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An analytical model of the radial segregation in driven containers
filled by a dry granular mixture, which exhibits phenomena as a
non-equilibrium phase transition to an asymptotically metastable
stationary state (steady state) is developed. Nonlinear equations of
motion for the relevant order parameter have been solved exactly
in quasi-linear approximation in the vicinity of a steady state.
The theoretical results obtained are in a good enough qualitative
agreement with the experimental data.

Introduction

It is known since numerous experiments [1—6] that
when granular materials are placed in a rotating bed,
different flow dynamics are observed. In particular,
when a mixture of particles which differ in size or
density is placed, for example, in a rotating cylinder,
the denser or smaller particles will concentrate in
the central region close to the free surface after only
a few rotations (a phenomenon which is normally
termed as radial segregation). This phenomenon was
studied experimentally and numerically for varying size
ratios [1—6] and density ratios [7— 9]. For instance,
the experimental set-up for tracing the position of
colored or illuminated particles by a video-camera, and
evaluating the record by a digital processing program
(like, for example, Visilog 4.14) on a workstation is
easily accessible and highly automationable. The radial
segregation is always observed in the continuous flow
regime for any arbitrary small particle size difference,
regardless of the filling fraction of the cylinder, and also
no mixing of the components is necessary in order to
obtain a radially segregated core [10]. The experimental
evidence clearly shows a segregation mechanism of a
single tracer particle based on size ratio. A large particle
is pushed to the edges and a small one will rather stay
at the center. Looking at the distribution probability
for the trajectories of a single particle of the same
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size, one can clearly see the presence of two competing
regions: the center of the cylinder (drum) and the
edge which have a tendency to attract the trajectory
distributions. Recently, the three-dimensional Magnetic
Resonance Imaging has been used to study the mixing
and segregation processes in a special Turbula blender
using binary mixtures of sugar beds [11]. This study
by a noninvasive method shows that the kinetics of
the segregation process includes two characteristic time
scales and that the segregation process is one order faster
than mixing. Moreover, in three-dimensional devices,
simultaneous axial and longitudinal segregation routes
are presented [13]. Particle percolation has been invoked
to be responsible for axial segregation. And longitudinal
segregation (called also radial segregation), occurring
in a long cylinder, is currently related to differential
surface flow properties. In the 3D case, both parallel
processes which are the segregation by percolation and
the filtration of smaller particles in the voids of the
porous network made by large particles, are present.
On the contrary, in the 2D drums, the segregation by
percolation within the granular medium is absent (the
pores are not connected in a dense 2D packing of grains).
Another traditional advantage of 2D geometry, namely,
visualization facilities, is not so important anymore since
the three-dimensional Magnetic Resonance Imaging was
successfully used to study the mixing and segregation
processes. It is interesting to note that the parameters
of segregation (like the segregation rate from [11]) in
2D and 3D rotating drums are very similar. We stress
that the segregation in 3D (especially in turbula blender
geometry) is quite efficient, which is relatively surprising
since a better mixing was expected than that with
a typical drum because of the 3D nature of a flow.
Generally speaking, many parameters are involved in the
process of segregation, such as the above-mentioned size
ratio, also shape, mass, friction forces, rotating velocity,
filling of the drum, etc. And it is not quite clear in
advance, which of them should be more important than
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other. Thus, the question naturally arises: what is the
simplest model representing the essential physics. On
that way, we have chosen to discuss and to study here
the specifically radial segregation (as an example of
fragmentational processes in driven granular systems of
different dimensions). After all discussed vide supra, one
can say the size segregation mechanism can be seen as
a more pronounced influence of one attractor compared
to the other. This is a reminiscence of non-equilibrium
phase transitions, the control parameter being the size
ratio (nevertheless, here the non-trivial point is the
importance of fluctuations, which are of the size of the
system [12, 13]). If we accept this, we may describe
the evolution of such a kind of systems by some kind
of displacement field £ (7,t) [12]. Clearly, inside of the
frozen phase we may define deformations ﬁf (7,t).To
describe the phenomena of segregation more precisely,
the order parameter field could be also introduced as
follows [13]. From experimental data, let us define the
region of a drum statistically occupied by the cluster of
small particles at the final segregated state. When the
process becomes stationary, one can take pictures, and
the segregated zone will be defined after developing. The
kinetic study, afterwards, will be reduced to counting
the number of particles which belong to this segregated
zone. From these operations, one can deduce the area
Q2 (¢) occupied by small particles in the segregated
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zone defined above. The connected mass created this
way is called reference mass [14] (a mass is said to
be ”connected” when its particles actually touch each
other). Its volume or surface area reached in principle
after an infinite time is denoted by 2 (oc0). Clearly
Q(t) < Q(o00). At this point, it is natural to introduce
an average ordering parameter P (t) that can vary
between 0 (for completely random and homogeneous
mixtures) and 1 (for fully developed reference mass).
This parameter is defined in terms of 2 (¢) as

