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The amplitude and the cross-section of elastic electron scattering from a multicentred system are obtained as a result of an exact 
solution of the scattering problem in the case of one Coulomb potential and any number of short-range potentials. 

1. The aim of the present paper is to calculate the amplitude and the cross-section of elastic electron scattering 
from the system in which one Coulomb potential and any number of  short-range potentials are included. Within 
this calculation the zero-radius potential (ZRP)  model [ 1--4] will be used as multicentred pseudopotential. 
Our interest in this system was stimulated by the problem of the interpretation of the electron-scattering ex- 
periments for complex molecular ions, ionized gases and low-ionized plasma [ 5,6 ], on the one hand; and on 
the other hand, by the problem of  generalisation and developing of theories of  scattering from a single Coulomb 
center with a short-range potential well [ 7-9 ] and from a superposition of ZRPs [ 10-17 ] separately. The ZRP 
model for the pseudopotential has been used in view of successful applications of  the ZRP in numerical cal- 
culations of  electron scattering from a hydrogen molecule [ 18 ] and, also, because of the possibility of  an exact 
solution of the problem in this case. 

2. Consider elastic scattering of a monochromatic electron beam with energy E from a multicentred target 
which includes a single Coulomb and N short-range potentials where the latter describe a superposition of ZRPs. 
Let us assume that the target particles are structureless and also can be considered as being at rest during the 
elementary act of  scattering. Putting the origin O of the coordinate system in the centre of  the Coulomb po- 
tential and following the general theory of ZRPs [ 1-4 ] we write the stationary Schr6dinger equation for the 
whole system: electron plus target, in the following dimensionless form, 

(-½A,+ S-E+2x ~ lj6(r-Rj) a ) ; J-, {R}) =o, (i) 

where Ar-O2/Or  2, "rj= I r - R j l ,  lj is the scattering length for the jth ZRP, s= - 1 for attractive and + 1 for re- 
pulsive Coulomb potentials, respectively, ~(r ,  {R} ) is the wave function of the whole system, which includes 
the dependence on all coordinates of  the target particles, {R} =R~ .... , &v, as parameters. In ( 1 ) and below will 
be used a Coulomb system of units in which ~2/mce2Z and mce4Z2/~ 2 are the length and energy scales re- 
spectively; 6( ) is the Dirac delta function. 

Equation ( 1 ) is not a closed equation due to the inclusion, along with ~(r ,  {R} ), of  N unknown functions 
{ ~(Rj, {R} )}. Taking into account the physical properties of  the wave functions, eq. (1) will be considered 
with a typical boundary condition in the following form, 
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1 a (z:~u) ~/-o 1 zj ~POz/ = - ~ - -Kj, j =  I, 2 ..... N.  (2) 

3. Introducing the Green function for the Schr6dinger equation with a Coulomb potential unperturbed by 
short-range potentials in closed form, which was first obtained by Hostler and Pratt [ 4,19-21 ], 

F ( 1 - t / )  ( 0 0 )/4< - -  . : /2( - ikx)M.,,/2 ( - iky), (3) G(r, r ' ) -  27t[r-r'l ~ a(i-ky) k='v/~' 

we can write down an exact solution of ( 1 ), namely 

N 

~U(r, {R})=~/+(r)+ ~ ~(Rj, {R})G(r, Rj) , (4) 
j . I  

where 

~v + (r) =exp(  - s~/2k )F( 1 + si/ k ) exp( ik.r)F( - s i /  k, 1, i ( k r - k . r  ) ) (5) 

is the Coulomb wave function for the continuous spectrum, x= r+ r ' + l r - r ' l ,  y= r+ r ' - I  r - r ' l ,  F(z)  is the 
gamma-function, W,a/2(z) and M,,i/2(z) are Whittaker functions, F(ot, #, z) is the confluent hypergeometric 
function, "~l = si / k. 

The set of coefficients { ~(Rj, {R} ) } can be determined as a result of solving a system of algebraic equations 
which follows from (2) and (4). We just represent here the final result of this calculation, namely 

~(Rj, {R})= ~ (6) 
A '  

where 

~(R~ ) + r,  

A_-- 2:¢G(R2, Rl) 

II 2~G(RN, Rl ) 

27cG( RI , R2 ) 

2~:G(RN, R2) 

2riG(R2, RN) [ 

I 
~(R~) + ~ 

~= 

4(Rl) +~q ... --2x~u+ (R~) ... 21cG(RI,RN) 

1 
27cG (R2, R~ ) - 27t~ + (R2) 27tG (R2, RN) 

: : : 

II2~G(RN, R~) ... --2~U +(RN) ... ~(Rlv) +r~: 

(7) 

and 

~(Rj) --2n ~ ziG(r, Rj) ,~-o" (8) 

We emphasize that expressions (4), (6) and (7) are obtained without any additional approximations and thus 
represent an exact solution. 

