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Abstract 
The amplitude and the cross-section of elastic electron scattering from 

the multicentred systems are obtained as a result of an exact solution of the 
task of scattering in the case of one Coulomb and any number of short-range 
potentials. The statistical theory of line-shape of a narrow resonance in electron 
energy loss spectra of many-particle disordered systems is developped within 
the correlational expansion method. 

Introduction, 

Charge-particle beam spectroscopy has been a valuable 
technique for exploring both electronic and atomic (molecular) 
structure In the different type of many-particle disordered systems 
within the wide spectra of aggregate states [1-5]. 

Two modem types of charge-beam spectroscopies, namely, 
elastic scattering of low-energy electrons and electron-energy loss 
spectroscopy (EELS) would be considered within the present 
paper with help of quantum-statistical approach. It is possible to 
formulate a general theory of both the kinds of scattering, but 
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because of a many-body problem, the formal expressions require 
some additional approximation both for the electronic density 
and for atomic (molecular) many particle distribution functions, 
before they are useful for calculation. This approximation must be 
determined by the atomic (molecular) species and the deterministic 
conditions of the system. The development as well as applications 
to many problems of molecular and nuclear physics of both the 
theories can be find in the previous publications of the author. 
Therefore the first aim of this paper is to give (demonstrate) the 
possibility of an exact solution of the quantum-statistical problem 
for elastic electron scattering from multicentred system. Namely, 
the amplitude and the cross-section of scattering are obtained as 
a result of an exact solution of quantum problem in the case of 
a multicentred pseudopotential in which one Coulomb and any 
number of short-range potential are included. 

The second goal of this paper will be to develop the statistical 
approach to the description of narrow resonance line-shape in 
EELS from disordered systems. The direct reconstruction of a 
disordered systems by EELS is an important technique by virtue 
of its wide applicability. The theory for this problem requires 
only simple expressions that connect the inelastic cross-section 
with the structural characteristics of the system. We develop this 
treatment around a correlational expansion method. 

Thus, two exact solvable problems of scattering from many 
particle systems taking into account both quantum and statistical 
aspects would be considered within this paper. 

1. Elastic electron scattering from the multicentred potential. 

The aim of the present chapter is to calculate the amplitude 
and the cross section of elastic electron scattering from the 
system in which one Coulomb and any number of short range 
potentials are included. Within this problem the model of 
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zero-radius potential (ZRP) [6-9] will be used with the role of 
a multicentred pseudopotential. The task was stimulated by the 
problem of interpretation of the electron-scattering experiments for 
the complex molecular ions, ionized gases and low-ionized plasma 
[10,11] on one hand. And on the other hand - by the problem of 
generalization and developing of the theories of scattering from 
single Coulomb centre with short range potential well [12-14] 
and from the superposition of ZRP [15-22] separately. A selected 
model of pseudopotential has been used in view of successfull 
applications of the ZRP in the numerical calculation of electron 
scattering from hydrogen molecule [23] and also, due to possibility 
of exact solution of the task in this case. 

Consider the elastic scattering of a monochromatic electron 
beam with energy E from the multicentred target which Include 
single Coulomb and N short-ranges potentials where the last ones 
describe as a superposition of ZRE Let us assume the target 
particles as structured and being at rest during the elementary 
act of scattering. Putting the point 0 of the coordinate system 
in the Coulomb centre and following the general theory of ZRP 
[6-9] we shall write the stationary Schrodinger equation for all 
the system: electron plus target in the next dirnenslonless form 

(1) 
1 N d 

W(r;{R}) = 0 

where: r;- - \f — Rj\ is the length of scattering for ;-th ZRP; 
g = q=l for the actractlve and the repulsive Coulomb potentials, 
respectively; ¥(f;{]?}) is the wave function of all the system, 
which includes dependance from all coordinates of the target 
particles {R} = R\,...,RN as parameters. In (1) and further 

Coulomb system of units will be used in which z— and 
J me2Z 

=— are the scales of length and energy respectively, Af = —r^r-

Equation (1) is nonclosed, Including, together with ¥(f; {R}) 
also iV-unknown functions {¥(i?;-;{i?})}» Taking into account 



394 O. I. GERASIMGV* - A.G. SITENKO 

the physical properties of the wave functions, eqe. (1) will 
be considered together with typical boundary conditions In the 
following form 

(2) ^^-(r^l^^-i-^-x,,;^,...^. 

