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Introducing Remarks 

 

Modern computers and personal computers gave researchers in various 

fields of science and technology reliable and durable tool for mathematical 

modeling of the most toughest problems. This contributed to a significant 

development and progress in various spheres of human activity. Realization of 

mathematical models on computers is using methods of computational 

mathematics, which, of course, constantly being improved with advances in 

computer technology.  

Solution mathematical model of the problem, which is to ensure 

efficiency and optimality criterion can be obtained quickly by a 

corresponding efficient numerical algorithm.  

Any reduction of problems of mathematical physics or engineering 

course reduced to the solution of algebraic equations with one or other 

structure. As a result, most methods of computational mathematics related to 

reducing the problem to a system of algebraic equations and their subsequent 

decisions.  

One fairly common methods for solving problems of mathematical 

physics is the method of finite differences. In recent years, the problem is very 

actual widespread use different methods for constructing difference schemes in 

problems of quantum and geo-physics, modern hydrometeorology, etc. 

These notes pesent a brief consideration of the classical questions of 

calculational mathematics, in particular, the numerical interpolation, 

differentiation and integration of functions, numerical methods for solving 

algebraic equations and their systems of ordinary differential equations, finite 

difference method and a series of new numerical methods used in solving a 

number of problems of theoretical and mathematical physics, quantum physics, 

etc.  
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Chapter 1 MATHEMATICAL MODELS AND NUMERAL METHODS 

 

1.1 A Role of mathematical design is in decision of tasks of outward things 

 

Stormy development of ECM was instrumental in the wide process of 

matematizacii of science, technique and economy, on the whole. Exactly 

development and application of mathematical methods of decision of the applied 

tasks on the base of ECM is the article of the modern applied mathematics. 

Mathematics — one of the oldest sciences — arose out of practical necessities 

of man.  

Development of mathematics was instrumental in general scientific and 

technical progress of civilization, and the necessities of natural history, 

technique and practical activity of people, put before mathematics new tasks and 

stimulated its development. 

On the role of mathematics in society the level of development of 

mathematical vehicle of science and degree of perfection of knowledges 

influences about probed object, possibility to describe it the most substantial 

lines and properties by the language of mathematical concepts, that possibility to 

build the mathematical model of probed object. 

A mathematical model is built on the basis of some simplifications and 

idealization of object and that is why always his close description is. But due to 

replacement of real object it a mathematical model is possibility to formulate the 

task of his study as mathematical, for decision which apply a mathematical 

vehicle which does not depend on nature of probed object. Mathematical models 

— it, as a rule, various equalizations, which are the records of natural laws 

which manage probed by us object or by the phenomenon. 

The study of the real phenomena or processes often conduces to the 

necessity of decision of differential equalization or system of such equalizations. 

Therefore differential equalizations which arise up as a result of research of 

these phenomena or processes name differential models. Differential 

equalizations are the special case of that plural of mathematical models which 

arise up in the process of study of the real world. A mathematical design is 

widely used in geophysics, chemistry, geology, biology, economy, sociology, 

ecology, medicine, psychology, linguistics and other sciences. 

At the same differential model can describe processes or phenomena of 

different nature. Yes, model which is set equalization of type of у' = ky, the 

radioactive-decay of matter describes, and change of atmospheric pressure with 
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the change of height above an earthly surface, and cooling of body as a result of 

convective heat exchange with an environment.  

And oscillation of bullet, suspended to pruzhinya can describe a model 

which is set equalization of у"+W
2
Y=0, and swing of the mathematical 

pendulum, and change of charge of condenser, the plates of which will lock on 

inductance, and turning vibrations, and others like that. Vibrations are different 

(mechanical, electromagnetic), but fundamental essence them identical, that is 

why they are described that mathematical model. Consequently, the same 

mathematical model can have many real prototypes.  

However for description of different sides of one phenomenon sometimes 

there is a requirement in the use of other mathematical model. Such models 

mostly mutually complement each other. 

Science history knows many examples, when within the limits of the 

successfully built mathematical model by calculations and reasonings, as they 

say, "on the tag of peer", it was succeeded to foresee existence of the new 

physical phenomena and object.  

Yes, leaning on differential models, after implementation of difficult 

calculations there are astronomers of John Adams (England) in September in 

1845 and Urbain Leverrier (France) in September in 1846 independent of each 

other came to the conclusion about existence of unknown until then planets and 

its placing specified. After the calculations of Leverrier an astronomer Galle 

(Germany) found this planet it was named Neptune.  

This opening led to justice of heliocentric theory of M. Kopernik (1473-1543), 

which to it during three hundred years remained a hypothesis, to a great extent 

credible, but all the same by a hypothesis. Like on the "tag of peer" P. Lovell 

(USA) foresaw existence of ninth planet of the planetary system, which after his 

calculations in 1930y. opened K. Tombo (USA) and which was called Pluto. 

English physicist John Maksvell (1831-1879) in labour the "Dynamic 

theory of the electromagnetic field" (1864) showed out the system of differential 

equalizations which in number link between itself to tension of the electric and 

magnetic fields. A conclusion about existence of hertzian waves and 

electromagnetic nature of light swam out from these equalizations.  

