Study on Draw Solution Performance in Fertilizer Drawn	
forward Osmosis under Water Energy Food Nexus Framework in Egypt	13
Aweda, E.D., M. Abdullahi	
Rainfall and Temperature Variability and Prevalence of Malaria in	
Damaturu, Nigeria	15
Dubovy, V.I., V.I. Vorobyov, O.V. Dubovy	
Special Aspects of Studying the Environmental Factors During the Period	
of Grain Crops Overwintering under Climatic Changes	17
Goptsiy, M., V. Ovcharuk, O. Prokofiev	
Adaptation Measures to Climate Change in Water Resources Management.	19
Gorbachova, L.O., B.F. Khrystiuk, V. Prykhodkina	
Cyclicity and Periodicity of Water Runoff of the Southern Buh River and	
the Possibility of its Forecasting by the α Method	21
Hornovska, S.V., V.P. Fedorenko, Y.V. Fedoruk	
Dispersal and Development of Beet Webworm Loxostege Sticticalis (L.)	
in Different Region of Ukraine	23
Iheme, P., A. Oluleye	
Thermodynamic Factors Responsible for Pre-Monsoon Thunderstorms	
over Lagos and Kano, Nigeria	25
Katerusha, O., H. Katerusha	
Research of the Expected Indexes of Winter Climate Discomfort in	27
Ukraine	27
Khomenko, I.	
Assessment of Impact of Future Climate Change on the Land-Based	20
I ransportation of Ukraine Based on RCP Scenarios	29
Kryvobok, O., M. Koman, O. Kryvoshein, O. Zabolotna	
Ground-Based Lightning Detection System as a Tool for Estimation of	21
Extreme Weather Events in Ukraine	31
Kryvoshein, O., O. Kryvobok	22
Climate Service Problems. Food Security with Wofost Model	33
Maksymenko, N., T. Huzieieva	
Regional Evaluation of Change in the Sum of Active Temperatures for	25
Optimization of Agricultural Production	35

Malovanyy, M., I. Tymchuk, V. Zhuk, R. Grechanik, A. Sereda, A. Marakhovska	
Effective Purification of Landfill Filtrates in the Context of Pollution	
Minimization Provocated by Climate Change	37
Nachtnebel, H.P., M. Herrnegger	
Climate Services and Vulnerability of Water Resources	39
Ovcharuk, V.	
Probabilistic-Stochastic Modeling of the Spring Flood Maximum Runoff	
as a Part of the Climate Service in the Water Management of Ukraine	41
Pasechko-Dietrich, V., O. Smorochinsky, V. Kushnerenko, A. Dubinsky	
Actual Indicators of Changes in Climatic Conditions in the Agricultural	
Sector	43
Savenets, M.	
Estimation of NO ₂ and SO ₂ Increase during the Heating Season in Ukraine	
Using TROPOMI Data	45
Schwemmlein, K.	
Climate Services and Agriculture: Understanding the Demand Side.	
Smallholders Perceptions in Odemira, Portugal	47
Shakirzanova, Zh.R., Ye.O. Romanova, Iu.S. Medvedieva	
Scientifically Substantiated Recommendations of Water Management of	
Katlabukh Lake under Current and Future Climate Change	48
Sobol, O.M.	
Relevance of the Use of Climate Services in the Development of	
Horsemanry of Southern Ukraine	50
Sumak, K.	
Climate Services in the Republic of Belarus	52
Synylo, K.	
Measures to Mitigate Climate Change from Civil Aviation Impact	54
Traeger-Chatterjee, C., D. Lee, M. Grant	
EUMETSAT's Prototype Data Cube for Drought and Vegetation	
Monitoring	56
Tymchuk, I., M. Malovanyy, V. Zhuk, V. Sliusar, U. Storoshchuk, O. Liut	
Composting of Organic Waste – an Effective Method of Their Disposal	
and a Prospective Factor of Slowing Climate Change (on the Example of	
Lviv)	57
Voloshyna, O.V.	
Climate Characteristics of the Heating Period in the Present Time and in	
the Future	59
Moufouma-Okia, W., A. Hovesepyan	
The World Meteorological Organization Climate Services Information	
System: Advances, Challenges and Opportunities	61
Zhuk V., M. Malovanyy, I. Tymchuk, O. Popovych, N. Vronska	
Increasing the Production and Use of Biogas Using Hydrobionts as Raw	
Materials – an Effective Way to Reduce Climate Dynamics	62