Introducing the Green function for the Schrodinger equation 
with Coulomb potential unperturbed by the short-range potentials 
in the closed form which was firstly obtained by Hostler and Pratt 
[9, 24-26] 

(3) 

G(r,f') = ™~ Vl. (-^— ~ -j£r) Wns{-ikx)M„i{-iky), 
2ir\r — r'\ \oikx oiky J ^'2 ^ 

k = \/2E, x = r + r' + \r — f'|, y = r + r1 — \r — rl\1 

we can write an exact solution of (1), namely 
N 

(4), ¥(f; {R}) = i)\r) + ] T *(£,•; {R})G(f, Rj), 

where 

(5) i/>V) = e-s^T(l+Sj)erkfF (-Sj, l,i(kr - kr)\ , 

Is the Coulomb wave function for continues spectrum; T(z) is 
the gamma-function, W^ii-ikx) and M ±(-iky) are Witteker 

functions; F f —S —, l,i(fcr — fcf) j is generate hypergeometrical 

function; 77 = S — • A; 
The set of coefficients {¥(Rj\{R})} can be determined as 

a result of the solution of a sistem of algebric equations which 
follows from (2) and (4). We represent here just the final result 
of this calculations, namely 

(6) *(i?;.;{i?})=^J-, 

file:///oikx
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where 

(7) 

£(Ri) + xi 2TTG(RUR2) 

2TTG(R2, RI) t(R2) + x2 

2TTG(RI,RN) 

2TTG(R2, RN) 

2TTG(RN,RI) 2TTG(RN,R2) . . . £(RN) - xN 

(7) Aj = 

and 

(8) 

KRO + xv 

2nG(R2,Ri) 

2TTG(RN,RI) 

Z(Rj) = 

-2^{Ri) ... 

-2TTij;+(R2) . . 

-2^+(RN) .. 

2-K—-TjG(r,Rj) 

((RN) + %N 

2-KG(R2, RN) 

((RN) - XM 

U-0 

To emphasise that the model values of our problem espressions 
(4,6,7) are obtained without any additional approximations and 
thus, represent an exact solution. 

Using the known asymptotic properties of ^+(F)9 W \ {Z\ 
M^^i (Z) [27, 28], with the help of (4,6,7), we obtain the expression 
for the wave function of scattered electron Wsc in the following 
form 

(9) Vac(f,{i2}) = [ / cW + /c;i,...^] 

where 

exp ikr — —Inlkr 
k 

(10) /C(1?) = — 
1 r i + -

2k2 sin2 — r [ 1 
. c x p ^ T Z n s m T 

Is Coulomb amplitude and 1? Is the angle of scattering. 
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In the limit when R —> oo expression (16) generates the 
following form fc=i,2, => fc=i + fi which includes results (14,15). 
Without any difficulty this scheme can be extrapolated on a higher 
order complexes. 

The differential cross section of scattering which is given by 
the next formula 

(17) 
da 

■^■ = I/C + / C : l , 

must be correctly averaged all over the configurations {R}» In 
particular, following [29, 30] this averaging can be realized 
with the help of correlational expansion of the (—pr) in the 
doubly-irriducible series, every p-th fragment of which represents 
an averaged contribution to ( -^ - ) due to scattering from the 

ai l ' 
(1 +p) particle complexes which includes one Coulomb and p-th 
ZRP centres, namely 

(18) 

where the set of the irreducible density particle functions 
{if^C;1'-"'p)(Ei,... ,RP} (form factors of the particle complexes ) 
must be determined from alternative sources [29, 30] (see also 
next chapter). 

2. Electron energy loss spectroscopy (EELS)« Statistical 
theory of line-shape for localized excitation. 

The double-differential inelastic cross sections have been 
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studied extensively [1-5], particularly In spectral line wings that 
correspond to electronic excitation within a single molecule. 