Q@) _ 20
Qoo Qoo
P(t) = 2= (1)
T Q(o0)

As follows from experimental data [1—11,13 ], the
relevant order parameter P (t) defined by Eq.(1) shows
a global trend of increasing in time and saturating
asymptotically (on the long run after the cylinder or 2D
drum rotation has been started) (see Fig. 1). A typical
time evolution of the average order parameter P (t)
normally is well enough approximated by an exponential
law of the form

PO =P [1-ew (-1 )] )

with a characteristic segregation time 7. and a final
amount of segregation P (00). Note that, from the point
of view of the general theory, it is not possible to generate
an exact steady state trajectory in the phase space.
This is because the measure of any dissipative non-
equilibrium steady state within the phase space is zero
[15—17]. We can use an equilibrium (relaxation) method
of approaching the steady state. This picture can be
expressed mathematically in the (7, t) space by definition
of the relevant order parameter which demonstrates the
system evolution starting from the initial state passing
the intermediate heterogeneous state and finishing with
the asymptotic non-equilibrium stationary state (local
equilibrium or steady state). Nevertheless, it seems
clear that the segregation (as well as compaction)
phenomena are purely dynamical effects unrelated to
the Boltzmann—Gibbs measure. The approach proposed
above could be the step to make a bridge between
quasi-static properties and the corresponding relaxation
behavior (and in general non-equilibrium dynamical
properties of such complex dynamic dissipative systems
as driven dry granular materials).

The purpose of this article is to consider the kinetic
theory of non-equilibrium phase transitions (which is
based on the Landau theory of phase transitions [18])
as an instrument for the investigation of fragmentation
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within open dissipative systems (with the example
of a driven dry granular system in the segregation
state) close to the critical region of a metastable
stationary state (steady state).The existence of those
definitively follows from the experiments. On that way,
considering the final non-equilibrium asymptotic state,
when segregation is reached, as a steady state, one can
describe the phenomenon of fragmentation (segregation)
as a relaxation with a relevantly determined order
parameter field. In other words, one can consider
the phenomenon of fragmentation in open dynamic
dissipative systems like, for instance, segregation in
driven dry granular systems, as a non-equilibrium
phase transition to steady state. This phase transition
could be imagined as a critical slowing down on the
dynamics of a multistable (bistable in the case of
radial segregation) diffusion limited aggregated system
in the neighbourhood of its steady state, where two
mechanisms are active: diffusion due to the energy
input from a driving force and thermalization due to
(for instance) inelastic collisions (dissipation) which are
modeled in the case of radial segregation in driven
dry granular system as a relaxation of the relevant
scalar order parameter to a non-equilibrium stationary
state (steady state). In the vicinity of the steady state
the respective model field equation of motion for the
parameter of ordering will be constructed and solved
both in the cases of non-conservative and conservative
fields. Exact solutions of the equation of motion in the
quasi-linear approximation have been found (neglecting
the fluctuations).The asymptotic limit of the obtained
solutions is in a remarkable qualitative agreement
with experimental results interpolated by Eq.(2). We
elucidate law (2) as an essentially nonlinear effect which
occurs only if we consider the diffusion of an order
parameter field in the presence of a nonlinear non-
equilibrium (bistable) potential. We will show that
this decay law has a universal character both in
the cases of conservative and non-conservative order
parameter fields. Thus, on that level of description,
the question about the qualification of the observed
phenomenon of segregation as a kinetic process of the
first or second order requires more investigation. It
is shown that the conservative order parameter field
relaxes inhomogeneously. Namely, there is a selected
mode (which corresponds to the relevant cooperative
length within the system) which passes through a
heterogeneous metastable state characterized by a slow
(non-exponential) relaxation law. Such a state could
resist to be destroyed by the changing of energy
input (due to the increasing velocity of driving) and

ISSN 0503-1265. Ukr. J. Phys. 2003. V. 48, N 8

this feature qualitatively corresponds to what probably
observed in the Oyama’s rotating drum [13]. It is clear
that, in the absence of driving, the equations used in
our model are no longer valid, and indeed any result
based on kinetic theory becomes meaningless as the
particle eventually come to rest. Another complication
is the inelastic collapse known to occur inside clusters
[19], i.e. an infinity of collisions in a finite time. In
the approach developed in our present paper, we adopt
the non-equilibrium stationary state (steady state) as
maintained by an external driving.