Section II. Education in Climate Services

Agayar, E., N. Mishchenko, I. Semenova, A. Semerhei-Chumachenko
Training Course for Experts in Climatology and Meteorology
"Introduction to Climate Change"
Boqué-Ciurana, A., A. Font-Barnet, J. X. Olano Pozo
"Co-Creation of Climate Services with Local Agents" Course: Adapting
WMO Climate Service Competencies in the Frame of Bachelor Degree on
Geography of Rovira i Virgili University
Burchenko, S.V., V.O. Voronin, N.V. Maksymenko, I.M. Shpakivska
Internship of Erasmus+ "Intense" for Evaluation of Green Infrastructure
and Ecosystem Services of Foresty Landscapes in Lviv
Dyman, N.
Ways of Implementing Non-Formal Climate Education for Young People 71 Fedoniuk, V.V., O.T. Kosthiv, M.A. Fedoniuk
About the Possibility of Automated Monitoring of Environmental-
Chemical Indices of Atmosphere Precipitation
Hrvtsiv, T.H.
Ecological Security and Sustainable Development as One of the Platforms
of National Revival in the Modern Education Space
Lakhtadyr, T.V., I.V. Dzevulska, R.F. Kaminskyi
Medical Education in the Conditions of Distance Learning
Mahura, A., V. Ovcharuk, T. Kryvomaz, H. Lappalainen, K. Lauri,
I. Khomenko, O. Shabliy, V. Kabin, M. Frankowicz, Yu. Rashkevych, L. Riuttanen, S. Tyuryakov, I. Bashmakova
Online Approaches for Climate-Oriented Education
Maksymenko, N., K. Utkina, G. Titenko
Inter-Faculty Course «Weather and Climate: Global Warming» as a Part
of Basic Education for Climate Services
Nezhlukchenko, T., V Kushnerenko N Nezhlukchenko
The Educational Content for the Learning Environment in Economic
Meteorological and Agricultural Sciences
Utlying K G Titenko N Maksymenko A Nekos A Achasov A Kucher
I. Bodak, O. Chernikova
Erasmus+ Project "Integrated Doctoral Program for Environmental Policy,
Management and Technology – Intense": Karazin University Team
Courses
Utkina, K.
MOOC "Precautionary Principle and Sustainability Transition": Up-Dated
Structure and Content
Vonitova, N.D.
You Will Help Water – You Will Cause Trouble and Then the Ecology of
the Earth Will Rise Again

Section III. Climate Risks and Adaptation to Climate Change on Regional and Local Levels

Amin, G.	
Low Carbon Roadmap – the Case Study of Egypt	91
Agayar, E.V., D.O. Zhuk,	
Climate Change and the Frequency of Squalls on the Territory of the North- Western Black Sea Region	92
Baklanov, A.	
The WMO Vegetation Fire and Smoke Pollution Warning Advisory and Assessment System (VFSP-WAS): Methodology, Current Capabilities and Possible Applications for Ukraine	94
Bohushenko, A., S. Stepanenko, I. Khomenko	
Characteristics of Extreme Temperature and Precipitation in Ukraine Based on ETCCDI Indices	95
Budnik, S.V.	
Displays of Changes of a Climate in Basins of the Western Bug and Pripyat Rivers	97
Danyliv, I., S. Mamedov	
Productivity Features of Romanov Sheep in Kherson Region Conditions	99
Dmitriiev, S., S. Reshetchenko	
The Impact of Climatic Changes on the Water Regime of the Siverskiy Donets' Basin	101
Dokus, A.O., Zh.R. Shakirzanova,	
Detection of the Climate Change Impact on the River Runoff of Spring Flood in Pivdenny Bug River Basin	103
Khokhlov, V., E. Serga, L. Nedostrelova	
Using Ensemble of Regional Climate Models for Assessment of Future Climate in North-Western Coast of Black Sea	105
Klok, S.V., A.O. Kornus, O.H. Kornus	
Analysis of Precipitation and Their Extremeness according to Observation Data at Odessa Meteorological Station for the Period 1976-2019	107
Kuryshyna, V., O. Pavlov	100
Air Temperature Regime in Odessa in Past and Present	109
Kuryshyna, V.	
Air Temperature Regime in Odessa in Future	111
Lappalainen, H.K., A. Mahura, S. Tyuryakov, I. Bashmakova	
Pan-Eurasian Experiment (PEEX) Program: Current Approach and Collaboration	113

