

Mykyta DERMENZHI 1

Supervisor: Oleksii FRAZE-FRAZENKO 2

TWORZENIE APLIKACJI DO ZARZĄDZANIA WYCIECZKAMI

PANORAMICZNYMI

Streszczenie: W artykule opisano główne etapy i wdrożenie oprogramowania do tworzenia

aplikacji wycieczek panoramicznych. Przeprowadzana jest analiza platform i technologii

realizacji zadania, algorytm jest wdrażany i opracowywana jest struktura projektu, opisano

główne moduły i funkcje użytkowania. Opracowano autonomiczny moduł do tworzenia

i wizualizacji wycieczek panoramicznych ze zoptymalizowanym przechowywaniem danych

i wynaleziono algorytm renderowania. Umożliwia to zmianę danych obrazu w czasie

rzeczywistym, ładowanie lub usuwanie ich oraz tworzenie nowych panoram. Ponadto ta wersja

aplikacji pozwala użytkownikom zaoszczędzić czas na programowaniu i zoptymalizować

zasoby niezbędne do obsługi. Platforma została stworzona do zarządzania każdą ramką jako

fragmentem całej struktury, składa się z kilku części, takich jak: ASP Core 2.1, JSON Parsers,

Serialization, UI Management i Pannelum.

Słowa kluczowe: panorama, ASP Core, JSON, zarządzanie

PANORAMA TOURS MANAGEMENT APPLICATION

DEVELOPMENT

Summary: The article describes the main stages and the software implementation of panorama

tours application development. The analysis of platforms and technologies for the task

implementation is carried out, the algorithm is implemented and the project structure is

developed, the main modules and features of use are described. An autonomous module for

creating and visualizing panoramic tours with optimized data storage was developed and a

rendering algorithm was invented. This allows to change image data in real time, load or delete

them, and create new panoramas. In addition, this version of the application allows users to

save their time on development and optimize the resources necessary for support. The platform

is created to manage every frame as a piece of the whole structure, is composed of several parts,

such as: ASP Core 2.1, JSON Parsers, Serialization, UI Management and Pannelum framework.

Keywords: Panorama, ASP Core, JSON, Management

1 Student of Computer Science, Management and Administration Faculty, Odesa State

Environmental University, nikita.dermenzhi@geekgroupllc.com
2 Engineering Science Ph.D., Odesa State Environmental University, associate professor at the

department of information technology, frazenko@gmail.com

108 Mykyta DERMENZHI, Oleksii FRAZE-FRAZENKO

1. Introduction

During designing a modern web services and applications now, software developers

more often occur necessity to create panorama tours. It can be connected because of

marketing goals and such as involving new partners or users into territory particular

qualities. And the most important points while creating these systems are procuring

easier ways to collect and to process the information. Nowadays, the main examples

for panorama tours are Google Panorama’s and Facebook 360. But they are involved

in the large systems and can’t be used like a particular model. Some of the problems

while using these systems can be: slow callbacks and non-optimized data. When the

project was being started it was decided that the solution must follow three important

points: optimized data structure, faster workflow than average large systems and user

friendly interface.

To implement everything was planned it was necessary to define which platforms and

technologies would be used and was determined that the main platform as framework

for web application would be ASP.NET Core. It’s needed to note some features were

taken.

ASP.NET Core 2.1 is one of the latest update to Microsoft’s open source and

cross-platform Web framework [1]. Core 2.1 includes loads of new functionality

that’s also worth checking out:

- Improved build performance

- A turbo-charged HttpClient

- Creation and sharing of .NET Core global tools

- New runtime types for efficient memory usage

- Alpine Linux support

- ARM32 support

- Brotli compression support

- New cryptography APIs and improvements

- SourceLink compatible package building capabilities

- Tiered JIT compilation

Securing Web apps with HTTPS is more important than ever before. Browser

enforcement of HTTPS is becoming increasingly strict. Sites that don't use HTTPS

can be labeled as insecure. Browsers are also starting to enforce that new and existing

Web features must only be used from a secure context. New privacy requirements,

like the Global Data Protection Regulation (GDPR), require the use of HTTPS to

protect user data. By using HTTPS during development, you’re better prepared to run

your app under HTTPS in production.

ASP.NET Core 2.1 also includes features for enforcing HTTPS at runtime. You can

redirect all HTTP traffic to HTTPS and direct browsers to enforce access to your site

over HTTPS using the HTTP Strict Transport Security (HSTS) protocol. The ASP.NET

Core project templates enable these HTTPS enforcement features for you [2].