1. The Field Equation of Motion for the Order
Parameter

Considering the radial segregation as a weakly non-
equilibrium relaxation process in terms of a relevant
parameter of ordering ¢ (7, t), we focus in this section on
the evolution of ¢ (7, t) in the vicinity of the steady state.
We assume that evolution ¢ (7, t) can be described with a
master dynamic equation of the Landau—Ginsburg type
in the case of a non-conservative field ¢ (7, t) [18]:

Op  _0H
ot r dp 3)

or with an equation of the Cahn—Hilliard type in the
case of a conservative field of ordering

TN "

Here I is a kinetic coefficient, and H (p) is the non-
equilibrium potential functional which can be taken in
the simplest bistable form,

) =[5 (Fe) - 50— 30| a7 %)

We choose the functional H (¢) which provides such
a qualitative scenario: during the temporal evolution,
H () decreases through the steepest descent trajectory
until it reaches one of its minima. The unstable
structures are related to extrema of H (¢) of the saddle
point type and define the magnitude of the barrier
between different locally stable attractors. We will use
this model with the aim of investigating the nature of
critical slowing down in the dynamics (decay) in the
critical region, where the system shows a structural
instability. That kind of approach has been scarcely used
for reaction-diffusion systems in [21], where it has been
shown that the time evolution of the non-equilibrium
potential H (p) shows a critical slowing down in its
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course towards stationary states: its time scale is given
by the damped relaxation time, which depends on the
system size and whose inverse is measured by the
distance to the critical point in the parameter space.

Substituting the functional from (5) into (3),(4),
we obtain (in dimensionless variables) the following
equations of motion for ¢ (7, ¢):

op L.

a—sz’<p+<p—w3 (6)
and

895 ! 1~ ~ ~3

50 = A {Ae+e -9}, (7)

respectively. Here we define the dimensionless variables

TEFat;T’EFCt;F,E[F (8)

and measure the field ¢ (7, ¢) in units of |/%:

Qe

O t) =4[5 (™7). (9)

The nonlinear partial differential equations (6), (7)
could not in general be integrated in quadratures. But
in the vicinity of the imaginary point of the transition
to a steady state, neglecting the fluctuations of ¢ (7, t),
the quasi-linearization scheme [22, 23]

©* (7 t) = (% (1)) ¢ (7, 1)

could be solved exactly, where the angular brackets
denote the procedure of averaging over all initial states.
It is possible to show that approximation (10) is going
to be more adequate in the limit when the fluctuations
of the order parameter field ¢ (7,t) are negligible in
comparison with the quasi-equilibrium value of the order
parameter [18, 22, 23]. Consider first, in more details, the
field equation of motion in the case of a non-conservative
order parameter. Substituting (10) into (6), we obtain

(10)

9% =A3+ (1-(3* (1)) &.

or (11)

Equation (11) seems open-circuited because of the
presence of the second moment term (*(7)). But
the rigorous solution of Eq.(11), as we are going to
show now, could be obtained in terms of (@* (7)), i.e.
for a second moment of ¢ (7,t). In terms of Fourier
transforms of the order parameter denoted as ¢ (7),
Eq.(11) assumes the form
99y (1)

TE = (R 4+ 1 (@ (1)) B (),

or (12)
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where

~ 1 ik~ > -
wg(T)Z—(%)/e o ()i,

The solution of (12) is given by

¢y (1) = ¢ (0) x

X exp (—k2+1)r—/(<,5(s))ds , (13)

where ¢ (0) is the initial value for the Fourier
component of the order parameter field. Taking the
square modulus of (13) and integrating the results over
the k with the help of the Parceval theorem

~ 2 g - - -
/|<P13(T)| Dk:/‘PZ(T':T)dT',

we obtain the rigorous solution of Eq.(12) in the
following closed form:

(@” (1)) exp {2/(@2 (s)>d5] _

= exp (27) /g (E) exp (—27k?) dk. (14)
After trivial manipulations with (14), we have

(b () = T e 2r), (15)
where

Ji (1) = /g (E) exp (—27k?) dk (16)
Js (7) = 2 / exp (25) ds (17)
g (F) = (|ez ") - (18)

Relations (15)—(18) give an exact solution of the
considered problem in terms of the mean square of the
parameter of ordering. It is natural that the solution
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depends on initial conditions contributing through the
static structure of initial states represented by g (E),

called also static structure factor. We will show further,
that solution (15)—(18) obtained for a system of infinite
size (in coordinate space) satisfies the natural time
boundary conditions (@ (7)) — const when 7 — 0;
and (¢ (7)) — 1 when 7 — oco. We are not going to
study here the role played by boundary conditions in the
coordinate space, to avoid mathematical complications.
This problem will be discussed in our next paper, where
we focus on 1D dissipative systems [20] and where this
question will be rigorously considered. Note only that
the qualitative character of the results presented here
still remains valid in the case where the system has finite
size.

The further analysis of solution (15)—(18) requires
the incorporation of the static picture of the order
parameter field.