Malkhazova, S., V. Mironova, I. Bashmakova	
Natural Focal Diseases of the Arctic Region of Russia	114
Martazinova, V., G. Melnyk	
Variations of Atmospheric Circulation and Geomagnetic Field in the North	
Hemisphere	115
Nezhlukchenko, T., N. Nezhlukchenko	
Dependence of Wool Productivity of Sheep and Climate	116
Nguyen Thi, Minh Hoa, Phu Bao Nguyen, Hong Nhat Pham, Tuan Anh Ha, That Lang Ton	
An Integrated Framework for Assessing Climate Risks to Population	
Sustainability: a Case Study in Ho Chi Minh City, Vietnam	118
Papakina, N., A. Nosko	
The Impact of Climate Change on the Productivity of Dairy Cattle	119
Papakina, N., T. Oskirko	
Indexes of the Live Weight of Lambs of Different Types of Birth	121
Polevoy, A.N., L.E. Bozko, E.A Barsukova	
The Impact of Climate Change on the Conditions of Growing Vegetable	
Crops in the Steppe Zone of Ukraine	123
Prakharenia, M.	
Possibilities for Complex Storm Detection and Forecasting of Severe	
Convective Structures Based on Modeling and Satellite Data	125
Pysarenko, L., S. Krakovska,	
The Effect of Partial Deforestation on Surface Wind Speed	127
Reshetchenko, S., E. Boryskina	
Temperature Regime as a Factor of Influence on the Territory	129
Semenova, I.	
The Role of Satellite Monitoring for Climate Services	131
Smalyukh, O.P.	
Ecological Education and Environmental Safety Issues	133
Timofeyev, V., O. Mazepa	
Scientific, Methodological and Educational Aspects of Climate Change of	
the Antarctic Peninsula Region	134
Tuchkovenko, Yu., V. Khokhlov, N. Loboda	
Assessment of Climate Change Impact on Parameters of Freshwater	
Balance in Lagoons of North-Western Black Sea Coast	136
Voloshkina, O., T. Shabliy, T. Tkachenko, A. Goncharenko, O. Zhukova	
Relationship between Air Pollution, Global Climate Change and	
Distribution of Covid-19	138
Zakharova, M.V.	
Annual Distribution of the Oka River Flow in Kaluga under the Conditions	
of Climate Change	140
Author index	142

CLIMATE CHANGE AND THE FREQUENCY OF SQUALLS ON THE TERRITORY OF THE NORTH-WESTERN BLACK SEA REGION

E.V. Agayar, PhD, D.O. Zhuk, PhD Student

Odessa State Environmental University, Ukraine

A squall is a sharp short-term increase in the wind, accompanied by changes in its direction and is a vortex with a horizontal axis developing under the influence of mesoscale atmospheric convection. Squalls are local and have a short-time influence, therefore they are difficult to register by standard methods. The fact of the phenomenon is often recorded only after its termination, with the help of data from remote sensing of the Earth from space. The accuracy of forecasting squalls by modern methods is still insufficient. In addition, there are practically no methods for forecasting disastrous squalls. Therefore, researches on squalls are continuing around the world, forecasting methods are being developed and perfected.

Most often squalls occur in the central part of a powerful thunderstorm cloud, with very high air humidity during the formation of precipitation [1]. The diagnosis of such local phenomena is quite difficult, especially when the phenomenon develops in a sparsely populated area, and even if a squall occurs in a densely populated area, most often the fact of its passage and intensity can be judged by the results of the damage caused.

Geographical position of the south of Ukraine, synoptic processes and a variety of climatic conditions contribute to the frequent occurrence of severe convective phenomena and creating the extraordinary complexity of their distribution in space and time. In recent years, due to significant climate change frequency of these events has increased. Despite the short duration of the impact, the squall causes significant damage to the economy, infrastructure and population.

