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The behavior of the theoretically predicted correlational "6ne" energy-loss spectrum of inelastic
electron scattering in disordered systems close to single resonance is investigated near the critical
point. In extending our earlier work, it is shown that the relation of the statistical expression of the
cross section of energy loss to the function which describes the line shape in an ideal gas asymptoti-
cally increases near the critical point as a power law. "Fracton" interpretation of display of the lo-
calization of a single excitation in disordered systems in the resonance-line shape of the energy-loss
spectrum is suggested. The possibility of direct determination of the pair distribution function
(without Fourier transformation of the structure factor) using the method of charged-particle
scattering is discussed.

I. INTRODUCTION

The development of the technology of inelastic elec-
tron scattering experiments' gives some hope to the study
of the behavior of the energy-loss spectrum in disordered
systems close to single resonance (with width —10 ' eV),
out of the Doppler width. In this region, it was theoreti-
cally predicted that a statistical "fine" structure of the
energy-loss spectrum due to many-particle intermolecular
correlation would appear.

In this paper we will extend earlier work about the
shape of the resonance in the energy-loss spectrum on the
critical point, where the role of many-particle correla-
tions is particularly large. Moreover, in connection with
the appearance of ideas of geometric interpretation of the
scaling phenomena with the help of the introduction of
self-similar fractal objects, the study of the correlational
structure of the atomic line shapes, which are due to in-
teratomic correlations, by the correlational expansion
method (which is based on cluster expansions), is a good
method for distinguishing the dynamics of the fractal ob-
jects, particularly near the critical point. This question
will be discussed in Secs. V and VI of this paper.

II. CONSTRUCTION OF TASK
(CORRELATIONAL EXPANSION

FOR CROSS SECTION OF ENERGY LOSS)

Consider the scattering of a monochromatic beam of
charged particles (electrons with energy E —10 eV) by a
disordered system of X identical, symmetrical molecules
with volume V and temperature T-10 K. Let the aver-
age velocity of the incident electrons be at least one order
larger than the velocities of the bound charges of the
molecules. For this case, the cross section of energy-loss
scattering may be calculated by Born's approximation.
Finally, the target molecules can be considered as being
at rest during the elementary act of scattering. The
bound charges of the target molecules distribute not only
in the region of localization of one single molecule, but
also together with the other molecules over the entire
volume occupied by the system. Therefore, the expres-
sion for the cross section of energy loss must be averaged
over all the molecular configurations with the Gibbs dis-
tribution function. The resulting quantum-mechanical
expression for the doubly differential cross section of
scattering d rid 8 de (or the cross section of energy
losses) is

d ~ 1 eIe(e) =
dOde V Eg2 X IPI0.

' ~q'IRI ~
I

~~+& ~IRI ~ +D~IR) ~ ~I)
(a)

where pro' (q, [R}) is the Fourier transformation of the
matrix element from the charge-density operator, Aq is
the impulse of scattering (i.e. , the change of the electron
impulse by scattering), j R }—:R„.. . , R~ are the coordi-
nates of the center of mass of the X molecules, E, ( ( R } )

and Eo((R}) are, respectively, the energy of the final-
and the initial-system states in the adiabatic approxima-
tion, the sum from a goes over all the excited states of
the system which gives rise to distinctive levels of isolated
molecules, e is the electron energy loss due to scattering,
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5( ) is the Dirac 5 function, the angular brackets
( . ) mean the procedure of averaging over all the
molecular configurations with the Gibbs distribution
function, and 8 is the scattering angle. Expression (1) is
the generalization of the famous expression for the cross
section of charged-particle inelastic scattering, in the
case where we consider our condensed system as a single
large molecule.

Consider the small-angle scattering with an energy loss
near the energy Aco1, which corresponds to the isolated
excitation of a single molecule of the system. We shall in-
vestigate the singularities in the distribution of electrons
inelastically scattered by energy losses Is(e), in the nar-

row (e-10 —10 ' eV) neighborhood of distinctive res-
onance Ace, on a fixed scattering angle t9 ( 1'.

We want to emphasize that the widening of the line in
the energy-loss spectrum due to molecular motion is ap-
proximately b —(mk&TE8/M)', where m and M are
the masses of electron and molecule, respectively, and k~
is the Boltzmann constant. Thus, for the parameter
values of our problem, 6-10 —10 eV.