2. Static Structure Factor of the Order
Parameter Field

In many ways, the problem of the static structure of
dynamic dissipative systems in granular phases seems
even more complicated than studying their dynamics
in flow regimes. For example, the granular two-point
correlation function shows the presence of pronounced
long-range forces between particles [24,25]. In general,
the definition of an initial state, both in the theory
and in an experiment on granular matter, requires
great care at least to avoid suffering from a lack of
precise definitions. In the theory of classical fluids, the
static statistical structure is described by the set of
many-particle correlation functions [26]. Freely evolving
granular fluids are linearly unstable (onset of clustering
instability with respect to spatial fluctuations in density)
[19]. In both driven and undriven granular fluids, there
is only a weak separation of micro-scales and macro-
scales which makes them behave very differently from
molecular fluids. An important role is also played by
the different intermediate intrinsic scales, related to
viscosity, heat conductivity, and compressibility and
controlled by the inelasticity parameters. For instance,
in [9], the corresponding spatial correlation function of
an inelastic hard disc system has been calculated by
the method of molecular-dynamics simulations using
the simplest way of incorporation of inelastic effects. It
has been shown that the local structure of the colling
granulal medium remains essentially almost identical to
that of an equilibrium field. Note also that our interest
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in theory in most cases is focused on the calculation of
average values of the dynamical variables weighted with
the relevant correlation function. Furthermore, certain
details in the behavior of the correlation function are not
so important and, in the first approximation, could be
even omitted from consideration. Along this line, one can
go to a direct modelling of a static correlation function
taking into account only its coarse-grained character,
which follows from general definitions and empirical
sources [23].0n that way, a certain constant which will
be included in the relevant model, could be considered as
a given physical parameter or determined by comparison
of the respective final statistical characteristics, like
structure factors, with the experiments. Let g (r) be
approximated as

gry=CO(ro—r)+0(r—10)+ A(ro)d(r —ro), (19)

where 0 (z) and 0 (z) are the Heaviside (step) and Dirac
delta functions, respectively; %ro is the radius of a
particle; C' and A(rg) are a certain constant and a
function of parameters of the medium. The second and
third terms in (19) could be considered as elements of
the expansion of the initial step function 8 [r — (rp — A)]
into a Taylor series in the small value of A. Note that
A can be considered, for instance, as a function of the
penetration area between two deformed particles and
can be defined with the help of zero moment for g [20,
23]. If so, A should also naturally depend on the particle
radius, and this we mean with writing A (r9). The first
term in (19) is responsible for the nonzero probability
for deformed particles to penetrate each other. After
the Fourier transforming (19), we obtain for the Fourier

component of g (r) denoted as § (E)

g(F)=6(F)-a-0) 2,51 (ko) |

™ k?’l“()
24
+\ﬁ A(ro)
™ To

where: jo (z) and j; (z) are Bessel spherical functions.
Form (20) represents all the main properties of the
behavior of a typical distribution function [26]: the
presence of coordinate spheres, correlation decay, etc.,
but also includes certain parameters of the media
(ro, A(ro)). In principle, with the help of (20), one can
construct also the relevant model equation of state [23].

jg (k’l“()) 5 (20)
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3. The Relaxation of the Non-conservative
Order Parameter Field

In this section, we study the time evolution of the
order parameter field according to the exact solution
defined in Sec.2, using the initial conditions modelled

in terms of the static structure function g (E) (see the

previous Section). The static structure factors have been
calculated in Eq.(20). Substituting (20) into (16), (17),
we obtain after some manipulations

()= (ra)=1-21vV2{(1-C) —
e () oo ()] -

_LA(ro) 5 1 (&7
4 7 T P T

where erf (z) is the error function, a = 2\/—, and

Jo (1) = Ja(1,0) =

e[S

=exp(27) — 1+ 4m/§{(1 -0) l X (22)

x (1 —exp (27) erf <%>> + 408 (1, a)} +

+ [(1 -C) —av24 (ro)] %S(T, a)} ,

2v2
NG

S(r,a)= i4\/§x

x {exp (i2\/§a) erf <¢\/§+ \/LQ_T> +

+exp (—i2\/§a) orf (NZ - i) -

— exp (i2\/§a) + exp (—i?\/ﬁa)} , (23)

N3

9 §(ra) = 2

Oa

{22\/5 X

890

x [exp (i2v2a) erf (i\/ZJr \;%) _

—exp( 22\/_a)erf<\/§—i>—

V2r

—exp (i?\/ﬁa) —exp (—iQﬂa)} +

+exp (i2\/§a) (%:erf (Z\/Z) +

+% +exp (—i2\/§a) erf (z o — %) } . (24)