G. Gertz (Germany) in 1883 extracted experimental hertzian waves, learned 

their nature, and in 1895 O. S. Popov (Russia) used these waves for 

transferrableness and acceptance of signals without send-offs on distance, 

putting beginning of development of technique of radio contact. This opening is 

basis of development of radio, television, radio-location. 
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The English physicist of P. Dirac in 1928 built mechanical equalization of 

electron quantum. Existence of elementary particle with a positive charge, mass 

of which equals mass of electron, swam out from his decision.  

A physicist Anderson (USA) opened such particle in 1932 in composition 

ultrarayss and named it a positron. This was the first anti-particle. At present 

time different computational methods are widely used in modern particles and 

nuclear physics. 

The method of mathematical design played a large role in shipbuilding 

and  aircraft building. The mathematical models of constructions of ships are 

developed  the Russian  scientist,  academician O. M. Krilevim (1863-1945), 

became basis of domestic shipbuilding. 

Aircraft construction a long ago ran into negative, and at certain terms and by 

the harmful effect of vibrations of separate parts of aircrafts. When an aircraft 

arrives at certain speed which is named critical, there are samozbudni vibrations 

of wings and plumages in him. These vibrations which got the name of flatera 

often were reason of catastrophes of airplanes midair.  

Developed the mathematical theory of flatera airplane in 30th of our age 

by then yet young mathematician M. V. Keldish (1911-1978), which became an 

academician later. He developed not only the methods of numeral calculation of 

flatera and his design in wind-channels but also offered the effective practical 

methods of fight against him. Then M. V. Keldish learned nature of other 

phenomenon which often was reason of failures of airplanes, speech goes about 

the phenomenon of shimi — samozbudni vibrations of nasal wheel of the three-

wheeled undercarriage of airplane during rulinnya, running approach and run. 

Such examples, when a differential model is certain enabled to foresee 

existence in nature of the certain phenomena or object, in science it is known 

much. All of them testify to the forecasting role of mathematics in science. 

Mathematics became the instruments of cognition of the material world. Surely 

they are actively used in modern geophysics, environmental sciences, sciences 

about  the Earth. 

 

1.2 Calculable experiment and the technological stages 

 

The method of mathematical design is an effective mean of research of 

real object and phenomena. But with their complication mathematical models 

the calculations of which require enormous calculable work become 

complicated. It restrained the use of models in a scitech. as mathematical tasks 

of decision by hand. Application of fast-acting ECM for decision of the intricate 



 11 

applied problems formed the new method of leadthrough of theoretical 

researches on the base of mathematical models is a calculable (or mathematical) 

experiment.  

His basis is a mathematical design, by a 

theoretical base is the applied mathematics, 

technical are mighty ECM. A calculable 

experiment became the mean of decision of 

the thorny applied problems. Now select the 

five stages of technological cycle of 

calculable experiment: a construction of 

mathematical model of task, development of 

method of decision of mathematical model, 

programming, calculations, is on electronic 

calculable machines, analysis of results of 

calculations and application. Schematically 

the technological cycle of calculable 

experiment.is.represented.on.a.Fig.1.1.                                     Figure 1.1. 

On the first stage study essence of the probed phenomenon or process, 

find out his composition, conformities to law and interconnections of his 

separate parts. Select basic and second-rate factors in the phenomenon. On the 

initial stage of researches ignore the last. Basic factors and conformities to law 

of the probed phenomenon write down as mathematical formulas. More frequent 

all are differential or integral equalizations. At the same time set the limits of 

application of the built model, as not a single mathematical model is adequate 

reality.  

Nature is considerably more rich and more various in the displays, than 

any mathematical models, that they are described. In the applied tasks 

construction of mathematical model - one of the most difficult and responsibility 

is stages of calculable experiment. Complication consists in that he requires 

combination of mathematical and special knowledges. Therefore above creation 

of mathematical model mathematicians and specialists of that industry which 

probed object belongs to work jointly. 

When a mathematical model is built, proceed to its theoretical analysis: to 

probe how correctly a task is put, whether it has decision, unique he or not and 

others like that. Often decision the intricate applied problems begin and without 

an exhaustive analysis them mathematical properties, as it is possible to 

squander time for such analysis, which exceeds taken for decision of the applied 

task term. 
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The second stage of calculable experiment is link with the searches of 

method of decision of mathematical model. As a rule, the applied tasks are 

described models, decision which can not be found as analytical formulas. Then 

from the known numeral methods pick up most effective for the search of close 

decision model or develop a new method. The method of decision model is 

written down as an algorithm. It is possible to make for one mathematical task, 

as a rule, a few algorithms.  

Determination of criteria for the estimation of quality of computational 

algorithms is the article of theory of numeral methods. Its primary purpose is a 

construction of effective numeral methods which would enable to find decision 

of the put mathematical task with the beforehand set exactness with the as 

possible less expenses of machine time. Estimating efficiency of numeral 

method, such his qualities take into account, as universality, simplicity of 

organization of calculable process to control of his exactness, speed of 

convergence, and firmness of calculable process. 