Following Ref. 2, let us expand Is(e) in a correlation
series, every part of which describes the contribution to
the total cross section of energy loss due to scattering by
fluctuational complexes of isolated s particles (s = 1,%),

I&(e)=a'(8)g f f g Z, (q;Rl, . . . , R, )5(e+lM, (Rl, . . . , R, ))
s Q= 1

s. $ —1 Z, , (q;Rl, . . . , R, , )5(e+p, ,(R, , . . . , R, , ))
' a=l

I

Vs. $ —2

+ ' g Z, 2(q;R„. . . , R, 2)5(e+p, 2(R, , . . . , R, 2))
' a=1

—( —1)'sZ, (q;R, ) g, (R„.. . , R, )dR, dR, , (2)

a'(8) = e

EO

, (q; R„.. . , R, ) =
~

pI'0' (q; R„.. . , R, )
~

p'lo (q;Rl, . . . , R, ) is the Fourier transformation of the
matrix element from the charge-density operator;
g, (R, ),g, (R„R,),g, (R„R„R,), . . . , g, (R„.. . , R, ) ac-
cordingly are the one-, two-, three-, etc. , s-particle distri-
bution functions; and p, (R„.. . , R, ) are the shifts of
the energy of single excitation due to intermolecular in-
teractions in s-particle complexes. The expression in
large parentheses in (2) describes irreducible s-particle
contributions in the cross section of energy loss for in-
elastic electron scattering with fixed parameters in disor-
dered systems. Every contribution in expression (2) is a
functional of density and temperature because all the
functions {g,] are functionals of these parameters.

III. STATISTICAL MODEL OF LOCALIZED
EXCITATION IN DISORDERED SYSTEMS

Consider the model in which the excitation is localized

where the sum from o. equals 1 to v, goes over all the
states of s-particle complexes; n =N/V the number den-
sity particles;

2

on the single molecule and the probability of exchanges
of the excitation between molecules in complexes is negli-
gible. This situation is adequate for considering dipole-
forbidden excitation, when resonance interaction between
an excited molecule and a molecule in the ground state
decreases with interatomic distance R more rapidly than
R . We shall suppose that the excited level of a single
molecule is degenerated. Then, in the zeroth order of the
perturbation theory on interatomic interaction, where ex-
change effects are negligible, we obtain

Z, (q, Rl, . . . , R, )=Z, (q):—
~

p",0'(q) ~, a=s

s —1

P, (R„.. . , R, )=g' lM( i R, —R
i ),

j=1

where we put R, =0; tu, (R) is the exchange of energy of
the single excitation in a pair of molecules which shifts
from one to the other on vector R; a, in this case, means
that the excitation is localized at the molecule with num-
ber a. Due to the symmetry of the functions {g,I, with

help from the Fourier reducing of the Dirac 5 function,
we can rewrite expression (2) as

00 s —1

Is(e)=a(8)Z, (q) $ f d~exp( iver) f . f—P {exp[ ip(R )~]—1—Ig, (R„. . . . , R, , )dR, dR,
s = l j=1

g, (R„.. . , R, , )=—g, (R„.. . , R, , 0), a(8)= a'(8)
2'

(4)
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Thus, if p(R ) is a finite function [i.e., p(R) equals zero
outside a sphere with radius ro], integration in (4) goes
over the volume of the sphere Vo ——(47r/3)ro with its cen-
trum in the origin of the coordinate system. The series
(4) for the finite function p, (R ) is actually generated in the
finite sum (in the sphere with radius ro & ~, we can only
put a finite number of molecules); this means that, start-
ing with some number so, all the functions [g, ] (s &so),
turn into zero for all R, ) ro. In order to get rid of the
proof of convergence of the correlation series in the case
that p(R) is not finite, but only a rapidly decreasing func-
tion, it is sufficient to introduce under the sign of the in-

tegral in (4) the cutolf multiplier exp( —b, r ) (it is
necesary for including the natural broadening of spectral
lines due to molecular motion and the effect of back-
scattering). A more complete consideration of this prob-
lem was given in Ref. 2.