Eqs.(21)—(24) represent an exact solution of Eq.(11).
The asymptotics of (3? (1)), given by Eq.(15) are thus
determined by the asymptotic law for the behaviour of
the functions Jj (7, «) and J (7, ). Taking the relevant
limit 7 — oo in Eq.(21)—(24), we obtain

X [1+Q(A,a,0) 7 B(a,C) \/_exp( 27) —
—Q(4,a,0) exp(—QT)rl, (25)
where
QO (A4, a,C) = 2170 [( C) cos 2v/2a—
_Ag‘))rg sin 2\/§a] ,
B(a,0) =2mV21(1-0)a
((4,0,0) = 277 [(1 - O)sin2v20+
+A£:°)r§ cos 2\/504} . (26)
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In the limit 7 — oo, (¢?(7)) tends to 1. As one
can see from (25), quantitatively a different scenario of
relaxation for (2 (1)) could be realized asymptotically
as dependent on certain conditions. Namely, when

(4, 0,C) % > 0(4, a,C) exp (—27) | (27a)
we have

52 (7)) ~ ! ~ —Q

Fol=g - 27)

Respectively, in the case of the inequality opposite
to (27a), one has

1

~— —  ~14+Qexp(=27).
1—Qexp(—27) p(=27)

(#* (1)) (28)

Thus, within the presented model, the initial conditions
influence the character of the asymptotic behavior of
the order parameter field, providing long-time memory
effects. As will be shown in the next Section, this feature
of the presented model makes the rigorous qualification
of the type of phase transition by examining the
asymptotic behavior of the order parameter field only,
problematic. This question requires more theoretical and
experimental investigation.

4. The Relaxation of the Conservative

Ordering Field

Consider now the behaviour of the parameter of ordering
in the case of conservative fields given by Eq.(7). Using
the quasi-linearization procedure defined by Eq.(10) and
repeating the scheme developed for the non-conservative
field (see relation (13)), we obtain

(p* (")) = /dl%’g (E) exp [—27'k4+

’
T

+2k? / (p (s)>ds},

0

(29)

where § (E) is given by (20), and 7' is the dimensionless

time of (8). After some calculations, from (29), we get

9, 2w / 9
= — d
(p* (") = e oexp (07) x
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(30)

y 2\/?0—!—25(7”)~ 2\/?0—!—25(7”)
47! g 47! ’

where E(1")=1' —

(p*(s)) ds.

Integral (30) is rapidly (namely exponentially)
convergent and furthermore can be well estimated by
the following expression:

O%ﬂ\

=(r)
27!

xerfc? [— = (31)

=(r ’)} .
var |?
We are now going to simplify the rigorous functional

(31). Since the function exp {EZ(TTII)} orfc2 {_E(T')}

VarT
behaves exponentially and the function g}{ 52(:,’)}
shows limited variations within the interval [g 0], [\%” ,

without losing the general features, functional (31) can
be represented as follows:

(32)

Expression (32) produces a differential equation for
the definition of y (7') of the Abelian type, namely

du
X = fou® + o + fru, (33)
where
fs=—21%exp(r"), fo=vy’exp(r'),
fL=p u) =12y () (34)
L 4, 7' =
11 7'=0,
_L” 7' =0
s={ 7 /20 (35)
2 T
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Eq.(33) cannot be integrated in quadratures, except
for a few particular cases [ 29—31]. But, to conclude the
qualitative analysis in our case, it is enough to show
that exponentially relaxing functions belong to the class
of asymptotical solutions of Eq.(33). In fact, it is simple
to show that functions of the type

u(r')=[L+e (] /277 (36)
where

n o -0 . n o
e(r) = 7' = 00 Tl'linoog(T )=0,

satisfy Eq.(33) if € (') tends to zero more rapidly than
any power law (in principle, this strong condition is
even not required). Eq.(36) perfectly satisfies Eq.(33)
for any e (') = A(r')e L™ (where A (') belongs to
the class of functions of limited variations). Thus, the
exponential relaxation law (3% (7')) = 1 — exp (—7'/7))
definitively follows from the scenario given above. Note
that, strictly speaking, observable experimental data for
the behaviour of the order parameter in a segregation
show a weakly non-monotonic behavior superposed on
the general saturation tendency (see Fig. 1) [3, 6,
13]. This behaviour can be simply described with the
help of the factor A (r') which could be imagined
to behave also non-monotonically (within the limited
variation in the given interval). Note that solutions of

the type A (7')exp (—fr’ ) also asymptotically satisfy
(33). When the Abelian equation (33) with enough

degree of accuracy is reduced to a differential equation
of the Riccati type

o - 2 (37)

dr’ = T!

which has a simple integral [29—31]:

1
N —
U(T)_CT’—’)/ZT'IIIT" (38)
Expression (38) produces the relevant function
2 l
> c v lnT
V) = (P = -2 (3)

27! 2 7!’