The Inelastic cross section In this region has usually been 
explained with Impact or quasi-static theories of spectral line 
broadening, taking into account the electron-electron correlation but 
without considering the intemuclear or Intermolecular correlations, 
Because the wing region of a spectral line Is formed primarily by 
the short-range Interactions between an excited molecule with its 
environment, these theories were adequate for explaining dense 
systems where the Intermolecular correlations are saturated. But in 
cases where the resonance is narrow, for example, In small-angle 
scattering In low temperature systems with small Doppler width, 
the Intermolecular contributions become non negligible. Consider 
a monochromatic beam of fast electrons (E ~ 103eV) that Is 
inelastlcally scattered at a fixed angle # < 1° by energy losses 
(e) in the narrow e ~ 10~2 — \0~leV neighborhood of distinctive 
narrow resonance. 

This corresponds to excitation of a single molecule in one of 
its first excited states. In a simple disordered system of symmetrical 
molecules with volume V and temperature T ~ 102 if, the scattering 
process may be described with In the Bom's approximation [9, 31, 
32]. In this approximation the excited electronic level contributes 
primarily to the sum under the electronic state. 

Now, we shall suppose that the target molecules may be 
considered as being at rest during scattering and that the excited 
level degenerates. We want to emphasize that the broadening of 
the spectral resonance Is due to the effects of molecular motion 
and backscattering A[A ~ (mkbTE$/M)1/2} where m and M are the 
masses of electron and molecule, respectively, for the parameter 
values of our problem, A < 10~3eV\ In our problem the bound 
charge of the target molecules distributes not only in the region 
of localization of one single molecule but over the entire system 
volume. Therefore, the expression for the Inelastic cross section 
must be averaged over all the molecular configurations with the 
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GIbbs distribution function. The resulting quantum-mechanical 
expression for the second differential cross section of the electron 

d2S scattering, —— (or the cross section of energy losses I$(e)), with 
de 

reference to the volume of system V Is 

where p^a(q\{R}) Is the Fourier transformation of the matrix 
element from the charge density operator; q Is the Impulse of 
scattering; {R} = Rh... ,RN are the coordinates of the center of 
mass of the N molecules; E\a({R}) and EQ({R}) are respectively 
the energy of the final and Initial states of the system in the 
adiabatic approximation. The sum from a goes over all the excited 
states of the system, which gives rise to the distinctive level of the 
Isolated molecule; 6[...] is the DIrac 8 function and the angular 
brackets denotes a GIbbs distribution average, 

Equation (19) is the generalization of the one particle 
expression for the cross section of inelastic electron scattering [9] 
In the case where we consider the disordered system as a single 
larger molecule. 

Following ref. [30-32] let us expand the total energy loss 
scattering cross section I ^ f e ) °m a correlational series. The terms 
of this series represent the contribution to the cross section by 
Isolated many-particle fluctuational complexes of different ranges. 
Using the identical representation for 

N N N 

It?,ivfe {R}) = ^ P ^> l (£> A") + E E ^ 2 ( £ ; &> ^ ' ) + 

(20) 
N N N 

+ J E E $*•&'i?i- £;.£*) + •■• + QO,N(£\ {R}), 
2=1 y=i*+i k=i+\ 

where 
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Qv,s(e; Ri,...,Rs) = (-if Y^ J*,i(£; ^ ' ) + 

(21) 
s s 

+ ( - 1 ) 5 - 2 Yl J2 7".2(£; &> &+■ ■ ■+7*<s(e; ^ i . • • •. fl.) 

is the irriducible part of the scattering cross section by the s-particle 
complex R\,...,R8; I#(e) = (I$,N)° In tqimit of a thermodynamic 
average, Eqe. (20) becomes 

00 hs r r 

I,(£) = a W ^ 7 - T / . . . / 

x 6(e + /iaia(J?i,...,J?5))-

^ a = lZa jQ ,(f;#i,... ,#*)> 

SI 

(22) ( 5 - 1 ) ! ] P Of = lZ8-iia(q ; i?i, • • •, i?s-i)> 

x 6(e + fis_ha(Rh . . . , f25_i)) + 
(s - 2)!2! 

^s-2 

2^J Q? = 1 Za-2,a(q> R\ , • • • , i ? 5 - 2 ) § (£jJ>s-2,a(Rl, • • • , Rs-l))-

~-(~iySZi(q;Rs) 

N . 

0*CRi,... ,Ra)dR\ ...dR8. 