IV. CORRELATIONAL STRUCTURE
OF RESONANCE-LINE SHAPE (CSR)

For distinguishing the correlational contributions in
the cross section of energy loss, we shall write the s-
particle distribution function in the form of a series of ir-
reducible contributions,

g, (R, , . . . , R, , )=1+g g h~(R; —R )+ g g g hi(R; —R;R; —Rk)+ . . +h, (R„.. . , R, , ),
i =1 j=i+1 i =1 j =i +1 k =j+1

(5)

where [h, (R„.. . , R, , ) j is the set of irreducible correlation functions,

hz(R) =g2(R) —1,
h3(R, , R') =gi(R, R') —g2(R) —g2(R') —g2(R —R')+2,

h, (R„Rz, . . . , R, , )=g, (R, , . . . , R, , ) —g, ,(R, , . . . , R, 2) — . —( —1)'(s —1) .

(7)

Let us rewrite expression (4), with the help of (5), and distinguish noncorrelation contributions and the corrections to
them due to two-, three-, . . . , s-particle correlations

We obtain the noncorrelational term I~& '(e), which describes the shift and the broadening of the spectral lines as a
function of pressure in an ideal-gas approximation, if we put all [g, )

= 1 in (4), namely,

I's (e)=a(8)Z, (q)n f dr exp ier+4i—rn f (e '"' '—l)R dR —=a(8)Zi(q)nM'e '(e) .
—oo 0

If, for example we used in p(R) only the long-range asymptote of this function, i.e., p(R)= —C/R (if we consider the
dipole-forbidden excitation), we immediately obtain the expression derived by Margenau and Watson and others,
which describes the behavior of the spectral line of a molecule dissolved in an ideal gas,

I'ti ' '(e) =a(8)Z&(q)nil ~ exp =2~=a(8)Z, (q)nM' '(e), A,
—= (c)' n .

3

In general, if we confine ourself only to the first two terms in (5), we obtain, with the help of (4),

Is(e)=a(8)Z, (q)n M~& '(e)+n f bM& '(e+p(R))hz(R)dR

+ —,'n hM& ' e+p R +p R' —AM ' e+p R —AM& ' e+p R'

X hz(R —R')dR dR'—:a((9)Z, (q)nM&" (e),

AMe (E+p(R ))=Me '(e+p(R) } —Ms '(e)—(9)

In the next approximation,

Iz(e)=a(0)Z, (q)n M&" (e)+ ,'n f f [bM& '(e+—p(R)+p(R')}—bM& '(e+p(R)}

bM~g '(e+p(R'))]hi(R—, R')dRdR' (10)

etc. In (9) and (10), M'ti '(e) is, in general, determined by (7). Thus expressions such as (9) and (10) give the possibility
for analytical (or numerical) calculation of corrections to the expressions (7) and (8) in any order of approximations on
correlations.
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Following Parceival s theorem, expressions (9), (10), and similar ones may be written in the form of a relation between
the doubly differential cross section of inelastic electron scattering Ie(e') and the static structure factors of the medium

[S,J. For example, using (9) and (10), we obtain

Ig(e)=a(v)Z, (q)n Mz '(e)+ fK2(e, k)h2(k)dk+ f f K3(e, k, k')h 3(k, k')d kd k' (1 1)

where

K2(e, k)=
3 J e'" bM~& '(e+p(R))+ ,'n —Je '" [bM&(e+p(R)+p(R')) —

bM& '(e+p(R))1

2' 3

AM—z '(e+ p(R') ) ] d R d R',
(12)

2

K3(e, k, k')= J f e' +''" [hMII '(e+p(R)+p(R')) —AM'z'(e+p(R)) —bM&'(e+p(R'))]dRdR',

S2(k)=l+nhz(k), S3(k, k')=1+n[hz(k) +hz(k')+h 2(k —k')]+n h3(k, k'), (13)

where h2(k), h3(k, k'), etc. are the Fourier transforms of
[h, I [see (6)]; Sz(k), S3(k,k'), etc. , the static structure
factors of medium; etc. Expressions of type (10) are im-
portant, because the static structure factors (13) may be
measured in alternative experiments, for example, by
elastic x-ray or neutron scattering. In other words, with
the help of (12), we obtain a connection between the cross
section of inelastic scattering and the static structure fac-
tors which may be measured in elastic x-ray or neutron
scattering experiments.

