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Elastic electron scattering from a multicentred potential
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The amplitude and the cross-section of elastic electron scattering from a multicentred system are obtained as a result of an exact
solution of the scattering problem in the case of one Coulomb potential and any number of short-range potentials.

1. The aim of the present paper is to calculate the amplitude and the cross-section of elastic electron scattering
from the system in which one Coulomb potential and any number of short-range potentials are included. Within
this calculation the zero-radius potential (ZRP) model [1-4] will be used as multicentred pseudopotential.
Our interest in this system was stimulated by the problem of the interpretation of the electron-scattering ex-
periments for complex molecular ions, ionized gases and low-ionized plasma [5,6], on the one hand; and on
the other hand, by the problem of generalisation and developing of theories of scattering from a single Coulomb
center with a short-range potential well [7-9] and from a superposition of ZRPs [10-17] separately. The ZRP
model for the pseudopotential has been used in view of successful applications of the ZRP in numerical cal-
culations of electron scattering from a hydrogen molecule [18] and, also, because of the possibility of an exact
solution of the problem in this case.

2. Consider elastic scattering of a monochromatic electron beam with energy E from a multicentred target
which includes a single Coulomb and N short-range potentials where the latter describe a superposition of ZRPs.
Let us assume that the target particles are structureless and also can be considered as being at rest during the
elementary act of scattering. Putting the origin O of the coordinate system in the centre of the Coulomb po-
tential and following the general theory of ZRPs [1-4] we write the stationary Schridinger equation for the
whole system: electron plus target, in the following dimensionless form,

(_M,+ f -E+21:j“§l 1,6(r—R;) %rj)sp(r, (R})=0, (1)

where A,=92?/dr% 1;=|r—Ry|, I is the scattering length for the jth ZRP, s= —1 for attractive and +1 for re-
pulsive Coulomb potentials, respectively, ¥(r, {R}) is the wave function of the whole system, which includes
the dependence on all coordinates of the target particles, {R} =R\, ..., Ry, as parameters. In (1) and below will
be used a Coulomb system of units in which #2/m.e*Z and m.e*Z2/#? are the length and energy scales re-
spectively; 8( ) is the Dirac delta function.

Equation (1) is not a closed equation due to the inclusion, along with ¥(r, {R}), of N unknown functions
{¥(R,, {R})}. Taking into account the physical properties of the wave functions, eq. (1) will be considered
with a typical boundary condition in the following form,
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3. Introducing the Green function for the Schrédinger equation with a Coulomb potential unperturbed by
short-range potentials in closed form, which was first obtained by Hostler and Pratt [4,19-21],

n_ T'(0=n) d ] . . _
G(’ar)— 27”’_'/] (6(1kx) - a(iky))W’l,l/Z(_lkx)Mﬂ,l/Z(_lky)v k—\/ﬁ‘a (3)
we can write down an exact solution of (1), namely
P(r, (R =y (r)+ Zl P(R;, {R})G(r,R) , (4)
where
vt (r)=exp(—=sn/2k)(1+si/k) exp(ik-r)F(—si/k, 1,i(kr—k-r)) (5)

is the Coulomb wave function for the continuous spectrum, x=r+r'+ |r—r'|, y=r+r'— |r—r'|, I'(z) is the
gamma-function, W, ,,,(z) and M, ,,(z) are Whittaker functions, F(c, §, z) is the confluent hypergeometric
function, n=si/k.

The set of coefficients { P(R;, {R})} can be determined as a result of solving a system of algebraic equations
which follows from (2) and (4). We just represent here the final result of this calculation, namely

4.

PR, (R =", (6)
where

E(R)) +x, 2nG(R,,R;) .. 2nG(R,, Ry)
A 2rG(Ry, R,)  {(R;) +k; 2rG(Ry, Ry)

ZNG(R‘N, Rl) ZKG(RN, Rz) os é(RN)'*'KN

E(R)+K, .. —2my*(R) .. 2nG(R,,Ry)

2rG(Ry, Ry) —2ny* (R;) 2rG(R,, Ry)

2G(Ry, Ry) .. —2ny*(Ry) ..  &(Ry)+ky
and
f(R,»):Zn%‘tjG(r,Rj) . (8)

We emphasize that expressions (4), (6) and (7) are obtained without any additional approximations and thus
represent an exact solution.

