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NON-LINEAR ANALYSIS OF CHAOTIC SELF-OSCILLATIONS IN BACKWARD-WAVE 
TUBE

The analysis techniques including multi-fractal approach, methods of correlation 
integral, false nearest neighbour, Lyapunov exponent’s, surrogate data, is applied analysis 
of numerical parameters of chaotic self-oscillations in the backward-wave tube. There are 
presented the numerical data on the Lyapunov exponents’ for two self-oscillations regimes 
in the backward-wave tube: i). the weak chaos (normalized length: L=4.24); ii) developed 
chaos (L=6.1).

As it is well known in the modern electron-
ics, photoelectronics etc there are many physical 
systems (the backward-wave tubes, multielement 
semiconductors and gas lasers, different radio-
technical devices etc), which can manifest the ele-
ments of chaos and hyperchaos in their dynamics 
(c.f.[1-4]). The key aspect of studying the dynam-
ics of these systems is analysis of the dynamical 
characteristics. Chaos theory establishes that ap-
parently complex irregular behaviour could be the 
outcome of a simple deterministic system with a 
few dominant nonlinear interdependent variables. 
The past decade has witnessed a large number 
of studies employing the ideas gained from the 
science of chaos to characterize, model, and pre-
dict the dynamics of various systems phenomena 
(c.f.[1-20]). The outcomes of such studies are 
very encouraging, as they not only revealed that 
the dynamics of the apparently irregular phenom-
ena could be understood from a chaotic determin-
istic point of view but also reported very good 
predictions using such an approach for different 
systems. 

The backward-wave tube is an electronic de-
vice for generating electromagnetic vibrations of 
the superhigh frequencies range. In ref.[2] there 
have been presented the temporal dependences 

of the output signal amplitude, phase portraits, 
statistical quantifiers for a weak chaos arising via 
period-doubling cascade of self-modulation and 
for developed chaos at large values of the dimen-
sionless length parameter. The authors of [2] have 
solved the equations of nonstationary nonlinear 
theory for the O type backward-wave tubes with-
out account of the spatial charge, relativistic ef-
fects, energy losses etc. It has been shown that 
the finite-dimension strange attractor is respon-
sible for chaotic regimes in the backward-wave 
tube.  In our work in order to study the chaotic 
self-oscillations regimes in the backward-wave 
tube we have used earlier developed and adapted 
techniques of the non-linear analysis, such as the 
multi-fractal formalism,  methods of correlation 
integral, false nearest neighbour, Lyapunov expo-
nent’s, surrogate data (code “Geomath”). As the 
key ideas of our technique for nonlinear analysis 
of chaotic systems have been in details presented 
in refs. [3,4,17-21], here we are limited only by 
brief representation.. Since processes resulting in 
the chaotic behaviour are fundamentally multi-
variate, it is necessary to reconstruct phase space 
using as well as possible information contained in 
the dynamical parameter s(n), where n the num-
ber of the measurements. Such a reconstruction 
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results in a certain set of d-dimensional vectors 
y(n) replacing the scalar measurements. Packard 
et al. [7] introduced the method of using time-
delay coordinates to reconstruct the phase space 
of an observed dynamical system. The direct use 
of the lagged variables s(n + t), where t is some 
integer to be determined, results in a coordinate 
system in which the structure of orbits in phase 
space can be captured. Then using a collection of 
time lags to create a vector in d dimensions,

y(n) = [s(n), s(n + t), s(n + 2t), …,   s(n + (d-1)t)],     (1)

the required coordinates are provided. 
In a nonlinear system, the s(n + jt) are some 

unknown nonlinear combination of the actual 
physical variables that comprise the source of the 
measurements. The dimension d is called the em-
bedding dimension, dE. According to Mañé [13] 
and Takens [12],  any time lag will be acceptable 
is not terribly useful for extracting physics from 
data. If t is chosen too small, then the coordinates 
s(n + jt) and s(n + (j + 1)t) are so close to each 
other in numerical value that they cannot be 
distinguished from each other. Similarly, if 
t is too large, then s(n + jt) and s(n + (j + 1)t) 
are completely independent of each other in a 
statistical sense. Also, if t is too small or too large, 
then the correlation dimension of attractor can be 
under- or overestimated respectively [8,18]. The 
autocorrelation function and average mutual in-
formation can be applied here. The first approach 
is to compute the linear autocorrelation function:
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and to look for that time lag where CL(d) first pass-
es through zero (see [18]). This gives a good hint 
of choice for t at that s(n + jt) and s(n + (j + 1)t) 
are linearly independent. a time series under con-
sideration have an n-dimensional Gaussian distri-
bution, these statistics are theoretically equivalent 
as it is shown by Paluš (see [15]). The general 
redundancies detect all dependences in the time 

series, while the linear redundancies are sensitive 
only to linear structures. Further, a possible non-
linear nature of process resulting in the vibrations 
amplitude level variations can be concluded.

The goal of the embedding dimension deter-
mination is to reconstruct a Euclidean space Rd 
large enough so that the set of points dA can be 
unfolded without ambiguity. In accordance with 
the embedding theorem, the embedding dimen-
sion, dE, must be greater, or at least equal, than a 
dimension of attractor, dA, i.e. dE > dA. 