V. BEHAVIOR OF CSR NEAR THE CRITICAL POINT

The correlational series (4) allows us to make a sum up
to any approximation of the many-particle distribution

—xR
g2(R)= A

R
(14)

where A is a temperature-dependent coefficient with the
dimension of a distance and x is the inverse correlational
radius. From Eqs. (9) and (14), follows that, including at
sufficiently moderate densities only the terms proportion-
al to n, the function Iz(e) is given by

functions [see (5)]. Let us investigate, for example, the
behavior of single resonances in the energy-loss spectrum
near the critical point, using for this aim the simplest
Ornstein-Zernike correlational function gz(R),

I&(e) =a(8)Z&(q)n MoI ' '(e)+4wAni, (e c/R6) —~ exp
(c/e) CE-

R

—xR R dR

—e exp
—3/2 A,

2

f „,exp( —xR )R dR (15)

In Ref. 2 it was shown that, being negligible in this case, the contribution in (9) due to rapid convergence of correlation-
al series has another order of density and may be separated. After changing the variable in the first integral and after
the calculation of the second integral, we can rewrite expression (15) as follows:

5/6

Iz(E) =III ' '(e) 1+4@An —,'c ' e' . y y+-oo 1

0 E
exp —~k y—2 xc '/6

+6'
1/6 '

—x 1 (2,x(c/e)' ) . (16)

where I (2,x (c/e)'~ ) is the incomplete I function, ' in particular,

I (2,x(c/e)'~ )=[1+x(c/e)' ]exp[ —x(c/e)' ] . (17)

Let us appraise now the behavior of I&(E) with the help of (16), for limiting values of e. We define the integral:"(e, n, x),
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:-(t,n, x}=I y
'" y+—

0

5/6 xc'/6
exp —~k y — —+~1/3

' 1/6

dy

When e~O, we can approximately calculate the value of:- by means of the method of steepest descent. " We obtain as
a result

[:"(e,n, x)], p+z-
3/14 5/7 3

g3/7(xc1/6) —5/7& —25/42ex 7
(6~& )1/7

71/2 6 e

Combination of (17), (18), and (16) yields

5 /'7 271
4/14 3

[Ig(e)] p+a I g
' (e) 1+47r Anx '

1/2 3/14 c (At) exp —6(67rc )'
E

C c
exp —x

E'

Ie(e)r", '(e)
r(0, M) (e)

(19)

In the opposite formal limit, when e~ ao, we obtain
T

1/6
1 C

1/3

[Ie(e)], =II'' (e) 1+47r An — e' —x 1+x
E

1/6 1/6

&& exp —x r",
E c

re(e)
Ie' (e)(O, M)

1/6

(20)

+I ( —)c (7rA. ) e ' exp
m-i, 2

3 26

From (19) and (20) it follows that, if we take into account the correlational corrections to the ideal-gas expression for
Ie(e) =II3' '(e), the behavior of the energy-loss spectrum gets complicated by interatomic correlations, and this com-
plication has a statistical nature.

It is particularly interesting to stress that the relation of Ie(e) to Ie '(e) asymptotically increases with increasing e, as
a power law -e' [see (20)] and, exponentially, rapidly tends to 1 with decreasing e in accordance with (19). Let us
look now at the spectral-line shape, particularly in the critical point of the phase transition. For this aim, we shall put
the inverse correlational radius equal to zero. In this case, the first integral in large parentheses in (15) can be calculat-
ed with the help of change of variables and integration by parts; we obtain, as a result,

' 1/3

I (e)=I' ' '(e) I+27rAn .

5
W1/12, —1/4

' 1/2
7Ti 2

W7/12, —3/4 (21)

where W„„(z) are the functions of Whittaker, ' I ( —', ) is the I function. For the asymptotic value Ig(e) in the formal
limit e~0, taking into account the properties of W„„(z)

W „(z)~, „=e ' z

we obtain
' 1/3

[Ie(e)], p+z-I1e ' '(e) 1+27r An
E'

2i+r—
3

5 mA,

6 e

—2/3 1/3
77k

2

(22)

In the limit e~ ao, using (21}and

W (z)~ = "' 2&} z~+'"e-"
I (-—p —v)'2

we obtain
1/3

[I&(e)], =I& ' '(e) I+27rAn
E

1/6 1/6

I(0 M)( )

(23)

(24)
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This result is in exact accordance with (20), which was
obtained outside the critical point. Thus, from (20) and
(24), it follows that the asymptotic behavior of the spec-
tral line (e~ ~ ) is modified due to interatomic correla-
tions, but it is practically not inAuenced by the approach
of the critical region.