Here ft = — is the particle density, {gsCRi,... ? j?s)} are 
s-particle dstribution functions [33], and IJL8I01(RI,...,R8) are the 
single excitation energy shifts due to intermolecular interactions 
in s-particle complexes. Also, 

r P i 2 
a(i?) = Ed2 

Zs,aiq\ Ru...,R8)= \p{sia(qi 4 - , i?s)|2 

Note that the functions {/^(e; R\, • • •, i?5)} or { Q ^ e ; Ru •.., 
j?s)} are symmetric and 
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Is independent of R. In Eqn. (22), the sum from 1 to vs covers 
all states of s-partlcle complexes. 

The expression In square brackets In Eqn. (22) describes 
Irreducible s-partlcle contributions to the Inelastic scattering cross 
section. The parameters are fixed and adopted (vide supra) for 
disordered systems. Each term of Eqn. (22) Is a functional of 
density and temperature as the functions {gs} are functlonals of 
these parameters. 

In moderate density systems we can terminate the series 
(22) after a finite number of terms. For example. If we take only 
the first two terms Into account, we obtain an expression for the 
Inelastic cross-section of two atom quasi-molecules. The regular 
part Is equal to 

Ms) = ^a(m2 fgiiR) Y* Z2,a(q, R)x 
(23) 2 J j£ 

x 6(£ + /i2,aCR))djK. 

The quasi molecule complexes consist of two atoms of the 
same element, one of which is in an excited state. The electronic 
states are divided Into two groups, even (g) and odd (u), In 
accordance with the property of the wavefunctions. Even states 
conserve sign under inversion In the plane of symmetry; odd 
states change sign. In Eqn. (23) a may be equal to (g) or (u). 

Using zero-order perturbation theory and neglecting overlap 
Interactions, the wavefunctions of the ground state ¥0({f}5 R) and 
the excited states ^i,a({f}?JR) may be written: 

¥0({f }3 R) = MlriModri - R]), 

(24) ¥1>tt({f},J?)= ^{^o([n])^ i ( [^2-f l ] )±^i ( [^ i ] )^o(r 2 - f l ] )} 

Here V>oflr*i]) a n d ^1(^2 — R\) a r e wavefunctions of isolated 
atoms. Also {r} Is the set of electronic variables of the pair of 
atoms; [f i] and [f 2 - R] are, respectively, the set of electronic 
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coordinates of the first and the second atom: the dbsign corresponds 
to a = g and a = u. Taking the Fourier transform of the charge 
density operator 

(25) p?la(q, ^ ) = E / ' • • • / ^ % ( { ? } . i?)^o({f}, R){dr}, 

and expression (24), we obtain 

(26) Z2,a(qiR) = 2Zi(q)i 
cos2 ( -jqR) , a = 9, 

sin2 ( —qR J , a = g. 

Now we determine /z2,aCff), which is equal to i^^iZ)-EboCR), 
where JE^ and EQO(R) are the ground and excited state Interatomic 
interaction energies of the two particle fluctuational complexes in 
the adiabatic approximation. 

Now we need to determine which excited states are dipole 
allowed. For this purpose, we want to find the value for the 
crossing transition probability. In the dipole approximation the 
Interatomic interaction is described by an operator V": 

(di ■ d2) - 3(dl • h)(d2 • h) ' 
(27) V = R3 

which is the dipole-dipole Interaction operator. Here d\ and di 
are the dipole moments of both atoms and h Is the unit direction 
vector between both atomic charge centers. For example, consider 
a 15 ground state and a IP excited state for which the transition 
is dipole allowed. The matrix element of the operator V\ which 
are given by 

Vlf(R)=(Whia\V\Whia) = 

(28) r r 

may be calculated by using the wavefunctions (24) namely, 

i?3 (29) vif(i2) = 7r to-^-, 
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IT in, = < 

where 
( - 2 , at = g, i = z, 

1, a = g, i = x,y, 

2, i=- = u, i = z, 

—1,« = u, i = x, y. 