During a calculable experiment it is important to use effective numeral 

methods, as for one tasks often it will be to execute plenty of calculations, 

changing some parameters only. 

 

1.3 Some applications of calculable experiment 

 

A mathematical design and leadthrough on his basis of calculable 

experiment is a mighty and economic advantageous mean for the leadthrough of 

not only scientific researches but also implementation of the most various 

experimental and designer works. Yes, leadthrough of calculable experiments at 

planning of airplanes and ships economic more advantageous from creation of 

experimental standards leadthroughs of model experiments, which can be 

dangerous for testers. In addition, a calculable experiment can be conducted for 

research of such situations which can not be reproduced in the real terms. 

Exactly with the help of calculable experiment study the evolution of Universe, 

evolution of life, on Earths or evolution of some populyaciy, that the 

phenomena. 

Will notice that calculable experiment not it can fully after to change the 

real, as he deals not with the phenomenon, but only with his mathematical 

model. But a calculable experiment can result in opening of the new real 

phenomena. Confirmation of it is opening of physical effect of T-layer by the 

group of scientists of Institute of the applied mathematics of Academy of 
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Sciences of the former USSR under the direction of A.M.Tikhonova and O.A. 

Samarskogo (1968).  

Essence of this effect consists in that in plasma which co-operates with 

the magnetic field, at certain terms there can be areas in relation to a high 

temperature. These areas name thermal layers or 7- layers. An electric current 

which warms up plasma and supports a high temperature is concentrated in 

them. In a model experiment it was succeeded to find out the effect of T-layer 

only in a few years after his opening by a calculable experiment. 

One of typical tasks for a calculable experiment is a problem of laser 

thermonuclear synthesis — inexhaustible source of receipt of energy. To take 

under control the process of thermonuclear synthesis (confluence of diplons or 

tritium) and to learn them to lead — means decision power problem.  

In 1962 the soviet scientists M. Basov and O. Krokhin advanced idea 

inflammation of thermonuclear reaction by lasers. It consists in that by a laser 

ray for very short time (10
-9

 с) to charge high energy small hard marble from the 

frozen mixture of heavy hydrogen and tritium (thermonuclear target). Energy of 

laser impulse will create in a thermonuclear target a high temperature which is 

pre-condition for the beginning of thermonuclear reaction. How here do 

processes flow in a target, are terms arrived at for the origin of thermonuclear 

reaction, how these terms depend on pair of meters of target, power of laser 

radiation, pulsewidth? To learn these and other questions today in a model 

experiment it is impossible even because there are not lasers with the proper 

descriptions.  

Therefore the unique way of research is a calculable experiment, by which 

it was succeeded to set such details of laser thermonuclear synthesis, which 

scarcely will be set and measured even then, when the modern proper lasers will 

appear. 

Due to a calculable experiment decision was succeeded not only many 

important applied tasks but also to check up some hypotheses of classic 

mathematics. The known topological task is a problem of four paints, 

formulated as early as 1852 London student Gutri. He discovered that by four 

paints it is possible to paint the map of England so, that each two nearby 

counties will be painted out in different colors, and pulled out a hypothesis that 

for painting of any map on a plane sufficiently four paints. This hypothesis was 

confirmed only in 1976 the American mathematicians of K.Appelem and 

V.Khakenom by ECM. 

In modern a science by facilities of calculable experiment of rozv''yazuyut' task, 

decision with cosmonautics, technological processes, prognostication and 
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management, study of geo-, the ecological systems, and the astrophysical 

phenomena, by the study of fundamental problems in industry of genetics, 

biotechnology, chemistry, physics and economy. 

 

1.4 Structure of error of decision of task 

 

Building a mathematical model, try to find its decision. For the intricate 

applied problems, as a rule, there is not exact decision as obvious formulas or 

complete sequence of arithmetic operations, each of which is executed exactly. 

Then come running to the numeral methods — mighty mathematical mean of 

decision tasks.  

The simplest numeral methods arose up and widely used long before 

appearance of ECM. But there are many applied tasks for which to find decision 

it are practically impossible without application of ECM.  

Modern fast-acting ECM became a stimulus for development of new numeral 

methods. To apply numeral methods for decision of the applied tasks on the base 

of ECM it is needed carefully, as exactness of found decision depends on many 

factors. Thus it follows to be able to estimate the error of numerous decisions 

and calculations. 

The error of decision task consists of error of mathematical model, not 

removed error, error of method and calculable error. Error of mathematical 

model of decision with that a model is described by the phenomenon 

approximately, with suppositions and simplifications. It is therefore needed to 

know about exactness end-point, to simplify the construction of mathematical 

model. 

A not removed error is predefined errors in the datains of task. It depends on the 

method of decision task. But, correctly to choose a method and define exactness 

of calculations, it is important to know the limits of not removed error. 

Error of method connection with the necessity of replacement of continuous 

model discrete or with the precipice of endless iteration process after the 

complete amount of iterations. 

