Ш.Д. КУРМАШЕВ¹, И.М. ВИКУЛИН¹, А.Н.СОФРОНКОВ¹ А. ГАВДЗК², С. ГАЙДА², Э. ГАЙДА², АІ. ГАВДЗК²

¹Одесская национальная академия связи им. А.С.Попова ²Университет, г. Ополе, Польша UDC 537. 311. 33

ТОК НАСЫЩЕНИЯ ТЕРМОСЕНСОРОВ НА ОСНОВЕ ПОЛЕВЫХ ТРАНЗИСТОРОВ ПРИ ДЕЙСТВИИ РАДИАЦИИ

Изучено влияние облучения в пассивном режиме на ток насыщения и термочувствительность полевых транзисторов. Показано, что изменение тока насыщения начинается при воздействии потока электронов $F_e \ge 10^{13}$ см⁻² энергией 5 МэВ, ү-квантов экспозиционной дозой $D_{\gamma} > 10^5 R$ энергией 1.26 МэВ, потока нейтронов $F_n \ge 5 \cdot 10^{12}$ см⁻² энергией 1 МэВ. Воздействие указанных факторов большой интенсивности приводит к усреднению значений термочувствительности.

Как известно, транзисторы являются приборами, перспективными для использования в качестве датчиков температуры [1]. Большой интерес представляет изучение термочувствительных свойств полевых транзисторов. Исследование температурной зависимости тока насыщения и управления ею позволит разрабатывать датчики температуры с токовым и потенциальным выходом, а также стабилизаторы тока с требуемым температурным коэффициентом изменения выходного тока. В настоящее время практически отсутствуют работы по исследованию влияния радиации на термочувствительные свойства полевых транзисторов. В то же время высокая чувствительность полупроводниковых материалов и приборов на их основе к воздействию радиации, а также широкое использование микроэлектронных датчиков температуры выдвинуло данную проблему как одну из актуальных. В настоящей работе изучено влияние облучения в пассивном режиме на ток насыщения и термочувствительность полевых транзисторов.

Влияние облучения на ток насыщения полевых транзисторов с управляющим p-n-переходом и МДП-транзисторов со встроенным каналом определяется изменением объемного сопротивления канала вследствие проявления процессов радиационного дефектообразования. Так как при двухполюсном включении полевого транзистора изменение тока насыщения тока стока (затвор соединен с истоком) І_{с нас}о под действием облучения не

Opole 2011

зависит от времени жизни неосновных носителей заряда, а определяется только радиационным изменением концентрации носителей и их подвижности, то они в меньшей степени, чем биполярные транзисторы, подвержены влиянию облучения. Относительное изменение тока насыщения при облучении приблизительно описывается следующим выражением (saturation drain current) [2]

$$\frac{I_{d.sat.ph}}{I_{d.sat.0}} \approx \exp(-2K_{\rho}F_{n}),.$$

где $I_{d.sat.0}$ - ток насыщения до облучения; $I_{d.sat.ph}$ - ток насыщения после облучения; K_{ρ} - коэффициент изменения удельного сопротивления канала транзистора, F_n - поток нейтронов. На рис. 1 представлены результаты расчетных зависимостей относительного изменения тока насыщения от величины потока нейтронов при различных значениях концентрации примеси в канале.

Для экспериментальных исследований влияния облучения на ток насыщения были использованы транзисторы 2П202Г. После измерения $I_{d.sat.0}$ при E=293 К они были разделены на 14 групп по три образца в каждой.

Образцы каждой из групп были подвергнуты облучению только одного вида воздействующего фактора и одной степени интенсивности. Облучение образцов потоком электронов F_e 10¹³, 10¹⁴, 5·10¹⁴, 10¹⁵, 5·10¹⁵ см⁻² с энергией 5 МэВ проводилось на линейном ускорителе "Электроника". Влияние ү-квантов с энергией 1 МэВ и экспозиционной дозой D_r 10⁶, 10⁷, 3·10⁷, 6·10⁷, 3·10⁸ *P* проводили на установке К100000, а влияние потока нейтронов F_n 10¹³, 5·10¹³, 10¹⁴, 5·10¹⁴ см⁻² с энергией 1.1 МэВ на реакторе BBP-M.

Воздействие облучения оценивалось по изменению тока насыщения после проведения облучения относительно значения до облучения, измеренного при тех же режимах и условиях. Результаты экспериментальных исследование влияния облучения на $I_{d.sat.0}$ полевых транзисторов представлены на рис.2. Как видно из представленных графиков, данные экспериментальных исследований влияния облучения на термочувствительность хорошо согласуются с расчетными данными.

электронов (1), неитронов (2), ү-квантов (5).

ка

Opole 2011

74

Ри

Для проведения экспериментальных исследований влияния облучения на термочувствительность ($\Delta I_{d.sat.0/\Delta T}$) была использована мостовая схема, состоящая из 4-х полевых транзисторов. Исследуемые транзисторы включались попарно в диагональные плечи схемы и помещались в термостат. При T=293 К и T=303 К измерялся разбаланс мостовой схемы, на основании чего определялась термочувствительность транзисторов. После этого исследуемые транзисторы были подвергнуты воздействию в пассивном режиме потока электронов, γ-квантов и нейтронов. Далее снова определяли термочувствительность транзисторов. Отжиг транзисторов проводили при T=425 К в течение одного часа, после чего снова определяли термочувствительность. Результаты исследований представлены в табл.1.