Since the existing observational network in Ukraine is not enough for the diagnosis of convective phenomena and, in particular, a squall, it is necessary to equip the network with sensors for continuous registration of the meteorological situation. The most optimal instrument for determining the structure and physical characteristics of a squall line is a meteorological radar. World over, Doppler Weather Radar is recognized as the most versatile tool for squall analysis. On the basis of unambiguous and complex recognition criteria, radars in automatic mode allow not only to detect and recognize convective hazardous phenomena, but also to obtain information on the horizontal and vertical structure of the radar reflectivity of storms, the horizontal and vertical velocity of cloud particles and precipitation drops inside the cloud with a resolution of up to 1 km after 5-10 minutes.

One of the most squall-prone regions of Ukraine is the territory of the North-Western Black Sea. During the period from 2006 to 2020 there was an increase in the number of squalls on the territory of the North-Western Black Sea region in comparison with previous years. If for fifteen years from 1991 to 2005, according to [2], an average of 28 squall cases were observed, then for 2006 -2020, according to the data of storm warnings from the HMC BAS it was 261.

The largest number of squalls in all three regions was observed in 2010 (43), the maximum number of squall situations per year was noted in 2013 in the Odessa region -25 cases. The minimum recurrence rate of squalls falls on the Kherson region, where the maximum annual rates during the study period did not exceed 7 cases (2010). In the Nikolaev region, the frequency of squalls varied from 1 to 13 cases (2010) (Fig. 1).

Fig. 1. The number of cases of squalls on the territory of Nikolaev, Odessa and Kherson regions by years. 2006-2020.

The increase in the number of squalls and, accordingly, the emerging risks associated with this phenomen are most likely associated with climate change, namely, with an increase in the meridional circulation. The penetration of warm air masses of subtropical anticyclones into high latitudes and cold arctic air into the southern regions leads to the formation of the most intense convective phenomena, including squalls.

REFERENCES

- 1. Markowski P.M., Richardson Y.P. Tornadogenesis: Our current understanding, forecasting considerations, and questions to guide future research // Atmospheric Research. Vol. 93. 2009. P. 3-10.
- Natural meteorological phenomena on the territory of Ukraine for the last twenty years [1986 - 2005] / Ed. VM Lipinsky, VI Osadchy, VM Babichenko. – Kyiv: Nika-Center Publishing House. 2006. 312 p.

AUTHOR INDEX

Abdullahi, M., 15-16 Achasov, A., 11-12, 85-86 Achasova, A., 11-12 Agayar, E., 65-66, 92-93 Amin, G., 13-14, 91 Aweda, E.D., 15-16 Baklanov, A., 94 Barsukova, E.A., 123-124 Bashmakova, I., 79-80, 113,114 Bodak, I., 85-86 Bohushenko, A., 95-96 Boqué-Ciurana, A., 67-68 Boryskina, E., 129-130 Bozko, L.E., 123-124 Budnik, S.V., 97-98 Burchenko, S.V., 69-70 Chernikova, O., 85-86 Danyliv, I., 99-100 Dmitriiev, S., 101-102 Dokus, A.O., 103-104 Dubinsky, A., 43-44 Dubovy, O.V., 17-18 Dubovy, V.I., 17-18 Dyman, N., 71-72 Dzevulska, I.V., 77-78 Fedoniuk, M.A., 73-74 Fedoniuk, V.V., 73-74 Fedorenko, V.P., 23-24 Fedoruk, Y.V., 23-24 Font-Barnet, A., 67-68 Frankowicz, M., 79-80 Goncharenko, A., 138-139 Goptsiy, M., 19-20 Gorbachova L.O., 21-22 Grant, M., 56 Grechanik, R., 37-38 Ha, Tuan Anh 118 Herrnegger, M., 39-40 Hornovska, S.V., 23-24 Hovesepyan, A., 61 Hrytsiv, T.H., 75-76 Huzieieva, T., 35-36 Iheme, P., 25-26 Kabin, V., 79-80 Kaminskyi, R.F., 77-78 Katerusha, H., 27-28 Katerusha, O., 27-28 Khokhlov, V., 105-106, 136-137 Khomenko, I., 29-30, 79-80, 95-96 Khrystiuk B.F., 21-22