An error which is reached from replacement of continuous model discrete 

is named the error of sampling (or by the error of approximation). 

Except for the error of sampling, there is other type of error of numeral methods 

any methods the idea of iteration process during which the sequence of 

approaching is built by certain rule to the decision of task is underlaid. If this 

sequence has border, when the amount of members of sequence heads for 

endlessness, then this border will be decision of this task. But on ECM it is 
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possible to calculate the complete amount of members of sequence only. An 

error, caused the precipice of iteration process, is named the error of 

convergence. It is tried to erect the error of method to the size which in once or 

twice less from the error of datains. 

Consequently, the errors of sampling or error of convergence can form the 

error of numeral method or for some methods both types of errors 

simultaneously.  

All these errors and also the methods of their analysis and adjusting are 

examined at the construction of concrete numeral methods. 

Calculable errors conection with errors of rounding off of numbers. 

Calculation, both hand and on ECM, execute with the certain amount of 

meaningful numbers. It brings in in a result a trunsaction error which 

accumulates during calculations. Errors of rounding off of numbers can 

variously influence on end-point. As a result of implementation of millions of 

operations, each of which brings in a small error, the total error of rounding off 

can considerably exceed the sought after result of calculations. But in the 

separate operations of error of rounding off can have different signs and partly 

to compensate each other.  

Therefore, if there are not systematic reasons, the casual piling up of trunsaction 

errors is insignificant. 

Systematic reason of piling up of errors is deduction of near after a size 

numbers, for example,, as at the small absolute error of numbers of х1 and х2 

relative error (Δx1+ Δx2)/ │х1- х2│ can become large a result. 

Calculable errors arise up and during transformation of numbers from one scale 

of notation in other, if basis of one scale of notation is not the degree of basis 

other. It can result in a volume, which in the new scale of notation a number will 

become irrational. 

The loss of exactness can happen and at adding to the large number of very 

small numbers. For diminishing of error adding numbers costs in order of their 

growth. In machine arithmetic the commutative and distributive laws of algebra 

are not always executed. A computational algorithm needs to be built so that an 

error of rounding off was considerably less from all other errors. 

 

 

 

 

1.5 Absolute and relative errors 
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Absolute error of close number. If a0 is some number (it is known exactly 

or not exactly), and a - is a number, accepted for the close value of number of 

a0, by the error of close number a name the difference of a0 — a. The exact 

number of а0 is not known usually, that is why error of close number a defining 

is impossible. nevertheless it is always possible to specify a number which 

estimates this error. Number  (а) > 0, that satisfies inequalities 

 

ао — а <  (а),     (1.1) 
 

named the absolute error  of close number a. 

Obviously, such determination of absolute error is not synonymous. 

Yes, if а0 =, and for a close value to take a = 3,14, taking into account, that  

3,140 < π  < 3,142, it is possible to write down: 

 

π  — а <0.002, 

π — а <0.01, 

π — а  <0.1 

 

Each of numbers 0,002, 0,01, 0,1 will be the absolute error of number a. But 

than nearer between itself number │ао-а│ and (а), the more precisely an 

absolute error estimates an actual error. 

How absolute error  (а) close number and take on possibility least from 

numbers which satisfy inequalities (1.1). Inequality (1.1) is tantamount 

inequalities: 

 

а- (а) < аo < а+ (а),     (1.2) 

 

An absolute error is sometimes named the estimation of exactness of close 

number. 

Relative error of close number. Absolute error (а) numbers of the 

number of а0 accepted for close value, not always is comfortable description of 

degree of exactness a, but as approaching to а0. An error in one meter is a 

flagrant error at measuring of length of apartment, but it can be examined as a 

small error at measuring of distance between two remote points of earthly 

surface. Consequently, except for the size of absolute error, it is necessary yet to 

know its attitude toward measureable (whether that is calculated) a size, mainly 

expressed in percents. 
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By the relative error of close number a is the relation of absolute error 

named  (а) to the module of this number. A relative error is reflected through 

(а): 

 

(а)= (а)/а or 

in % s   (а)= (а)/а100%. 

 

Yes, relative error of number 3,14, number accepted for a close value , at  

(3,14)=0,002 evened 

 

0,00064. 

In technical calculations exactness of measurings is usually characterized 

a relative error. A result is considered beautiful, if a relative error does not 

exceed 0,1%. 

Rule rounding off of numbers. Rounding off of number consists in a 

casting-out in it of all numbers which swim out after some digit. Thus if round-

off number unit, the throw-away numbers of whole part deputize zeros. 

Rounding off ordinary is done by following rule: 

If the first number which is cast aside, less than p''yati, a previous number does 

not change. 

If the first number which is cast aside, anymore five, a previous number is 

increased on unit. 

At rounding off of integers usually in place of throw-away numbers write down 

not zeros, but number 10, in the proper degrees. 

If at rounding off of number the last zeros which are kept numbers, it costs to 

write down them. Yes, a number 1,2997, round-off to 0,001, assumes an air 

1,300.  