ASP.NET Core helps you write dynamic UI-rendering logic using a mixture of HTML

and C# called Razor (cshtml). Razor class libraries are a new feature in ASP.NET Core

that let you compile Razor views and pages into reusable class libraries that can be

packaged and shared [3]. In internal lab runs at Microsoft, .NET Core 2.1 throughput

performance is 10% greater than .NET Core 2.0 for the plain text and JSON scenarios, and

a whopping 123% greater for the more realistic data access scenario, solidifying .NET

Core’s position as one of the fastest frameworks available (fig. 1).

 Panorama tours management application development 109

Figure 1. NET Core 2.1 runtime performance on the TechEmpower benchmarks

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy

for humans to read and write. It is easy for machines to parse and generate. It is based

on a subset of the JavaScript Programming Language Standard ECMA-262 3rd

Edition − December 1999. JSON is a text format that is completely language

independent (fig. 2) but uses conventions that are familiar to programmers of the C-

family of languages, including C, C++, C#, Java, JavaScript, Perl, Python, and many

others. These properties make JSON an ideal data-interchange language [4].

 Figure 2. An object in JSON

JSON is built on two structures: a collection of name/value pairs. In various

languages, this is realized as an object, record, struct, dictionary, hash table, keyed

list, or associative array. An ordered list of values, in most languages, this is realized

as an array (fig. 3), vector, list, or sequence.

 Figure 3. An array in JSON

110 Mykyta DERMENZHI, Oleksii FRAZE-FRAZENKO

When it was being selected the way how to store date, it was preferred the shortest

format and the fastest reading structure. So, nowadays, JSON includes two points and

has one more advantage - it's simply to understand and way to develop data structure

using it is simple.

As per above the most valueable framework and data structures was involved in the

endpoint project. Topical data saving model, the fastest and the most modern JSON,

had been selected at the beginning and developing web framework provided the strong

platform for design.

2. Structure and implementation

In computer science, in the context of data storage, serialization (or serialisation) is

the process of translating data structures or object state into a format that can be stored

(for example, in a file or memory buffer) or transmitted (for example, across a network

connection link) and reconstructed later.

When the resulting series of bits is reread according to the serialization format, it can

be used to create a semantically identical clone of the original object. For many

complex objects, such as those that make extensive use of references, this process is

not straightforward. Serialization of object-oriented objects does not include any of

their associated methods with which they were previously linked.

This process of serializing an object is also called marshalling an object. The opposite

operation, extracting a data structure from a series of bytes, is deserialization [5].

The quickest method of converting between JSON text and a .NET object is using the

JsonSerializer. The JsonSerializer converts .NET objects into their JSON equivalent

and back again by mapping the .NET object property names to the JSON property

names and copies the values for you.

For simple scenarios where you want to convert to and from a JSON string, the

SerializeObject() and DeserializeObject() methods on JsonConvert provide an easy-

to-use wrapper over JsonSerializer.

Product product = new Product();

product.Name = "Apple";

product.ExpiryDate = new DateTime(2008, 12, 28);

product.Price = 3.99M;

product.Sizes = new string[] { "Small", "Medium", "Large" };

string output = JsonConvert.SerializeObject(product);

//{

// "Name": "Apple",

// "ExpiryDate": "2008-12-28T00:00:00",

// "Price": 3.99,

// "Sizes": [

// "Small",

// "Medium",

// "Large"

//]

//}

Product deserializedProduct =

JsonConvert.DeserializeObject<Product>(output);

 Panorama tours management application development 111

SerializeObject and DeserializeObject both have overloads that take a

JsonSerializerSettings object. JsonSerializerSettings lets you use many of the

JsonSerializer settings listed below while still using the simple serialization methods.

For more control over how an object is serialized, the JsonSerializer can be used

directly. The JsonSerializer is able to read and write JSON text directly to a stream

via JsonTextReader and JsonTextWriter [6]. Other kinds of JsonWriters can also be

used, such as JTokenReader/JTokenWriter, to convert your object to and from LINQ

to JSON objects, or BsonReader/BsonWriter, to convert to and from BSON:

Product product = new Product();

product.ExpiryDate = new DateTime(2008, 12, 28);

JsonSerializer serializer = new JsonSerializer();

serializer.Converters.Add(new

JavaScriptDateTimeConverter());

serializer.NullValueHandling = NullValueHandling.Ignore;

using (StreamWriter sw = new StreamWriter(@"c:\json.txt"))

using (JsonWriter writer = new JsonTextWriter(sw))

{

 serializer.Serialize(writer, product);

 // {"ExpiryDate":new Date(1230375600000),"Price":0}

}

JsonSerializer has a number of properties on it to customize how it serializes JSON.