On the contrary, the central part of the line, compara-
ble to the Doppler width, is strongly dependent on the
distance to the critical point [see (19) and (22)]. The rela-
tion of the cross section of energy loss Ie(E) to the ideal-
gas approximation of this function I~ '(e), in the critical
point, changes in a formal limit @~0as a power law, in-
stead of the exponential decrease, in accordance with
(19), which takes place outside the critical point.

Because the parameters e, n, and c belong (see Sec. II)
to fixed intervals of values, namely, eC [10,10 '] eV,
n &[10,10 ] A, and c&[10,10 ] eVA, in prac-
tice, it is necessary to investigate the estimating of the be-
havior of CSR, taking into account these conditions.
With parameters e, n, and c already adopted, the dimen-
sionless argument of Whittaker's functions in (21), n A/e, .

belongs to the interval nA/e&, [10,1]. Thus, in (21),
outside the neighborhood of the resonances with width
—10 eV, approximately, we can use series expansions

—2

(23) for Whittaker's functions W, , „(rrk, /E), instead of
the general expressions. This means that expression (24),
in our model, approximately describes the behavior of
CSR in the neighborhood of distinctive resonances
eE [10,ao ] eV, particularly in the critical point; and
besides, the accuracy of this expression increases with in-
creasing e.

Thus, as follows from (19)—(24) in the behavior of the
cross section of energy loss near the distinctive reso-
nances Iz(e), in the wide interval of thermodynamic pa-
rameters, scaling takes place in relation to the ideal-gas
limit of this function Iz (e), and the value ~A, /e plays a
role in the scaling argument.

Expression (19)—(24) are a good test for the investiga-
tion of the inAuence of many-particle correlational efFects
in the theory of atomic line shapes in dense disordered
systems. Moreover, this theory, practically without any
change, can be applied to the qualitative and quantitative
description of the atomic line shape in the absorption and
emission of radiation in a similar system. (See Note add-
ed in proof. ) These questions will be investigated in our
next papers.

VI. FRACTON INTERPRETATION
OF THE SCALING BEHAVIOR OF CSR

It is necessary to stress that the expressions (19)—(24)
show that, in our model, in the phenomena of inelastic
charged-particle scattering in dense disordered systems,
scaling takes place with reference to the analogous
scattering in rare (or ideal) disordered systems.

The results that we obtained in Sec. V can be interpret-
ed in terms of fractals which are used for geometrical in-
terpretation of self-similar phenomena in the wide range
of disordered systems (see, for example, Ref. 12). In con-
nection with this, it should be pointed out that the rela-

tion Io(e)/I& '(e) =N(e), which was described in Sec. V,
reproduces the normalized density of state [which was
determined by the value of p, (R )].

In our model, many-particle fluctuational clusters,
which include an excited molecule and were introduced
when scattering occurs by means of correlational expan-
sions, play a role in fractal objects. Fractal symmetry, as
opposed to Euclidean symmetry, requires three dimen-
sionalities to contain a physical description of the excita-
tions of a fractal network; d is the Euclidean dimension,
D is the fractal dimension, and d is the spectral dimen-
sion (or fracton). The concept of fractons was first intro-
duced in the context of the study of the dynamics of self-
similar fractal objects. ' In accordance with the central
idea, let us assume that the density of state N (e) is de-
scribed with the help of such a relation,

N(e)-e (25)

VII. DIRECT DETERMINATION
OF THE RADIAL DISTRIBUTION FUNCTION

BY INELASTIC ELECTRON SCATTERING

In the system with moderate density, we can use the
finite length of the correlation series (2). For example, if
we take into account only the first two terms of the corre-
lational series (2), we obtain the expression that describes
the cross section of the energy loss by scattering on a sys-
tem which consists of "two-atom quasimolecules, " of
which the regular part is equal to

From a comparison of (25) and (19)—(24), it follows that,
in the asymptotic region of single resonance in the
energy-loss spectrum (or the atomic line in absorption or
emission) for the model of localized excitation to the crit-
ical region, the fracton dimension is equal to d = —,'.