where ¢; is a certain constant. As follows from (39)
for the relevant dimensionless times 7', the order
parameter can behave nonexponentially slowly (we call
this behavior as a metastable “heterogeneous state”).
Such a critical dynamic decay belongs, of course, to
the specific character of the considered model. But,
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at the same time, it is known from the experiments
with driven granular materials [3, 13] that a typical
relaxation time of a segregation cluster remains almost
unchanged as the rotation velocity varies to a value
larger by one order of magnitude. This behavior could
reflect the existence of a critical slow dynamic regime
(in terms of the order parameter field description —
the slow relaxation metastable state regime). It is
clear that, in the framework of the considered model,
the relaxation picture cannot depend qualitatively on
parameters like, e.g., the ratio of the diameters of
particles in a (binary)mixture because, on a naked eye
level, the definition of order parameter for growing
segregated phases is not influenced by such parameters.

5. Intermediate Scattering Functions and
Dynamic Structure Factors. Scaling
Behaviour.

The dynamics of the order parameter field can be
properly expressed in the behavior of an intermediate
scattering function

5(54) = (5t0)

as well as in the dynamic structure factor

o0

S(E,w) = % / S(E,t) dt.

— 00

(40)

Explicit relations for the definition of S (E, w) can

be obtained using Eq.(13) as well as its analogue in the
case of conservative fields, namely

@ () =g (F) exp [-2k*7 + 22 (1)] . (41)

5 (E,T’) =g (E) exp [—2k*r" + 2K°2 (11)], (42)

where indices n and ¢ denote that the functions belong
to the case of a non-conservative and conservative field,
respectively. Substituting Eq. (14) into (41) and taking
into account Eq. (15)—(18), we easily obtain a rigorous

expression for S(™) (E, T) in the following form:

s (R7) =3 () (L4 2o () exp [~20°r + 2]
(13)

where g(E) and Jy(7) are defined by Eq.(20)
and Egs.(22, 23). On that way, considering Eq.(42)
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simultaneously with Eqs.(29—31), one has an exact
functional form, which defines S (E, 7! ) Considered

as functions of k, relations (41), (42) are peaked for

B = 0; kgi) =0 kgg) = —;T, VZ(1"). As expected, in
the case of non-conservative fields, only a soft critical
mode characterized by the critical value of the wave

vector kﬁ”) = 0 is present. This is a reminiscent of
the second order phase transition. In the case of a
conservative order parameter, together with the soft
critical mode with k:gf) = 0 which is also present, we have
a hard critical mode with k' = \/Z (') /27, which
normally characterizes the first order phase transition.
It is easily seen that, in the asymptotic limit 7/ — oo,

if we adopt simply (@? (7)) ~ 1/ [1 + 46*271] (see Sec.
3, 4), the relaxation of the conserving order parameter

field is characterized by a certain dominant length scale
(the scale of inhomogeneity):

2 !
lc:—WZZ\/iW _T—:2\/§7r><
g =@
kes

7—1
X - - i . (44)
(1= %) 7+ st [t
In the limit 7" — oo, Eq.(44) can be approximated as

2\/§7r
— X

1
V-7

lo ~

lim I (7') = 2v2r /V1 - A.

T'—00

Since I, (') evidently increases with time, kgg) (") shifts
to smaller wave vectors as time proceeds. This means
that the segregation cluster, for instance, increases in
size. This behaviour also implies the increasing of the
amplitude of the intermediate scattering function as

Nexp{<1 — %) '+ +2—21n
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1+ A4

1 —|—Aexp(—27")] } '
(46)

This restructurization (because of the conservation
of the integral intensity) requires also the simultaneous

narrowing of the maximum (peak) of S(¢) (E, T’). It is

interesting to note that if we assume that Eq.(45) is
still valid for time intervals large enough to provide
the competition between the inverse power-law and the
exponential behavior of [, we have

lo(") = 2\/57‘(” A{ n X

1
1+Z'E7 ,T’<T6,

xq 1 , T =1, (47)
1_%_111(12-,4)% , T > 7).

Therefore we obtain that, for a certain time,
1 A

Th==zln—W—, (48)
2 m(1+4)

[ (") becomes time independent (that means also that
l. (7") is time independent in a close vicinity of 7). For
times smaller than 7, with growing 7', l. (7') decreases
almost exponentially (4 > 1).