These can also be used with the methods on JsonConvert via the

JsonSerializerSettings overloads.

2.1 Alghoritm’s implementation

The project structure is combined of several aspects. Virtually, the project separates

for three main parts: admin site, user site and algorithm for storing and creating

panorama tours.

While reviewing part for users: it’s simply to understand and was clear for developing.

The structure is looking like: controllers, middlewares, settings, views,

configurations, scene loader and exactly scenes.

In it’s turn settings can be expanded with Hotspots, Scene helper and SettingProvider.

The main part which builds the full panorama tour is designed by razor pages in cshtml

extension. Scenes section is generated by this code:

'scenes': {

 @foreach (var scene in scenes)

 {

 @: '@scene.Name.GetHashCode()': {

 @: 'panorama': '@scene.Panorama',

 @: 'showFullscreenCtrl':

@scene.ShowFullscreenCtrl.ToString().ToLower(),

 @: 'autoLoad': @scene.AutoLoad.ToString().ToLower(),

 @: 'hfov': @scene.Hfov.ToString().Replace(",", "."),

 @: 'hotSpots':[

 foreach (var hotspot in scene.Hotspots)

112 Mykyta DERMENZHI, Oleksii FRAZE-FRAZENKO

 {

 @:{

 @: 'pitch': @hotspot.Pitch.ToString().Replace(",",

"."),

 @: 'yaw': @hotspot.Yaw.ToString().Replace(",",

"."),

 @: 'type': '@hotspot.Type',

 @: 'createTooltipFunc': hotspot,

 @: 'createTooltipArgs': {

 @: 'title': '@hotspot.Title',

 @: 'subtitle': '@hotspot.Subtitle',

 @: 'description': '@hotspot.Description',

 @: 'footer': '@hotspot.Footer',

 @: },

 if(hotspot is InfoHotspot infoHotspot)

 {

 @: 'URL': '@infoHotspot.URL',

 }

 else if (hotspot is SceneHotspot sceneHotspot)

 {

 @: 'clickHandlerFunc': hotspotClickHandler,

 @: 'clickHandlerArgs': { 'id':

'@sceneHotspot.SceneId.GetHashCode()' },

 @: 'sceneId': '@sceneHotspot.SceneId.GetHashCode()'

 }

 @:},

 }

 @:]},

}

Pointer (or hotspot) builder was developed for creating card info every time we select

it. It looks like:

function hotspot(hotSpotDiv, args) {
 $(hotSpotDiv).mouseenter(function (e) {
 $('#description.card>.card-body>.card-
title').text("").append(args.title);
 $('#description.card>.card-body>.card-
subtitle').text("").append(args.subtitle);
 $('#description.card>.card-body>.card-
text').text("").append(args.description);
 $('#description.card>.card-footer>.card-
text').append("");
 $('#description.card>.card-footer').remove();
 if (args.footer && args.footer.trim() != '') {
 var footer = '<div class=\"card-footer\"><p
class=\"card-text text-right text-warning\">'
 + args.footer + '</p></div>';
 $('#description.card').append(footer);
 }
 $('#description').removeClass('fadeIn animated
fadeOut invisible').addClass('animated fadeIn');
 });
 $(hotSpotDiv).mouseout(function () {
 $('#description').addClass('animated fadeOut');
 });
}

 Panorama tours management application development 113

There are several scopes in the created application. Actually, it separated on

administrators, users and core parts (fig. 4). As per screenshot below you can see the

whole structure as in folder from Visual Studio 2017 IDE.

Figure 4. Project structure

Hotspot click handler is called for changing our current location in our panorama tour:

function hotspotClickHandler(obj, args) {

 $('#description').addClass('animated fadeOut');

 $('.nav-link').removeClass('active');

 $('#' + args.id).addClass('active');

}

And other helpers which allows user switch between units and change active statuses

for them:

114 Mykyta DERMENZHI, Oleksii FRAZE-FRAZENKO

$('#@main.GetHashCode()').addClass('active').click(function

() {

 viewer.loadScene('@main.GetHashCode()');

 $('.nav-link').removeClass('active');

 $(this).addClass('active');

});

@foreach (var unit in units)

{

 @: $('#@unit.Name.GetHashCode()').click(function() {

 @: viewer.loadScene('@unit.Name.GetHashCode()');

 @: $('.nav-link').removeClass('active');

 @: $(this).addClass('active');

 @: });