It is interesting to compare the fracton dimension of
our model —,'=1.16 with the value d =—', =1.33, which
was obtained in the task of percolation. ' These results
are in good accordance with the Anderson localization
scaling theory, in which it was shown that, for d & 2, the
fracton eigenstates are localized. ' Thus localization can
occur by virtue of the geometrical connectivity properties
of the atomic network, in which case we really obtain the
possibility of describing localized excitations in many-
particle systems as fractons. The fracton's regime, in our
model, takes place starting from the small neighborhood
of distinctive resonance e-10 eV, and formally with
universal dimension last to e~ ~, which rejects the fact
that due to localization of excitation, the main part of the
resonance formed by short-range interatomic correlations
(which are insusceptible to the critical behavior). In the
small neighborhood of resonances with losses
6 & e & 10,which are formed by long-range interatomic
correlations, an essential change of line shape takes place,
particularly in the critical point (see Sec. V). This shows
that the geometry of the fractal, even if determinant, can
induce localization. It is believed that in real random
fractals, the fractons are always localized excitations.
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2

Ie(e)=—,n' fg, (R)g Z~, (q, R)
EO (a)

%O( [rI,R) =go([r, ])$0([rz—R])

(IrI, R)=2 ' [$0([r,])g,([rz —R])
+el ( [r1] )eo( [r2

(27)

x5(e+p ~(R))dR .

(26)

In the quasimolecular form, we find two equal atoms, one
of which is in an excited state; the electronic states are di-
vided into even (g) and odd (u), in accordance with the
property of the wave functions; they conserve or change
the sign under the inversion of electronic variables in the
plane of symmetry. Thus, a in (26) may e equal to g or u.
In the zeroth-order perturbation theory, on interatomic
interactions, when overlap e6'ects are neglected, the
wavefunctions of the ground state —Vo([rI, R) and the
excited states —4& ( [r),R) of the two-atom complex in
which both atoms shift from one to the other on vector
R, are expressed by the wave functions corresponding to
the ground state 40([r&]) and the excited state
%,([rz —R]) of isolated atoms, with the help of the fol-
lowing rule:

for the correspondent (crossing) transition 0~1, the ma-
trix element from the operator of the dipole moment of
the molecule d, o equals zero or not. In the dipole ap-
proximation, the interatomic interaction is described
with the help of such an operator, f,

(d, .d~) —3(d) n)(dz n)
(30)

(31)
which may be calculated by using the wave functions
(27), namely,

V'„'(R ) =m.
,

R
(32)

which is called the operator of the dipole-dipole interac-
tion. Here d, and d2 are the dipole moments of both
atoms, and n is the unit vector in the direction in which
the centers of charge of the atoms are connected.

Let us consider, for example, that the ground states
and the excited states are, respectively, 1S and 1P states
(i.e., the transition 0~1 is dipole permitted). The matrix
elements of the operator P'are given by

VI; '(R )—:( 0'„
i

0
i
4„)

r, R +„r,R dr

where [r] is the set of electronic variables of the pair of
atoms, [r, ] and [rz —R] are, respectively, the set of elec-
tronic coordinates of the first and second atom and the +
sign corresponds to a=g and u.

With the help of the determination of the Fourier
transform of the charge-density operator in the two-atom
complexes, namely,

where

—2, CX=g) l =Z
1, a=g,
2, cx=u)

l =x,y
l =Z

—1, a=u, i=xy .

pIO' (q, R)=g f . f e "+f (IrI, R)

xe ([rI,R)[drI,
and expression (27), we obtain

(2&)

Here i =x,y, z means three possible reciprocally perpen-
dicular directions of orientation of the angular moment
of the excited molecule; besides, i =z if the angular mo-
ment and the axis of the quasimolecule are collinear. Fi-
nally, with the help of (26) and (32), we obtain the follow-
ing expression for Ie(e) in this case:

cos (q R/2), a=g
Z ~(q, R)=2Zi(q)x

)
(29)

2
2& d 10Ie(e) = a'(8) Z, (q)n
3 g2

In accordance with the determination, p z(R) is equal to
EIO'(R) Eoo(R), where —EIO'(R) and Eoo(R) are the en-
ergies of the interatomic interactions in the two-particle
fluctuational complexes, respectively, in the excited and
the ground states, which will be considered in the adia-
batic approximation, for example, with the help of per-
turbation theory.