There is an additional error — trunsaction which does not excel the half of unit 

of digit of the last number error at rounding off of number . An absolute error of 

round-off number is the sum of it primitive absolute error and trunsaction error. 

Meaningful, faithful and doubtful numbers. The Meaningful number of 

close number is naming any his number, beginning from the first (to unzero). 

For example, in a number 0,00030900 the first four zeros are not meaningful 

numbers. All other numbers (including next three zeros) are meaningful. 
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By the faithful number (by a faithful sign) of close number and is any 

named it meaningful number which an absolute error is for  (а) does not excel 

the half of digit of this number. Other meaningful numbers of number a are 

named doubtful. 

Faithful numbers over are brought in the mathematical tables of values of 

functions only. Absolute error of tabular values, for example, in three-digit 

tables not excels 0,5 • 10
3
, in sevenvalue — 0,5 • 10

7 
. 

Exactness of close number depends not on the amount of meaningful 

numbers, but from the amount of faithful numbers. 

A final close result is usually rounded off to his faithful numbers, abandoning 

one doubtful. At calculations with close numbers in intermediate results keep 

one, two, and sometimes and three doubtful numbers. 

 

1.6 Concept of firmness and correctness 

 

Errors in the datains of task — not removed. A calculator can not decrease 

them, but must know how they influence on exactness of end-point. One tasks 

have an error of result of the same order, as well as order of error of datains, in 

other tasks the error of result can on a few orders exceed the error of datains. 

The sensitiveness of task to inaccuracies in datains is characterized the concepts 

of firmness. 

Is a task named a bar from entrance data, if it decision the continuous 

depends on datains, that to the small increase Δх entrance size does a small 

increase answer Δу sought after decision.  

In other words, the small errors of datains are caused by the small errors of 

decision task.  

If this condition is not executed, a task is considered unsteady from 

entrance data. It means that even the insignificant errors of datains can result in 

the large errors of decision, that decision can be quite distorted.  

Therefore to apply directly to such tasks numeral methods it is impossible, as 

errors of rounding off at application of method will catastrophically accumulate 

during calculations. Will make an example of unsteady task which belongs 

Wilkinson. The roots of polynomia 

 

Р(х) = (х - 1)(х - 2)...(х - 20) = х
20

 - 210х1
9 
+    (1.3) 

 

are numbers  х1=1, х2= 2, ..., х20=20. 
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Let one of roots of polynomial (1.3) be calculated with an insignificant 

error. For example, coefficient -210 at х19 it is transferable on a coefficient -210 

+ 2
-23

 . Then something the changed polynomial of Р(х)= Р(х) — 2
-23

х
19

 has to 

two decimal (after a comma) signs have such round-off scolded: 

 

х1=1,00; х2=2,00; ...; х8=8,01; х9=8.92; 

 

х10,11 = 10,10 ± 0.64і; х12,13= 11,79 ± 1,65і;...; 

 

х18,19= 19.50 ± 1.94і; х20= 20.85. 

 

Insignificant error, in a coefficient -210 this polynomial caused other 

values of roots. Reason of it is instability of task, as roots calculated within 11 

meaningful numbers the error of rounding off is insignificant. Sometimes during 

decision of proof from entrance data task not proof there can be a method of it 

decision. 

We will enter the concept of correctness of task. A task is named correctly 

put, if for any datains from some class there is the unique and proof from 

entrance data it decision.  

The task of calculation of roots of polynomial (1.3) is above-mentioned is 

uncorrectly put. For decision of grey tasks to apply classic numeral methods it 

does not cost, as errors of rounding off at calculations can catastrophic to grow 

and result in a result, to distant from shukanogo of decision. For decision of not 

reasonably tasks use the so-called methods of regularization, which replace this 

task correctly put. 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%ba%d0%be%d1%80%d1%80%d0%b5%d0%ba%d1%82%d0%bd%d0%be&translation=reasonably&srcLang=ru&destLang=en
http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d1%80%d0%b5%d0%b3%d1%83%d0%bb%d1%8f%d1%80%d0%b8%d0%b7%d0%b0%d1%86%d0%b8%d1%8f&translation=regularization&srcLang=ru&destLang=en
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Chapter 2 INTERPOLATION OF FUNCTIONS 

 

2.1 Raising of task 

 

Let on a segment [a; b] certainly certain class of functions {Р(x)}, for 

example class of polynomials of algebra, and in points X0, x1, ..., хn this interval 

the value of some function is set у0 = f(х0), у1 = f(x1),…,уn = f(xn). Close 

replacement of function of f on a segment [a; b] one of functions of Р(х) of this 

class so that a function of  Р(х) is in points X0, x1, ..., хn acquired those values, 

that and function of f, that Р(хі) =уі (і =0, 1, ..., п), name interpolationm, or by 

interpolation. Points of  X0, x1, ..., хn   name the knots of interpolation, function 

of Р(х) — by an interpolating function, and formula of f(x)≈Р(х) by which 

calculate the value of function of f  in an interval [a; b], — by an interpolation 

formula.  