Из результатов исследований следует, что облучение транзисторов приводит не только к возрастанию термочувствительности, но и к ее выравниваю среди различных образцов, т.е. транзисторы, имевшие высокую чувствительность до облучения, увеличили ее после облучения в меньшее число раз по сравнению с транзистором, имевшими низкую чувствительность до облучения. Четкой зависимости термочувствительности от уровня

Табл. 1

Номер образца	Тер	Вид и уровень воздействующего			
	до облучения	после облучения	после термообработки	фактора	
1	75	227	383	γ- quants	
2	25	360	496	$D_{\gamma} = 3.10^7 P$	
3	83.5	265	144	γ- quants	
4	25	216	186	$D_{\gamma} = 3.10^7 \text{ P}$	
5	41.5	242	352	γ -quants $D_{\gamma} = 3.10^8 \text{ P}$	
6	133	148	156		
7	58.4	155	146	electrons	
8	83.5	230	183	$F_e = 10^{14} \text{cm}^{-2}$	
9	66.6	177	176	electrons	
10	66.6	108	167	$F_e = 5 \cdot 10^{14} \text{cm}^{-2}$	
11	31.6	78	183	electrons	
12	41.6	177	188	$F_e = 10^{15} \text{cm}^{-2}$	
13	12.5	62	87	electrons	
14	25	102	114	$F_e = 5 \cdot 10^{15} \text{cm}^{-2}$	
15	41.6	158	181	neutrons	
16	83.5	107	113	$F_n = 5 \cdot 10^{13} \text{ cm}^{-2}$	
17	75	161	134	neutrons	
18	66.6	455	436	$F_n = 10^{14} \text{cm}^{-2}$	
19	83.5	159	140	neutrons	
20	29.2	161	161	$F_n = 5 \cdot 10^{14} \text{ cm}^{-2}$	

воздействующих факторов обнаружить не удалось. По-разному влияла и термообработка: в некоторых случаях наблюдался рост термочувствительности, тогда как в определенных случаях она уменьшалась в 1.1-1.85 раз. С увеличением уровня воздействующего фактора наблюдался рост сопротивления канала "сток-исток" при затворе, закороченном с истоком.

Изменение характеристик МДП-транзисторов под действием облучения обусловлено радиационными эффектами в диэлектрике и на границе раздела диэлектрик-полупроводник [3]. В процессе облучения в диэлектрике МДП-транзистора образуется положительный заряд, который при положительном потенциале на затворе накапливается у границы раздела диэлектрик-полупроводник, а при отрицательном – у границы диэлектрикметалл. Влияние накопленного положительного заряда на характеристики МДП-транзистора тем сильнее, чем ближе расположен заряд к поверхности полупроводника, что наблюдается при положительном напряжении на затворе. Деградация характеристик МДП-транзисторов при таком включении значительно больше, чем при других видах коммутации. Влияние накопленного положительного заряда проявляется в изменении порогового напряжения отсечки (gate voltage threshold) U_{g,th}, что приводит к изменению. тока насыщения. Изменение величины U_{в th} в зависимости от дозы облучения выражено более резко в случае подзатворного диэлектрика, выращенного в атмосфере сухого кислорода [2].

Чувствительность МДП-транзисторов к воздействию облучения возрастает с увеличением толщины металлической пленки затвора, однако не зависит от типа проводимости кремния и степени его легирования [4]. Деградация характеристик МДП-транзисторов носит устойчивый характер и происходит под действием ионизирующего излучения, энергия квантов которого недостаточна для создания структурных нарушений. При комнатной температуре ток $I_{d.sat.ph}$, как и другие параметры, практически не восстанавливается и для его восстановления необходим прогрев транзисторов при $T \ge 620K$.

В настоящее время существует несколько теорий, позволяющих объяснить большинство экспериментальных результатов по влиянию облучения на параметры МДП-транзисторов. Однако, отсутствуют количественные соотношения, позволяющие оценить изменение тока насыщения в зависимости от уровня воздействующего фактора.

Для экспериментальных исследований были использованы МДП-транзисторы КПЗ05. Изучалось влияние ү-квантов с энергией 5 МэВ на ток насыщения и теромочувствительность. Облучение образцов проводили при комнатной температуре в пассивном режиме. Ток насыщения измеряли при T = 273K и при T = 333K. На основании этих данных и определялась термочувствительность. Результаты исследований приведены в табл. 2. Как видно, при экспозиционных дозах $D_{\gamma} < 10^6 R$ рост тока насыщения МДП-транзисторов. Воздействие ү-квантов с $D_{\gamma} < 10^6 R$ приводит к группированию значений $I_{d.sat.ph}$ различных образцов в довольно узком диапазоне. У транзисторов с $I_{d.sat.p} > 3\mu$ А до облучения наблюдается его значи-

Opole 2011

тельное уменьшение, чем у транзисторов с малыми значениями $I_{d.sat.0}$ до облучения – наблюдается его увеличение после воздействия ү-квантов. В результате этого ток $I_{d.sat.ph}$ транзисторов, подвергнутых воздействию ү-квантов с $D_{\gamma} = (10^6 - 10^8)R$ группируется в диапазоне (17-475) μ A при T = 373K, тогда как до облучения этот диапазон составлял (1-5000) μ A. Исследование стабильности облученных образцов показало, что ток $I_{d.sat.ph}$ практически не изменяется в течение нескольких месяцев. Термообработка при $T \approx 400K$ в течение 3-х часов также не оказывало влияния на величину тока $I_{d.sat.ph}$.