It is necessary to distinguish the cases when the excited
states ar dipole-forbidden or dipole permitted, i.e., when,

where

1, x)0(+)- 0 0 R, = —sx (
' 1/3

10
(34)

2 sin(qR, )
X g 1+sgn(s) '

8(R, )gz(R, ), (33)
$= —2 $R

If we consider the dipole-forbidden transition, for example, the 1S~2S transition, as a function of the shift not equal to
zero only in the second order of the perturbation theory on interatomic interactions and dependent only from the
module of the interatomic distance R, then p z(R) = —(C /R ) (where C is the atomic constant). In this case, we ob-

tain
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sin(qR „)
R 1+

qR

R=R (e)
I

Ie(e) = 4a(8)Z~(q)n
dp z(R)

dR

R ~ 1—sin(qR, . )

gz(R „(e))+g
v' dp„z(R )

dR

' g, (R„(e))

R =R~(e)

(35)

where R and R ., respectively„are the solutions of the
equations

p z(R)=Pi(co co, )=—e, —

p„z(R) =Pi(co —co, ) = —e,
p z(R)= —C /R

(36)

we obtain a more simple form of expression (35), namely,

In the general case, if, for any frequency 6, one of the
equations in (36) has a divisible root, then in the limit
co~co function, Ie(e) will be sharply increased. Near the
similar frequencies in the energy-loss spectrum, sharp
peaks may appear. These singularities are analogous to
the singularities of van Hove for the spectral densities of
state. Let us consider that, for such a frequency interval,
there exists a solution only for one of the equations in
(36). Then, for the corresponding interval of the dis-
tances, we can directly determine the value of gz{R (co))
by using Eqs. (35) and (36). If the splitting of the distin-
guishing level is negligible,

I vs, z«) —iz. , z(R)
I

—~ «
I pg z(R)+iz. , z(R)

I
&2,

(1) Within the framework of some approximations
(Born approximation, adiabaticity, localized excitation)
which are adequate for a deterministic construction of
our task and which also correspond to conditions of pos-
sible experiments, we proved the possibility of complete
summing of the correlation expansion for the cross sec-
tion of energy losses Ig(e) in EELS of the statistically
determined simple disordered systems for any approxi-
mation of the many-particle distribution function which
is determined beforehand.

(2) On the basis of (1), it was shown that near the criti-
cal point the normalized "spectral density of states" (in
EELS) in the small neighborhood of distinctive narrow
dipole-forbidden long-living resonance in the limit when
a~0+6 is represented by a power law instead of an ex-
ponential law, which takes place outside of the critical re-
gion. Thus the small neighborhood of narrow resonance
in EELS close to the critical point displays the scaling be-
havior relative to the corresponding "gas" limit.

(3) In systems with moderate densities, by using
higher-resolution EELS we can directly (without integral
transformation) determine the radial distribution func-
tion gz(R) in a fixed number of points by special con-
struction of the deterministic conditions of the experi-
ment.

Ie(e) =—,'a(8)n Z, (q)R gz(R (e)), (38)

p z(R)=p{R(&))=—&= —«R
Expression (38) can be rewritten in the following form:

1/2

Ie(e)= a(8)Z, (q)e n gz12
(39)

VIII. CONCLUSIONS

Thus, in addition to the conclusions of Ref. 1, the main
results are the following.

from which, in the ideal-gas limit, when g2
——1, follows

the famous result, Ie(e)-e . Expressions (33)—(38),
in principle, make possible a direct determination of
gz(R) in the individual points in simple disordered sys-
tems, instead of the usual procedure, which includes the
inverse Fourier transform of the structure factors of
scattering [due to irregular convergence of the Fourier
series, this procedure is a source of inexactitudes in the
determination of gz(R ) (Ref. 14)].

Finally, we note that typical examples of disordered sys-
tems which were investigated vide supra are the inert
gases and liquids.

Note added in proof. After submitting the manuscript
the authors obtained information about the work of S.
Mukamel, P. S. Stern, and D. Ronis in Spectral Line
Shapes, edited by K. Burnett (de Gruyter, Berlin, 1983),
Vol. 2, in which the behavior of the optical line shape
near the critical point was investigated in terms of so-
called line-shape functions. %'ithin the framework of the
approach in which the evaluation of the line-shape func-
tion was reduced to the calculation of the three-particle,
two-time correlation function, it was shown that the criti-
cal behavior of this correlation function is being probed
by the optical-broadening experiment.
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