}

The loader body is also important because it serializes and deserializes all data for our

panorama tour. It has static modifier and several methods for adding, updating and

reading scenes in the system:

public static class Loader

{

 public static IEnumerable<Scene> Scenes { get; private

set; }

 public static string Main => Scenes.FirstOrDefault(scene

=> scene.IsMain)?.Name;

 public static IEnumerable<Scene> Units =>

Scenes.Where(scene => scene.IsUnit && !scene.IsMain);

 static Loader()

 {

 Scenes = SettingProvider.Deserialize();

 if (Scenes == null)

 {

 Scenes = new List<Scene>();

 }

 }

 public static SettingMessage UpdateScenes()

 {

 return SettingProvider.Serialize(Scenes);

 }

 public static SettingMessage

UpdateScenes(IEnumerable<Scene> scenes)

 {

 var message = SettingProvider.Serialize(scenes);

 if (!message.IsError)

 {

 Scenes = scenes;

 }

 return message;

 }

 Panorama tours management application development 115

 public static SettingMessage AddScene(Scene scene)

 {

 var newScenes = new List<Scene>(Scenes);

 newScenes.Add(scene);

 var message = SettingProvider.Serialize(newScenes);

 if (!message.IsError)

 {

 Scenes = newScenes;

 }

 return message;

 }

 public static SettingMessage UpdateScene(Scene scene)

 {

 var sceneToUpdate = Scenes.FirstOrDefault(x => x.Name

== scene.Name);

 sceneToUpdate.AutoLoad = scene.AutoLoad;

 sceneToUpdate.Hfov = scene.Hfov;

 sceneToUpdate.Hotspots = scene.Hotspots;

 sceneToUpdate.Image = scene.Image;

 sceneToUpdate.IsMain = scene.IsMain;

 sceneToUpdate.IsUnit = scene.IsUnit;

 sceneToUpdate.Name = scene.Name;

 sceneToUpdate.ShowFullscreenCtrl =

scene.ShowFullscreenCtrl;

 var message = SettingProvider.Serialize(Scenes);

 return message;

 }

}

Also, it should be described entities SettingProvider and SettingMessage. These

classes are used for saving data to files into file system thanks streams.

public static class SettingProvider

{

 private const string _path = "scenes.json";

 public static SettingMessage Serialize(IEnumerable<Scene>

scenes)

 {

 SettingMessage message = new SettingMessage("Сцены

были успешно обновлены!");

 try

 {

 var indented = Formatting.Indented;

 var settings = new JsonSerializerSettings()

 {

 TypeNameHandling = TypeNameHandling.All

 };

 var @string = JsonConvert.SerializeObject(scenes,

indented, settings);

 using (StreamWriter sw = new StreamWriter(_path,

false))

 {

 sw.Write(@string);

 }

116 Mykyta DERMENZHI, Oleksii FRAZE-FRAZENKO

 }

 catch (Exception ex)

 {

 message = new SettingMessage("При обновлении сцен

произошла ошибка!", ex);

 }

 return message;

 }

 public static IEnumerable<Scene> Deserialize()

 {

 using (var fs = new FileStream(_path,

FileMode.OpenOrCreate))

 {

 using (var sr = new StreamReader(fs))

 {

 var settings = new JsonSerializerSettings()

 {

 TypeNameHandling = TypeNameHandling.All

 };

 var @string = sr.ReadToEnd();

 var scenes =

JsonConvert.DeserializeObject<IEnumerable<Scene>>(@string,

settings);

 return scenes;

 }

 }

 }

}

public class SettingMessage

{

 public string Text { get; set; }

 public Exception Exception { get; set; }

 public bool IsError => Exception != null;

 public SettingMessage() { }

 public SettingMessage(string text)

 {

 Text = text;

 }

 public SettingMessage(Exception exception)

 {

 Exception = exception;

 Text = exception.Message;

 }

 public SettingMessage(string text, Exception exception) :

this(text)

 {

 Exception = exception;

 }

}

}

Eventually, below (fig. 5) is shown the main project structure with all internal entities,

which consists of two parts (view models and processors):

 Panorama tours management application development 117

Figure 5. Project structure

2.2 Project realization

Eventually, was implemented project which provides functionality of creating new

panorama tours and loads of features for setting the system up.

This project should be reviewed as a particular module, even though it can be as

independent web application. Should be noticed, that application provides basic

interfaces to connect to other system or parts of this system.