4. Using the known asymptotic properties of~u + (r), W~,w2(z) and M.,w2(z) [22,23], with the help of (4), 
(6) and (7) we obtain an expression for the wave function of  the scattered electron ~u in the following form, 
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~g,c(r, {R} ) = [fc(0)  +fc.~....,N] [ exp ( ik r -  ( i /k )  In(2kr) ] ,  (9) 
r 

where 

1 F( l+i /k)  ( 2i ) 
fc(O) = - 2k 2 sin2(0/2 ) F( 1 - i / k )  exp - -~ In sin (0 /2 )  (10) 

is the Coulomb amplitude and 0 is the angle of scattering. 
Thus, from (9) it follows that the expression 

1 N 
fc,,.....N= ~-~exp(- n/2k)F( l +i/k) ~ ~(Rj, {R})E(R, coj) (11) 

j --I  

can be considered as the amplitude of scattering from the multicentred short-range pseudopotential in the Cou- 
lomb field. Note that in ( 11 ) 

S( Rj, oJj ) =M'._i/k.,/2( ik.Rj( 1 +cos ~oj) ) + ½M_i/k.,/2( ik.R/( 1 +cos oJj) ) ,  (12) 

and wj is the angle between the vectors r and Rj. Also note, that for the definition, we put here that the Coulomb 
potential is repulsive, 

d 
M L  i/k,I /2 ( Z ) ~- -~Z M - i / k ' l / 2 ( Z )  . 

As follows from ( 9 ) - (  11 ) the amplitude fC.~...~N is not the same as the known Coulomb or ZRP amplitudes, 
separately. At the same time, because the { ~(Rj, {R} ) } are determined for the whole set {R}, fc.L..~v cannot be 
considered as a pair-additive function which includes the contributions from pair-wise complexes of  the type: 
Coulomb centre plus ZRP, only. We emphasise the factorisation of  the amplitudes fc.~...~ as functions of  all 
angular arguments. 

5. As follows from ( 6 ) - (  12 ), for the case of complexes of  the type: Coulomb plus ZRP, which are shifted 
one from another by a vector R, in the limit, when R-,oo we have the known result [ 1-4] 

1 f c ( 0 )  1 1 
fc., = ~¢-1/~1 ~¢-I /r lR-"-  ~¢-1/---~ =f~" (13) 

The using the asymptotic properties of Whittaker functions [ 22,23 ] for the complexes of  the type: Coulomb 
and two ZRP which are centred at the points R~ and R2, in the limit R~--.ov,  R2-- ,oo and Iltl-R2l =R kept 
fixed, we obtain 

(K~ - I/)/) + ()¢2 - I/)/) - ( I/21t) exp( ikR) /R 
fc.~.2 = - (~¢, _ I/~/) (s¢~- I/)/) - ( I / 4~  2) exp(2 ik~) /R  2" (14) 

When ~q = K2 expression (14) is exactly the same as the known result which is usually called the Brueckner 
formula [ 1-4], 

2 
fc.~.2 = - ~¢- I / r /+  ( l / 2 n )  exp( ikR) /R"  (15) 

For complexes of  the type: Coulomb centre and ZRP at the point R, when R~O, from ( 11 ) follows the famous 
Landau and Smorodynsky formula which can be reproduced here in the following form, 
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fc=, = -  2 ~ F ( l + i / k )  1 1 (16) 
k F( 1 - i / k )  1 - e x p ( 2 n / k )  ~c-F(  1 + i / k )  [ (O/OR) W-ilk, n/2( - 2ikR) ]R~o " 

As the next step we represent here the amplitude of  scattering from complexes o f  the type: Coulomb centre 
plus ZRP at the common  point and the next ZRP at R, which can be considered as a generalisation o f  the 
Brueckner and Landau and Smorodynsky results, namely 

fc=,.2 = - e x p (  - ~/2k )F(  1 + i / k )  

× {exp( - ~/2k)F(  1 + i / k )  [sc2 + ~ ( R )  - - - ( R ,  co)G(0, R) ] 

+ ~/+ (R) (---(R, co) {~c, - F(  1 + i /k )  [ (O/Or) W_i/k. ,/2 ( -- 2ikr) ]r~o } - G(0, R) ) } 

X {~c, - F (  l + i / k )  [ (O/Or) W-ilk.,/2( -- 2ikr) ]r--0 [~C2 + ~ ( R )  ] - (2~)3G2 (0, R)} - '  

G(0, R) = W-i/k"/2(--2ikR)  (17) 
R 

In the limit R ~ ~ expression ( 17 ) becomes fc= ,.2 ~fc= i +f2, which includes results ( 14 ) -  ( 16 ). Without  any 
difficulties this scheme can be extrapolated to higher order complexes. 

6. The differential cross section o f  scattering which is given by the following formula, 

da  fc.l.....N + fC 2 dO -- ' (18) 

must  be correctly averaged over all configurations {R}. In particular, following refs. [24,25] this averaging can 
be realised with the help o f  the correlational expansion of  da/tLO in a doubly irreducible series, every pth frag- 
ment  o f  which represents an averaged contribution to da /d to  due to scattering from the p + l particle complexes 
which include one Coulomb and p ZRP centres, namely 

. . .  

+ 2  Re HtpC'L"'P)(Rl, ..., Rp) dR1 ..... dRp, (19) 
J 

where the set o f  the density-particle functions {H(p c,t,'''~) (R~ .... , Rr)} (form factors o f  the particle complexes) 
must be determined from alternative sources [24,25].  

The effects o f  backscattering and the statistical analysis o f  the cross-section will be discussed separately. 
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