Here i = x, t/, 2 are the three perpendicular orientation of 
angular momentum. If % = Z, the angular momentum and the axis 
of the quasi-molecule are colinear. Finally, using Eqs,(23) and 
(29), we obtain 

2 , „ dL 

(30) 

where 

(31) 6{x)--

3 «-"\ ̂ / 

sin qRs ' 
qRs _ 

) = -

£ 2 - v " " , 
s-=-2 

0(Ra)g2(Rs), 

r 1, i > o , 

0, X < 0, i? s = 
V 

Let us consider a dipole forbidden transition, for example, 
the IS to 25 transition. This transition has a probability that is 
zero to first order and is dependent only upon the Interatomic 

separation. In this case fi2,a(R) 
constant. We obtain 

ECT , where Ca is the atomic 

a(<?) 7 
Ide)=-^Zi(q)h2 

(32) 

Rv 

E 
1 + 

s ingi^ 
qRv 

d(J,2,g(R) 

92lRAe)l^J2' 
RtJ 1 + 

dR \R=Ru(e) 

sin qRv 

qRv 
djJL2,g(R) 

dR 

-gilRu'ie)] 

\R=RA£)\ 
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where Rv and Ry> are the solutions of the equations 

V2,g(R) = Mw - w\) = -£ , 

(33) M2,tiCR) = ft(w - wi) = -£ , 

/i2,a(i2) = -Ca/i2<T. 

In general If one of the terms in parentheses has a divisible 
root u), then In the limit uo —> a), It will be sharply peaked. 
Corresponding sharp peaks will appear in the electron energy 
loss spectrum. These singular points are analogous to Van Hove 
singularities for the spectral density of states. Suppose that for 
such a frequency interval there exists a solution for only one 
of the equations In (33). Then, for the corresponding Interval of 
the distances, we can directly determine the value of giiRi^)) by 
using Eqs. (32) and (33). If the splitting of the distinguishing 
level is negligible, 

(34) \fl2,g(R) ^ fl2,u(R)\ ~ A < -L\^g(R) + ^u(R)l 

we obtain a sempllfied form of the Eqs. (32): 

k(e) = ^Zl(m2\dR 

(35) ^ I 
/U2,aCR) = (J.(R(E)) = - £ = 

ds 
C 
R° 

92(R(e)), 

Expression (35) can be rewritten in the form 

(36) I*(e) C2-a(.V)Zi(q)e-$h2g2 
24TT 

In the ideal-gas limit, when g2 = 1, I${E) ~ e~^ [34]. 
Expressions (30-35) allow gi(R) to be directly determined for the 
individual points in simple disordered systems. This supplants the 
usual procedure that involves the revers Fourier tramsform of the 
scattering structures factors. 
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Due to the Irregular convergence of the Fourier series, this 
usual procedure does not readily produce an easy determination 
of g2(R) [35], 

Consider a model In which an excitation Is localized on 
a single molecule and the probability of excitation exchange 
between molecules is negligible. This situation is a good model 
for a dlpole-forbldden excitation, a situation where the resonance 
Interaction between an excited molecule and a ground-state 
molecule decreases with the Interatomic distance more rapidly 
than R~3. We shall suppose that the excited level of a single 
molecule is generated. Then, using zero-order perturbation theory, 
we obtain 

Zs,i(qi Ri,...,Ra) ~Zi(q) = |p£(f)|2, c* = S 

(37) _ _ ^ _ _ 
/ia,Qf(iZl,-.-,iZa)=2^/i(|-R; ™ Ra\), 

where Rs = 0; fi(R) Is the exchange of energy of the single 
excitation In a pair of molecules that shift the one from the other 
on vector R; and a, In this case, means that the ecitation Is 
localized at the molecule with number s. Due to the symmetry 
of the functions {gs}, and the Fourier-reducing properties of the 
Dirac delta function, we can rewrite the expression (22) as 

oo h s -oo 

Itf(e) = a(&)Z\(q) V* — / drexp(-ier)x 

(38> x / " / l I [ e x p ( " l > ( ^ ) r ) " U9s(Ru.• •,R8-i)dRi ...dii. 

gs(Ru...1R8-i) = gs(Rh...,Rs_u6); a(#) = ° W 

-5—1 ? 

2TF 

Thus, if IJ,(R) is a finite function [i.e., n(R) = 0 outside a 
sphere with radius F0 < oo], integration in Eqn. (39) goes over 

4-7T a 

the volume of the sphere VQ = -^-To with Its center at the origin 
of the coordinate system. The series (38) for the finite function 
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Is generated in the finite sum (we can only put a finite number 
of molecules in a sphere with radius To < oo). This means that, 
starting with some number So, all the functions {gs} (S > So) 
become zero for all Rs > F0. To prove that the correlation series 
converges when fi(R) Is not finite but only a rapidly decreasing 
function, it Is sufficient to Introduce the multiplier expC-A2?-2) 
under the integral sign In Eqn. (38). This Is necessary for 
Including spectral line broadening due to molecular motion and 
backscattering. 