In order to log in we need to enter domain_name/admin/login in the address bar. Then

enter the username and password, they can be changed in the appsettings.json file

(fig. 6):

118 Mykyta DERMENZHI, Oleksii FRAZE-FRAZENKO

Figure 6. Components

On the “Main” table is located with sections (panoramas), using the add button you

can create new panoramas and set the settings for each of them. The modal window

for adding a scene is as follows (fig. 7):

Figure 7. Adding scenes

 Panorama tours management application development 119

The “Scene” field is necessary for recording the name of the panorama itself, which

will be displayed on the site for users. Field "Viewing angle" - allows you to configure

the viewing angle in degrees for the user. In the third line, the administrator selects a

file that will be a panorama. Option "Startup" - determines whether the scene will load

automatically or by clicking. "Main scene" - determines whether the panorama will

be loaded when the site is first loaded for the user. “Section” - determines whether the

panorama will be in the headings of the site. The successful panorama loading screen

is as follows (fig. 8).

Figure 8. Scene view

UI was created in the way so when the user hover the name of the image that was

uploaded, a tooltip will pop up and display the compressed image. If you click on the

name, a modal window will be displayed, on which the image will be displayed in full

size. The scene is updated according to the same scenario as the addition. The

administrator has the right to change all options and then click on the change button.

Saves will be applied after page reload.

In order to delete a scene, just left-click on the cross that is in the panorama

line. Click the “Delete” button and the panorama will be removed from the list.

The next section is Pointers (fig. 9). This section allows user to configure hot

spots that will be used for tour navigation in the future. Namely:

The “Add” and “Delete” buttons switch modes of interaction with pointers. Pointer

The point that is set on the scene to indicate additional information or to make

transitions to other scenes:

- Select the "Move" mode to scroll through the scene,

- Select the "Add" mode and then click on the scene area where you want to add

a pointer,

- Select the "Delete" mode, and then left-click on the pointer that you want to

delete.

120 Mykyta DERMENZHI, Oleksii FRAZE-FRAZENKO

Figure 9. Pointer’s page

The pointer is added using an additional window (fig. 10) that allows you to enter

some parameters:

- Title,

- Subtitle,

- Description,

- Signature,

- Ability to switch to another site,

- Ability to switch to another scene.

Figure 10. Transition pointer

There is an option with the addition of a new index, which will move the user to the

page www.google.com. Below is a second version of the pointer - "Transition to a

new scene."

 Panorama tours management application development 121

The main page will look like this (fig. 11):

Figure 11. The main page after manipulations

4. Conclusion

All of web application structure represents Model-View-Controller (MVC). MVC is

a design pattern used to decouple user-interface (view), data (model), and application

logic (controller). This pattern helps to achieve separation of concerns (fig. 12).

Using the MVC pattern for websites, requests are routed to a Controller which is

responsible for working with the Model to perform actions and/or retrieve data. The

Controller chooses the View to display, and provides it with the Model. The View

renders the final page, based on the data in the Model [7].

Figure 12. MVC pattern

Often, there are a plenty of solutions when MVC don’t use model as database. And

this project is not an exception. It had been decided to exclude database from the

composition because sending requests and waiting for their responses entails several

problems, such as non-optimized application, less understanding structure,

122 Mykyta DERMENZHI, Oleksii FRAZE-FRAZENKO

problematic to change and add another logic. But when it uses only serialization this

solution allows to change data in real time (fig. 13).

Figure 13. Advantages of JSON serializing

Finally, was developed standing alone module for creating and visualizing panorama

tours with optimized data storing and invented rendering algorithm. It allows in real-

time to change image data, upload or remove it and to build new panoramas. Also,

this application version let users save their time for developing and optimize resources

needed for supporting.

Source link: https://github.com/nikitadermenzhi/panorama

REFERENCES

1. FREEMAN A.: Pro ASP.NET Core MVC 2 2017.

2. TROELSEN A., JAPIKSE P.: Pro C# 7: With .NET and .NET Core 8th Edition,

Kindle Edition.

3. Internet service Microsoft Docs, Introduction to Razor Pages in ASP.NET Core:

https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-

3.0&tabs=visual-studio 10.06.2019.

4. Internet service ECMA-404 The JSON Data Interchange Standard:

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

12.12.2017.

5. Internet Service Json.NET Documentation. Serializing JSON:

https://www.newtonsoft.com/json/help/html/SerializingJSON.htm .

6. Internet Service Newtonsoft. Popular high-performance JSON framework:

https://www.newtonsoft.com/json 11.27.2018.

7. Galloway J., Wilson B., Scott Allen K., Matson D.: Professional ASP.NET

 MVC 5.