From the geometrical point of view the task of interpolation consists in 

finding of curve у= Р(х)  of certain class, which passes through the points of 

plane with co-ordinates (хі, уі) (і = 0, 1, ..., п) (Fig. 2.1). 

 

 
Figure 2.1 - Function f(хі, уі) in the co-ordinates (хі, уі) 

If the function of Р(х) belongs to the class of polynomials of algebra, 

interpolation is named parabolic. 

 

Parabolic interpolation more comfortable in all, as polynomials, what simple 

after a form and does not have the special points, can acquire arbitrary values, 

easily to calculate them, to differentiate and integrate. 

In some cases more expedient to use other classes of interpolating  functions.  

If, for example, the function  of f is periodic, naturally to choose the 

function of Р(х)  from the class of trigonometric polynomials, and if the function 

of f grows into endlessness in the set points or f near-by them, it is expedient to 

choose the function of Р(х) from the class of rational functions. 
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Will examine the task of parabolic interpolation only, which will 

formulate so: in n+1 different points X0, X1, ..., Хn  the value  of  function is set 

f:У0 = f(Х 0), У1 = f(X1), … ,Уn = f(Xn) and it is needed to build a polynomial 

 

Pn (х) =q0 x
n
+ q1х

n-1
 + … + qn,    (2.1) 

 

degree of n, which would satisfy terms 

 

f(xi)=Pn(xi),   i=0,1, . . ., п      (2.2) 

 

Polynomial of Рп(х), which satisfies terms (2.2), does name an 

interpolation polynomial close equality of f(x)≈Рп(х) — by an interpolation 

formula, and difference of Rn(f,x)=f(x)- Рп(х) — by the remaining member of 

interpolation formula.  

Though interpolation polynomial which satisfies terms (2.2), and unique, 

the different forms of his record are however possible.  

 

An interpolation polynomial is built then, when: 

1) a function is set tabular for some values of argument, and it is needed to find 

its value for the values of argument, which are not in a table;  

2) a function is set graphicly, for example by a self-recording device, and it is 

needed to find it analytical expression is close;  

3) a function is set analytical, but its expression is difficult enough and 

uncomfortable for implementation of different mathematical operations 

(differentiation, integration, and others like that). 

 

2.2 Interpolation polynomial of Lagrange 

 

Let in points хi (і = 0, 1, ..., п) , where Х0 < Xi < ... < Хп the value of 

function is set f : У0 = f(Х 0), У1 = f(X1), • • ,Уn = f(Xn) . It is needed to build a 

polynomial Ln(x) degree n , what in knots хі (і=0,1,..., п) acquires those values, 

that and function of f, that 

 

Ln(xi)=yi,  i= 0, 1, 2,. ..,n.      (2.3) 

 

Will search the interpolation polynomial of Pn(x) will be by the polynomial of 

Ln  in such kind: 
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Ln  (x,x i ) = (Х—Хо)(Х—Х1) … (X—Xi-1)(X—Xi+1) … (Х—Хп) 

(Xi – X0) (Xi – X1) …(Xi- X i-1) (Xi-XI+1)…(Xi-Хn)  (2.4) 

where 










ikif

ikif
xxL ikn

,1

,0
),( .     (2.5) 

Then expression of interpolation polynomial Рп (х) has 

 

    Рп (х) =  Ln(Х, Xi)* Yi =Ln (х, хо)у0+Ln (х, x1)y1+… +Ln(х, xn)yn= 

n

nnn

n

n

n

n

n y
xxxx

xxxx
y

xxxxxx

xxxxxx
y

xxxx

xxxx

))...((

))...((
...

))...()((

))...()((

))...((

))...((

10

10
1

12101

21
0

010

1




















    

                                                                                                                         (2.6) 

 

where polynomial of degree of n, answers, to the terms (2.5) and terms (2.3).      

Is the polynomial of Рп(х) of kind (2.6) named the interpolation 

polynomial of Lagrange, and close equality of f(x) ≈Рп(х) — by the 

interpolation formula of Lagrange. Ln(Х, Xi) (і =0, 1, ..., п) in the polynomial of 

Lagrange name the coefficients of Lagrange.  

Will consider the two special cases of interpolation formula of Lagrange 

(2.6). 

Let  n=1, that value of function f it is set in two knots хо і х1. Will designate 

these values уо і у1.  

Then from a formula (5.6) will get  

 

                Р1 (х) =  Ln (х, хо) у 0 + Ln (х, x1)y1= 1

01

0
0

10

1

)(

)(

)(

)(
y

xx

xx
y

xx

xx









  (2.7) 

 

A formula (2.7) is named the formula of linear interpolation. At linear 

interpolyuvanni arc of curve у=f(x) on the segment [xо; х1] replaced the segment 

of line (2.7) which lies between points  (xо;уо) і (х1; у1). 