If 7 < 73, a rapid growing of the inhomogeneity
takes place (i.e., the infrastructure of a segregated cluster
is strongly developed). Then, for a certain 7 ~ 7,
we obtain an inhomogeneous intermediate state which
further relaxes non-exponentially slowly to the steady
state. In this intermediate state, the development of
the segregated cluster becomes a slow (non-exponential)
process due to, for instance, the entropy of displacement
[17]. Taking Fourier transforms of (41), (42) and
again adopting the asymptotic form for (3 (1)), after
integration ([27,28]), and selecting the real part of the
resulting form, we obtain dynamic structure factors

S (E, w) and S(°) (E, w) in the following analytical
form:

S0 (Fw) = %

- P-¥k2 (1"%>2
<I] -, (49)
o fe a1 1)
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alee- (o))

x cos (2wlnk + 0 (w, k)) x

xﬁ ‘j+k4_(1_%)k2‘ (50)
j=0 \/%2+ [j+k:4— (1—%)1@}2

where

e@mz—g[w_@_%ﬂ+

+]Z:% j+k? (i—%)_

—arctanhj T __7(1 _ %) (51)

el (-3

+§: { 3 _
j=0 [] + kt — (1 %) k2

—arctanh 3 (52)

j+ ks _(1 )

and I' (2) and 9 (z) are gamma and digamma functions,
respectively. In the low frequency limit ( w — 0),

Eqgs.(49—52) lead to

~ %g (l;) exp Mlg

()

X cos [W (21nk—%>¢[k4—k2 (1—%)”, (53)
S (Ew) ~ %g (ic') r {1& - <1 - %)} x
xcos[sz{kz (1—%)”. (54)

Note that, in the limit when £ — 1, the ratio
S(e) (E,w) /S (E,w) becomes independent of the
initial state and depends on the value of the parameter
A only:

s@ (k,w) In (1+ 4)
L ~exp | ———= (55)
st (F,w) A
w—0
Eq.(55) shows that, in the considered low-

frequency limit, S(¢) (E, w) and S (E, w) are simply
proportional to each other. Thus, for a certain value
of size of the growing segregated cluster [, ~
% ~ 1, the dynamical picture of relaxation of the order
parameter field has the same character in both cases
of conservative or non-conservative fields. It should be

noted that the function S(¢) E, w) could show dynamic
scaling behavior. Namely, it is follows from Eq.(42) that:

s@ (k)

{ ! 2 k4 k2
———~L =exps=(7)k [——+2——1}},
5() (ko, T') L KRS

ki =2 (") /27 (57)

is the coordinate of the peak of the function S(¢) (E, T’).
Of course, generally speaking, scaling is always
approximate since there is never rigorously a single
length scale, but only the dominance of a single length

scale. But it is possible to show that scaling becomes
more accurate as time proceeds, and especially for
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some particular types of relaxation of <g52 (r' )> in the
asymptotic region, namely if (@2 (T’)> follows Eq.(27)
(this law, (¢ (7)) = 1 — %, asymptotically satisfies
Eq.(33) as a matter of fact and thus belongs to the class
of solutions of the general equation of motion (7)).

The dynamic scaling represented by Eq.(56) becomes
explicit (E(7') k% — 1 when 7/ — o0). It should be
stressed that, in general, the dynamic structure factor
scaling functions depend basically on the initial stage,
and possibly on the particular manner in which the
quenching is realized. However, we found that there
is a remarkably little variation of the scaling functions
as functions of the initial parameters. This property of
the equation of motion for the order parameter makes
the dynamic scaling functions universal in the sense
that they are independent of the initial conditions and
quenching characteristics. The corresponding analysis of
the sum rules and different asymptotic forms for explicit
expressions of the dynamic structure factors is performed
in [20].

Conclusions

The proposed approach, based on an analysis of
experiments with segregation in driven dry granular
systems which include systems (mixtures) of beads
incorporated in driven containers (for instance in 2D
rotating drums or 3D cylinders), shows the possibility
(at least from the outlook) of qualitatively describing
this phenomenon with a partial nonlinear differential
equation coupling the two phases and reducing it to a
simple reminiscence of the Landau—Ginsburg (for non-
conservative fields of the relevant parameter of ordering)
or the Kahn—Hilliard (for conservative ordering fields)
pictures of phase transitions. Qualitatively, our model
theoretical results agree well with experiments and
also with molecular dynamics simulations. The outlined
analogies between segregated granular systems and
phase transitions suggest a link between visual
mechanics (dynamics) and statistical physics which
remains to be constructed. New results are obtained
in the presented models on the basis of rigorous
solutions and estimation methods, in terms of order
parameter relaxation field behavior, amenable to
experimental checks. We suggest that the segregation
in driven granular systems (as well as in general —
diffusion-limited aggregation [20]) is a kinetic critical
phenomenon.