In other words, we can choose a fortiori large 
dimension dE, e.g. 10 or 15, since the previous 
analysis provides us prospects that the dynamics 
of our system is probably chaotic. However, two 
problems arise with working in dimensions larger 
than really required by the data and time-delay 
embedding [5,6,18]. 

First, many of computations for extracting in-
teresting properties from the data require searches 
and other operations in Rd whose computational 
cost rises exponentially with d. Second, but more 
significant from the physical point of view, in 
the presence of noise or other high dimensional 
contamination of the observations, the extra di-
mensions are not populated by dynamics, already 
captured by a smaller dimension, but entirely by 
the contaminating signal. 

In the large an embedding space there is no 
necessity spending time working around aspects 
of a bad representation of the observations which 
are solely filled with noise. It is therefore neces-
sary to determine the dimension dA.

There are several standard approaches to re-
construct the attractor dimension (see, e.g., [3-
6,15]). The correlation integral analysis is one 
of the widely used techniques to investigate the 
signatures of chaos in a time series. The analysis 
uses the correlation integral, C(r), to distinguish 
between chaotic and stochastic systems. 

To compute the correlation integral, the algo-
rithm of Grassberger and Procaccia [10] is the 
most commonly used approach. If the time series 
is characterized by an attractor, then the integral 
C(r) is related to the radius r given by 
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where d is correlation exponent that can be 
determined as the slop of line in the coordinates 
log C(r) versus log r by a least-squares fit of a 
straight line over a certain range of r, called the 
scaling region. If the correlation exponent attains 
saturation with an increase in the embedding di-
mension, the system is generally considered to 
exhibit chaotic dynamics. The saturation value of 
correlation exponent is defined as the correlation 
dimension (d2) of attractor. 

Lyapunov exponents are the dynamical 
invariants of the nonlinear system. In a general case, 
the orbits of chaotic attractors are unpredictable, 
but there is the limited predictability of chaotic 
physical system, which is defined by the global and 
local Lyapunov exponents. A negative exponent 
indicates a local average rate of contraction while 
a positive value indicates a local average rate of 
expansion. In the chaos theory, the spectrum of 
Lyapunov exponents is considered a measure of 
the effect of perturbing the initial conditions of a 
dynamical system. Since the Lyapunov exponents 
are defined as asymptotic average rates, they 
are independent of the initial conditions, and 
therefore they do comprise an invariant measure 
of attractor. In fact, if one manages to derive the 
whole spectrum of Lyapunov exponents, other 
invariants of the system, i.e. Kolmogorov entropy 
and attractor’s dimension can be found. The 
Kolmogorov entropy, K, measures the average 
rate at which information about the state is lost 
with time. An estimate of this measure is the sum 
of the positive Lyapunov exponents. The inverse 
of the Kolmogorov entropy is equal to the average 
predictability.  There are several approaches to 
computing the Lyapunov exponents (see, e.g., 
[5,6,18]). One of them [18] is in computing the 
whole spectrum and based on the Jacobin matrix 
of the system function [14]. 

In table 1 we present the data on the Lyapu-
nov exponents’ for two self-oscillations regimes 
in the backward-wave tube: i). the weak chaos 
(normalized length: L=4.24); ii) developed chaos 
(L=6.1). The correlations dimensions are respec-
tively as 2.9 and 6.2.  Our analysis is in very good 
agreement with the similar data [2] and confirms 
a conclusion about realization of the chaotic fea-
tures in dynamics of the backward-wave tube.

Table 1. numerical parameters of the chaotic 
self-oscillations in the backward-wave tube: l1-
l6 are the Lyapunov exponents in descending 
order, K is the Kolmogorov entropy 
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Abstract
The analysis techniques including multi-fractal approach, methods of correlation integral, false 

nearest neighbour, Lyapunov exponent’s, surrogate data, is applied analysis of numerical parameters 
of chaotic self-oscillations in the backward-wave tube. There are presented the numerical data on the 
Lyapunov exponents’ for two self-oscillations regimes in the backward-wave tube: i). the weak chaos 
(normalized length: L=4.24); ii) developed chaos (L=6.1).
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НЕЛИНЕЙНЫЙ АНАЛИЗ ХАОТИЧЕСКИХ АВТОКОЛЕБАТЕЛЬНЫХ РЕЖИМОВ В 
ЛАМПЕ ОБРАТНОЙ ВОЛНЫ 

Резюме
Техника анализа, включающая мультифрактальный подход, методы корреляционных инте-

гралов, ложных ближайших соседей, экспонент Ляпунова, суррогатных данных, использована 
для изучения числовых параметров хаотических автоколебательных режимов лампы обратной 
волны. Представлены данные о численных показателях Ляпунова для двух автоколебательных 
режимов лампы обратной волны: i).слабого хаоса (нормированная длина: L = 4.24); ii) развито-
го хаоса (L = 6.1).
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Резюме. 
Техніка нелінійного аналізу, яка включає мультіфрактальний підхід, методи кореляційних 

інтегралів, хибних найближчих сусідів, експонент Ляпунова, сурогатних даних, використана 
для аналізу чисельних параметрів хаотичних автоколивальних режимів лампи зверненої хвилі. 
Наведені дані по чисельних показниках Ляпунова для двох автоколивальних режимів лампи 
зворотної хвилі: і). слабкого хаосу (нормована довжина: L = 4.24); іі) розвиненого хаосу (L = 
6.1).
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