2. Let n=2. Function f it is set in three knots хі (і = 0, 1,2) by values уі (і =0, 1, 

2). In this case a formula (5.6) assumes an air 

 

P2 (x) = L2 (x, x0) У0 + L2 (x, x1) У1 + L, (x, x2) У2    (2.8) 
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A formula (5.11) is named the formula of quadratic interpolation. At 

quadratic interpolyuvanni arc of curve у =f(x) on the segment [xо; х2] replaced 

the arc of parabola which passes through points (хі; уі) ,i=0, 1, 2. 

Estimation of error of interpolation formula of Lagrange, If a function of f is on 

a segment [a; b] it is the polynomial of degree, that less or n is evened, from the 

unicity of interpolation polynomial swims out, that interpolation polynomial 

Ln(x) evened identically f, that  

 

f(x)-Pn(x) ≡ О, х є [а; b]. 

 

If f on a segment [a; b] which contains the knots of interpolation хі (і =0, 1,...,n), 

it is not the polynomial of degree, that less or n is evened,  difference 

 

                        Rn(f,x) =f(x)-Pn(x)     (2.9) 

 

will equal a zero only in the knots of interpolation хі (і =0, 1, ..., n), and in other 

points of vidrizka [a; b] it is different from an identical zero.  

Function Rn(f,x), what characterizes exactness of approaching of function of f an 

interpolation polynomial Pn(x), name the remaining member of interpolation 

formula of Lagrange (2.6), or error of interpolation.  

If analytical expression of function of f is known, it is possible to estimate 

Rn(f,x).Such theorem is just.  

Theorem. If the knots of interpolation хі (і =0, 1, ..., n) are different and 

belong to the segment [a; b], and the function of f is differentiated n+1 time on a 

segment [a; b], for any point of x є [a; b] there is such point of х є [a; b], that for 

the error of interpolation just equality 

 

Rn (х)  Mn+1                                                                                                            (2.10) 

where    

Mn+1=max f
(n+1)

(x). 

 

From a formula (2.10) evidently, that the absolute error of interpolation formula 

of Lagrange is proportional work of two multipliers Mn+1 and  

│(x-x0)(x-x1)…(x-xn)│, from which Mn+1 depends only on the function of f, and 

size of the second │(x-x0)(x-x1)…(x-xn) │, it is determined exceptionally the 

choice of knots of interpolation. Is decreasing the size of absolute error of 
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interpolation formula of Lagrange possible such choice of knots of interpolation, 

which a multiplier is for │(x-x0)(x-x1)…(x-xn) │acquires the least maximal 

value on a segment [a;b]. 

Example 1. To build the interpolation polynomial of Lagrange for the function 

of f(x)=lnx with the knots of x=2,3,4 and to estimate the error of interpolation 

polynomial at x=2,5. A value of function is in the knots of interpolation 

 

Table 2.1 

х 2, 3 4 

F(x) 0,6931 1,0986 1,3863 

 

Will build the polynomial of Lagrange on the following formula: 

 

Рп (х) =  Ln(Х, Xi)* Yi = Ln (х, хо) у 0 + Ln (х, x1)y1+…+    Ln (х, xn)yn= 
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where п =2 і  

 

Р2(х)=0.6931
)42)(32(

)4)(3(



 xx
+1,0986

)43)(23(

)4)(2(



 xx
+1,3863

)34)(24(

)3)(2(



 xx
= 

=-0,4713+0,7000x- 0,0589x
2
. 

 

For the estimation of error will take advantage of inequality 

 

|R 2 (2,5)|<М3(2; 4)-
!3

)5,2(3A
 

where  

                                   |A3(2,5)| =0,5*0,5*1,5 =0,375,      

 

f(x)=ln x, f’(x)=1/x, f’’(x)=-1/x
2
, f’’’(x)=2/x

3
 

 

From here accordingly   M3 (2; 4) = 1/4 , and finally  

 

|R 2 (2,5)|<0,25
!3

375,0
 =0,0156. 
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In actual fact error less than. Determining ln2,5 chetiriznachnim tables, will find 

 

ln2,5-Р2 (2,5) =0,9163—0,9103=0,0057. 

 

The interpolation polynomial of Lagrange can be built at any the location 

of knots of interpolation. Odnako, if it will be needed for the improvement of 

approaching to promote on unit the number of knots (that degree of polynomial) 

by addition of new knot, a polynomial of Lagrange will be pereobchisliti anew. 

In this relation considerably to use interpolation polynomial of Newton to the 

construction of which we pass. 

 

2.3 Eventual differences and their properties 

 

Let  УІ (і =0,1, ... , п) — a value is functions, у =f (x) , calculated for the 

equidistant values of argument хі (і= 0,1, ... , n), Х1=Х0+h, X2= X0+2h,…, 

Xn=Xn-1 +h= X0+nh, де h — step of table. 