Klok, S.V., 107-108 Koman, M., 31-32 Kornus, A.O., 107-108 Kornus, O.H., 107-108 Kosthiv, O.T., 73-74 Krakovska, S., 127-128 Kryvobok, O., 31-32, 33-34 Kryvomaz, T., 79-80 Kryvoshein, O., 31-32, 33-34 Kucher, A., 85-86 Kuryshyna, V., 109-110, 111-112 Kushnerenko, V., 43-44, 83-84 Lakhtadyr, T.V., 77-78 Lappalainen, H., 79-80, 113-114 Lauri, K., 79-80 Lee, D., 56 Liut, O., 57-58 Loboda, N., 136-137 Mahura, A., 79-80, 113-114 Maksymenko, N., 35-36, 69-70, 81-82, 85-86 Malkhazova, S., 114 Malovanyy M., 37-38, 57-58, 62-63 Mamedov, S 99-100 Marakhovska, A., 37-38 Martazinova, V., 115 Mazepa, O., 134-135 Medvedieva, Iu.S., 48-49 Melnyk, G., 115 Mironova, V., 114 Mishchenko, N., 65-66 Moufouma-Okia, W., 61 Nachtnebel, H.P., 39-40 Nasr, P., 13-14 Nedostrelova, L., 105-106 Nekos, A., 85-86 Nezhlukchenko, N., 83-84, 116-117 Nezhlukchenko, T., 83-84, 116-117 Nguyen Thi, Minh Hoa 118 Nguyen, Phu Bao 118 Nosko, A., 119-120 Olano Pozo, J., X., 67-68 Oluleve, A., 25-26 Oskirko, T., 121-122 Ovcharuk, V., 19-20, 41-42, 79-80 Papakina, N., 119-120, 121-122 Pasechko-Dietrich, V., 43-44 Pavlov, O., 109-110 Pham, Hong Nhat 118 Polevoy, A.N., 123-124

Popovych, O., 62-63 Prakharenia, M., 125-126 Prokofiev O., 19-20 Prykhodkina, V., 21-22 Pysarenko, L., 127-128 Rashkevych, Yu., 79-80 Reshetchenko, 101-102, S., 129-130 Riuttanen, L., 79-80 Romanova, Ye.O., 48-49 Savenets, M., 45-46 Schwemmlein, K., 47 Semenova, I., 65-66, 131-132 Semerhei-Chumachenko, A., 65-66 Sereda, A., 37-38 Serga, E., 105-106 Sewilam, H., 13-14 Shablii, O., 79-80 Shabliy, T., 138-139 Shakirzanova, Zh.R., 48-49, 103-104 Shpakivska, I.M., 69-70 Sliusar, V., 57-58 Smalyukh, O.P., 133 Smorochinsky, O., 43-44 Sobol, O.M., 50-51 Stepanenko, S., 95-96 Storoshchuk, U., 57-58 Sumak, K., 52-53 Synylo, K., 54-55 Timofeyev, V., 134-135 Titenko, G., 81-82, 85-86 Tkachenko, T., 138-139 Ton, That Lang 118 Traeger-Chatterjee, C., 56 Tuchkovenko Yu., 136-137 Tymchuk, I., 37-38, 57-58, 62-63 Tyuryakov, S., 79-80, 113-114 Utkina, K., 81-82, 85, 86-87 Voloshkina, O., 138-139 Voloshyna, O.V., 59-60 Vonitova, N.D., 88-89 Vorobyov, V.I., 17-18 Voronin, V.O., 69-70 Vronska, N., 62-63 Zabolotna, O., 31-32 Zakharova, M.V., 140-141 Zhuk, D.O., 92-93 Zhuk V., 37-38, 57-58, 62-63 Zhukova, O., 138-139

Наукове електронне видання

МІЖНАРОДНА НАУКОВО-ПРАКТИЧНА КОНФЕРЕНЦІЯ «КЛІМАТИЧНЕ ОБСЛУГОВУВАННЯ: НАУКА І ОСВІТА»

МАТЕРІАЛИ КОНФЕРЕНЦІЇ

22-24 вересня 2021 Одеса, Україна

(англійською мовою)

Видавець і виготовлювач Одеський державний екологічний університет вул. Львівська, 15, м. Одеса, 65016 тел./факс: (0482) 32-67-35 E-mail: info@odeku.edu.ua Свідоцтво суб'єкта видавничої справи ДК № 5242 від 08.11.2016