4, Using the known asymptotic properties of w* (r), W,,,,2(z) and M, ,,2(z) [22,23], with the help of (4),
(6) and (7) we obtain an expression for the wave function of the scattered electron ¥, in the following form,
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B (r, (B)) = [e(0) He, o) LERI= (/O D], 9)
where
_ 1 r(1+i/k) ( 2 ) )
Je(®) == 7 sin?(672) F(1=i/k) P\~ & ' 8in (%/2) (10)
is the Coulomb amplitude and 8 is the angle of scattering.
Thus, from (9) it follows that the expression
1 . y -
Jer,.n= o exp(—n/2k)I(1+i/k) Zl P(R;, {R})E(R;, »)) (11)
J=

can be considered as the amplitude of scattering from the multicentred short-range pseudopotential in the Cou-
lomb field. Note that in (11)

E(Rj, wj) =M,_i/k'|/2(ikRj( 1+cos wj) ) + iM—i/k,l/Z(ikRj(l +cos wj) ) . ( 12)

and wj is the angle between the vectors r and R;. Also note, that for the definition, we put here that the Coulomb
potential is repulsive,

d
M i jr2(2)= d_zM—i/k.l/2(z) .

As follows from (9)-(11) the amplitude f, v is not the same as the known Coulomb or ZRP amplitudes,
separately. At the same time, because the {W(R,, {R})} are determined for the whole set {R}, f.,. » cannot be
considered as a pair-additive function which includes the contributions from pair-wise complexes of the type:
Coulomb centre plus ZRP, only. We emphasise the factorisation of the amplitudes f, _» as functions of all
angular arguments.

5. As follows from (6)-(12), for the case of complexes of the type: Coulomb plus ZRP, which are shifted
one from another by a vector R, in the limit, when R— oo we have the known result [1-4]

1 f®1 1
x—l/rp—x—l/nR—’— Kk—-1/n

f cl1== =fl . ( 1 3)
The using the asymptotic properties of Whittaker functions [22,23] for the complexes of the type: Coulomb
and two ZRP which are centred at the points R, and R,, in the limit R, »c0, R,—+00 and |R, —~R;| =R kept
fixed, we obtain

()i =1/n)+(x;—1/n)—(1/2n) exp(ikR) /R
(xy=1/n)(x2—1/n)— (1/4x?) exp(2ikR)/R?*’

When x, =k, expression (14) is exactly the same as the known result which is usually called the Brueckner
formula [1-4],

Jer2=— (14)

2
k—1/n+(1/2r) exp(ikR)/R" (15)

fC.l,Z ==

For complexes of the type: Coulomb centre and ZRP at the point R, when R—0, from (11) follows the famous
Landau and Smorodynsky formula which can be reproduced here in the foliowing form,
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2rI'(1+i/k) 1 1

Je1= = 3 T(T=i/k) T=exp(2n/k) k=TI F1/R) [(B/0R) W pryal —3kR) Tno

(16)

As the next step we represent here the amplitude of scattering from complexes of the type: Coulomb centre
plus ZRP at the common point and the next ZRP at R, which can be considered as a generalisation of the
Brueckner and Landau and Smorodynsky results, namely

Jeo12=—exp(—n/2k)(1+i/k)
X {exp(—-n/2k)I(1+i/k) [k, +&(R)—-E(R, w)G(0,R)]
YT (R)(E(R, ) {k, =T (1+1/k)[(3/0r) W _i /1,2 (=2ikr) ], .0} —G(0, R) )}
X{kr =T (1 +1/k) [(3/3ryW_; i1 2(=2ikr) ool i, +{(R) ] = (21)°G?(0, R)}

G(O,R): W—i/k.I/ZRS_ZikR) . (17)

In the limit R— oo expression (17) becomes fc.., 2—fc=1+/2, Which includes results (14)-(16). Without any
difficulties this scheme can be extrapolated to higher order complexes.

6. The differential cross section of scattering which is given by the following formula,
2

Jer..ntfe| s (18)

do _
"

must be correctly averaged over all configurations {R}. In particular, following refs. [24,25] this averaging can
be realised with the help of the correlational expansion of do/d£2 in a doubly irreducible series, every pth frag-
ment of which represents an averaged contribution to do/dw due to scattering from the p+ 1 particle complexes
which include one Coulomb and p ZRP centres, namely

—_— N - —
s s £ MO [ g

2

g

+2 Re[fc(il Jei— f}f}) ]}H,‘,C"""”’(Rl, .o Ry) dR, ..., dR, (19)
- Jm

where the set of the density-particle functions {H{%!~?)(R,, ..., R,)} (form factors of the particle complexes)
must be determined from alternative sources [24,25].
The effects of backscattering and the statistical analysis of the cross-section will be discussed separately.
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