The obtained results, which have a rigorous character
within the purposed quasi-linearization procedure, could

ISSN 0503-1265. Ukr. J. Phys. 2003. V. 48, N 8

be applied also without any transformations to the
investigation of the kinetics of the first order and second
order phase transitions near the critical points, where
the investigated metastable relaxational state could play
an important role [16]. After the analysis given in
previous Sections, one may expect that the phenomenon
of segregation can be pictured in the form of the
formation of metastable, even locally frozen, clusters.
We believe that the specific features of this model are
not too crucial in the argument, and a similar reasoning
can be carried over to other models like, for instance,
percolational segregation or some others types of partial
ordering. We require that spatial variations be small in
comparison with mean free paths and with the size of
any of the constituent particles. And one of the sources
of the possible slow motion is the granular flow of the
considered quantities from one part of the system to
another (for instance, from the periphery to the axis
of symmetry in a driven container). These notions may
be described by stating that each part of the system is
in a local thermodynamic equilibrium and then using
conservation laws as flow equations, as was done in our
case. Leaving the detailed description apart, note here
that if we will interpret the average order parameter,
for instance as a probability for a certain quantity to
belong to a segregated cluster state (steady state), then
the Ruelle—Sinai—Bowen—Cohen theorem for dynamic
dissipative systems is valid [15, 16]. This fact seems a
demonstration also of the Sinai theorem for adiabatic
piston-type behavior in terms of simply determined
parameters of systems with a complex behavior [15,
16]. Note that additional slow motions may arise when
there is a broken symmetry in the system. We shall
not worry much about the broken symmetries here.
The next less well understood (and experimentally
unexplored) source of slow relaxation is glassy behavior,
with its partial freezing of degrees of freedom and its
concomitant slow relaxation to full equilibrium (this
behavior was predicted and described in Section 5 as
a slow relaxational heterogeneous state of our proposed
model in the case of conservative order parameter
field). Here we should say that one may expect
a considerable glassiness in driven granular systems.
In our opinion, a detailed analysis of experimentally
observed (and theoretically explained, see Sections 1—
5) data reveals the existence of damped oscillations
superimposed on the exponential relaxation of the order
parameter. Our results demonstrate that while the
proposed model qualitatively behaves in agreement with
observed scenarios, the phenomena of segregation in
terms of order parameter fields still offer surprises.
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A full and detailed description of this effect (among
many other intriguing properties of granular materials)
continues to be an interesting challenge in theoretical
and experimental physics.
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KIHETUKA CEI'PETAIIII B TPAHYJIBOBAHNX
CUCTEMAX

O.1. I'epacumos, I1.11./loic. M. Hlpam, K. Kimazapa
Peszmowme

3anpornoHOBAHO PO3B’A3YBAHY KiHETHYIHY MO/JIEJb, Ka OIUCYE IPO-
nec cerperanii y rpamysnpoBaHiit cywmimi six daszosmit mepexin o
ACHMIOTOTHUYIHOrO KBa3ipiBHoBaykmoro cramy. Hesniniitme piBrsn-
He pyXy [Js BiJIOBIIHO BH3HAYEHOrO IapaMeTpa MOPSAKY po-
3B’s13aHO TOYHO y KBadimimiimomy mHabmmxenui. Orpumani Teope-
THUYHI pe3yJIbTATU AKICHO IOSACHIOIOTH NPAMUN (Di3uIHUN eKcliepH-
MEHT 3 pajiaJjbHOl cerperanii cyxol rpaHy/ibOBaHOl cywmimii B moJi
BiOpOIIPUCKOPIOBaHb B TE€PMiHAX peJIaKCallil MOoJisd mapaMerpa Io-
PAIKY.

KMHETUKA CET'PETAIINN B T'PAHYJIMPOBAHHBIX
CUCTEMAX

O.HU. I'epacumos, I1.11./]oic. M. Ilpam, K. Kumazapa
Peszmowme

[Ipenyoxkena pemraeMas MOJenb, KOTOpas HHTEPIPETHPYeT IIPO-
[IeCC Cerperanuy B FPAHYJIXPOBAHHOM cMecH Kak (pa30BbId mepe-
XOZ, B aCHMITOTHYECKOe KBa3HpaBHOBeCHOe cocTodHme. Hemmmeii-
HOe ypaBHEHHE ABUKEHH:A JJIS COOTBETCTBYIOIIUM OOpa30M OIpe-
JIeJICHHOT'O IapaMeTpa MOPsKa IPOMHTErPHPOBAHO B KBa3UJIUHEH-
HOM HpubinKeHHH. IlomydeHHBIe pe3yJabTaThl KadeCTBEHHO OIIH-
CBIBAIOT JAHHBIE IPSIMOr0 (PU3UIECKOr0 IKCIEPHUMEHTA 10 HAOJIIO-
IeHUIO PAJUAJIBHOU Cerperaliy B CMECH CYXHX I'DAaHYJIHPOBAHHBIX
MaTepPHAJIOB, IOMEIIEHHBIX B [I0JI€ BEOPOYyCKOPEHUIt.
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