If all the functions {gs} (\gs\ < C < oo) are uniformly limited, 
the convergence of the series (38) follows from 

\Ms)\ < a$)\Zi(q)\nCY — x / drexp(-AV)x 

(39) 

r r 
x / ■••/ ]I\exp(-w(Rj)T)-l\dRi...dRs-i = 

= a($)\Zi(q)\Cn drexp[-A 2 r 2+ 
•'—oo 

JdR\txp(~ifi(R)r)- 1|] + n 

Because all of the functions under the Integral sign in Eqn. 
(38) are infinitely differentlable with respect to e, every part of 
(38) decreases more rapidly than any power of e when e -* ±oo. 
This is In accordance with the usual properties of Fourier Integrals. 

For distinguishing the correlational contribution in the 
Inelastic cross section, we shall write the s-particle distribution 
function in the form of a series of Irreducible contributions: 

s s 
gs(Rh ..., R8_i) = 1 + ]T J2 h2& " ^' )+ 

(40) s s s 

+ ... + M A , » J s - i ) , 
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where {hs(Ru • - • ,Rs-\)} °ls ^ e s e t °f irriducible correlation 
functions: 

/I2(i2) = 02( i i ) -1 , 

h3(R, R1) = g3(R, R1) - 9i(R) - giiR1) - gi(\R - R'\) + 2, 

hs(Ri,R2,... ,i?s-i) = <?a(i2i,... ,-Rs-i) - 98-i(R\,-- ,Rs-2)~ 

_ . . . _ ( _ 1 ) S ( S _ 1 ) . 

Let us rewrite the expression (38) with the help of (40) 
and distinguish noncorrelation contributions and the corrections 
to them due to two-, three-,....,s-particle correlations. We obtain 
the noncorrelational term lf\e), which describes the shift and the 
broadening of the spectral lines as a funtion of pressure in a gas 
approximation If we put all {gs} = 1 In Eqn. (38). After summing 
the power series we obtain In this case 

lf\e) = a($)Zi(q)n / drexp[-£r+ 
(42) „ -~ 

+ 4TT/I f (e-^(R)T - l)R2dR] = a(d)Zi(q)nMi°\e). 
'o 

If, for example we used in fj,(R) only the long-range 
C asymptote of this function, that is, /i(i?) = — (if we consider 

dipole-forbldden excitation), we Immediately obtain the expression 
derived by Margenau [34] and others [35], which describes the 
behavior of the spectral line of a molecule dissolved In an ideal 
gas: 

lf>M\e) = amZi(q)n\e-i exp - — 

(43) =aWZi(q)nM?M\e), 

2 i \ = ~-ixC2n 

In general, If we examine only the first two terms In Eqn. 
(40), after summing the corresponding power series that generate 



EXACTLY-SOLVABLE STATISTICAL PROBLEMS FOR ELECTRON SCATTERING... 4 0 9 

Eqn. (38), we obtain 

x h2(R)dR+ 

(44) ^1^2 f rrAM(0),.n,ft.,fi,^_AAA0) + -n1 I I [AMf (e + /i(.H) + /i(i2')) - A < ( e + /x(iZ))-

- AMf }(e + /zCR'))]/i2(|# - R'\)dRdR} ~ 

= o W Z i ^ n M ^ e ) ; AM.f = Mf\e + /z(i?)) - M<0)(e) 

In the next approximation 

hie) = SWZK^^M^Ce) + y n 2 f [[AM®\e+ 

( 4 5 ) + /i(E) + /i(i?)) - AMf (e + M(i?)) - AMf }(e + /i(i?))] x 

x h3(R1Rl)d~RdR}1 

and so on. In Eqs. (44) and (45), Mf}(s) is formally determined 
by Eqn. (42). 

Thus, expressions such as (44) and (45) give the possibility for 
analytical (or numerical) calculation of corrections to expressions 
(42) and (43) in any order of correlation approximation. 

The development of this theory and their applications can be 
find in [30], 
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