Та	бл	. 2

		Значение п	араметров		and a second second	
	До облучени	1Я	После облучения			D_{γ}, R
I _{d.sat.0} , μΑμΑ		$\Delta I_{d.sat.0} / \Delta T$	I _{d.sat.ph} , μA		$\Delta I_{d.sat.ph} / \Delta T$	
T = 273K	T = 333K	$\mu A/K$	T = 273K	T = 333K	$\mu A/K$	
4720	4982	4.36	6881	6939	0.9	10 ⁴
1192	12439	8.5	13393	13983	9.8	10 ⁴
11.2	59.6	0.8	19.5	263.4	4.1	10 ⁴
15.6	84.3	1.1	21.4	313.8	4.9	10 ⁵
4137	4161	0.4	6851	7230	6.3	10 ⁵
5077	4925	-2.5	5857	6290	7.1	10 ⁵
1.38	25.1	0.4	17.4	189	2.9	10 ⁶
3397	3819	7.1	475	1091	10.3	10 ⁶
5050	5300	-10.9	33.4	342.1	5.2	10 ⁶
6.48	71.5	1.1	22.4	291.3	4.5	10 ⁷
3.719	4.448	12.2	49.8	579	8.8	10 ⁷
4.698	4.864	2.8	81.5	81.5	642	10 ⁷
43.4	128.3	1.4	58.9	603.7	9.1	10 ⁸
4664	4433	-3.8	32.2	439	6.8	10 ⁸
3894	4235	5.5	29.8	415.7	6.4	10 ⁸

Кроме улучшения воспроизводимости тока $I_{d.sat.ph}$, воздействие ү-квантов с $D_{\gamma} = (10^6 - 10^8)R$ приводит также к усреднению значений термочувствительности. Если до облучения $\Delta I_{d.sat.0}/\Delta T$ наблюдалось в диапазоне от -10.9 до +12.2 μ A/K. То после воздействия ү-квантов с $D_{\gamma} = (10^6 - 10^8)R$ этот диапазон сузился до 2.9...10.3 μ A/K.

Исследование влияния ү-квантов на токи $I_{d.sat.0}$ МДП-транзисторов других типов показало результаты, аналогичные приведенным. Анализ приведенных результатов показывает, что воздействие ү-квантов $D_{\gamma} = (10^6 - 10^7)R$ с энергией 1.25 МэВ приводит к улучшению воспроизводимости тока насыщения МДП-транзисторов. При воздействии ү-квантов $D_{\gamma} < 10^6 R$ воспроизводимость параметров $I_{d.sat.ph}$ и $\Delta I_{d.sat.0}/\Delta T$ ухудшается.

При воздействии $D_{\gamma} > 10^6 R$ воспроизводимость указанных параметров не улучшается.

На основании результатов экспериментальных исследований разработан способ изготовления МДП-транзисторов, заключающийся в облучении сформированных структур ү-квантами $D_{\gamma} = (10^6 - 10^7)R$, что приводит к улучшению воспроизводимости токов $I_{d.sat.0}$ МДП-транзисторов. Данный способ может быть использован также и для изготовления фоточувствительных МДП-транзисторов.

Показано, что изменение тока насыщения $I_{d.sat.0}$ начинается при воздействии потока электронов $F_e \ge 10^{13}$ см⁻² энергией 5 МэВ, ү-квантов экспозиционной дозой $D_{\gamma} > 10^5 R$ энергией 1.26 МэВ, потока нейтронов $F_n \ge 5 \cdot 10^{12}$ см⁻² энергией 1 МэВ. Воздействие указанных факторов большой интенсивности приводит к усреднению значений термочувствительности.

Литература

- [1]. Датчики. В.М.Шарапов, Е.С.Полищук, Г.Г.Ишанин и др. Киев: Брама.-2008 г. С. 430.
- [2]. В.М.Кулаков, Е.А. Ладыгин, В.И. Шаховцов и др., под ред. Е.А.Ладыгина.- М.: Действие проникающей радиации на изделия электронной техники. Радио и связь. 2001. С. 135.
- [3]. Вавилов В.С., Ухин Н.А. Радиационные эффекты в полупроводниках и полупроводниковых приборах.-М.: Атомиздат. 2002. С.168.
- [4]. Zaininger K.H. *Electrical properties of electron bombardment MOS-structures* // IEEE Trans.- 2006.-V.16.- N.6.- P. 146-148.

e-mail: kurm@mail.css.od.ua