Eventual, by the or tabular differences of the first order, or first differences, 

name numbers which equal the increases of values of functions:  

 

У1 — У о =y0 

У2 — У 1=y1 

……………… 

Уi+1 — У i=yi     (2.11) 

……………… 

Уn — У n-1=yn-1 

 

To grow on differences of the first order name the differences of the second an 

order, or by the second differences: 

 

y1 -y0 =
2
y0 ,  y2 -y1 =

2
y1 ,…, yn-1 -yn-2 =

2
yn-2 (2.12) 

 

In general, differences of any order k appear through  the differences of k-1 of th 

order after formulas 

 

к-1
yi+1 -

k-1
yi =

k
yi            (k=1,…n,  i=0,…n-(k-1))                  (2.13) 

 

Comfortably to write down successive differences as tables. Use two forms of 

tables: diagonal  and horizontal. 
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The diagonal table of differences is reached then, when tabular differences in 

every column write down between the proper values diminished and difference. 

In a horizontal table tabular differences write down in one line from difference. 

 Both in diagonal and in horizontal tables will arrange to write down the 

eventual differences of all orders in units of lower digit of values of functions in 

the knots of interpolation. Farther will toe this line. 

Сonnection between the derivatives of function and eventual differences. 

Let the function of f have on a segment [a;b] continuous derivatives to the order 

of p inclusive. The determinations of derivative swim out, that 

 

h

xf
xf

h

)(
lim)(

0





 

 

where  

f(x) = f(x+h) - f(x), x,x+h Є [a;b]. 

 

For the small values of h a close formula swims out from here 

 

h

xf
xf

)(
)(


       (2.14) 

Find now 
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where х, х+h і x+2lh Є [a;b]. At the permanent value of х і h 0 numerator and 

denominator of this shot head for a zero. For opening 
0

0
 of vagueness of type   

will apply twice rule by Lopital. One will get 

 

2

2

0
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h
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
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h
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h 2
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h




=f"(x) 

 

From here for small enough h one has a close formula 

 

f”=2
f(x)/h

2
      (2.15) 

 

For any natural p it is possible the analogical reasonings to get a close formula 
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f
(n)

=n
f(x)/h

n
     (2.16) 

 

After formulas (2.14) — (2.16) it is possible to calculate the close value of 

profitable, but their exactness (for n>1) is low enough. Therefore in calculable 

practice use more exact formulas. 

From formulas (2.14) — (2.16) does swim out, that with diminishing of 

step of table of h in λ once do the first differences diminish approximately in λ  

once, second — in λ 
2
, third — in λ 

3
 times et cetera/ If, in addition, with growth 

of order of derivative their modules grow slowly (not too quickly), and the step 

of table is small enough, the modules of differences will diminish with growth 

of their order. Therefore are there l differences at some Δ
l
у will become less 

than than half of unit more low comfort of tabular values of functions, and that 

is why it follows to consider with the accepted exactness, that they equal a zero, 

and to the difference (l-1) of th order — steel. 

But the values of function in a table give mostly approximately, that is 

why at the calculation of eventual differences an error grows. If for example, a 

trunsaction of tabular values of function error equals the half of unit of lower 

digit, the error of the first differences will equal one unit of lower digit (at 

implementation of operation of addition of algebra of error added) already, error 

of the second differences — to 2 units of lower digit, third — to 4 units et 

cetera, and the errors of eventual differences of order of l are evened 2
l-1

 units of 

lower digit of tabular values of function are evened. 

From it swims out, that, when, for example, the fourth differences of the exact 

meanings of function differ one from other less than, than on the half of unit of 

lower digit, these differences, but the functions (the absolute error of which 

equals the half of unit of lower digit) calculated for a close value, can differ one 

from other already on 2
4
=16 units of lower digit of tabular values of function. 

Therefore there are grounds to give such determination practically of 

permanent differences: if on some part of table all eventual differences of l-go 

order differ one from other no more than on 2
l
 units of lower digit of tabular 

values of function, these differences are named practically permanent.  

Then differences (l+1) of th order it is not needed to calculate, because 

they will consist only of doubtful numbers, but that is why within the limits of 

this exactness consider that they equal a zero and does not accept them in 

attention. 

Properties of eventual differences:  

1. Do the eventual differences of permanent C equal a zero, that Δ
k
С = 0.  
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2. Can the permanent multiplier of S be taken away for the sign of eventual 

difference Δ
k
(Сf(x))=CΔ

k
f(x). 

3. The eventual differences of sum of algebra of functions equal the sum of 

algebra of eventual differences of these functions, that  

)()())()(( xgxfxgxf kkk  . 

These mastivosgi swim out from determination of eventual differences. 

4. Eventual difference of function (x)=x
n 
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Really, 

)( nx =(x+h)
n
-x

n 

 

Decomposing after the formula of binomial Newton expression (x+h)
n
; will get 

a formula  (2.17) 

By 4 properties easily to get the successive eventual differences of polynomial  

 

у=a0x
n
+a1x

n-1
+…+an 

 

After properties 1-4 have 

 

haxhnah
nn

anhxay n

nn

1

2

1

2

0

1

0 ...))1(
!2

)1(
( 

 


  

 

Consequently, the first difference of polynomial of n-go degree with the 

senior member of аоx
n
  is the polynomial (n-1) of th degree with the senior 

member of аоx
n
  

Calculating the successive differences of polynomial of any order like, make 

sure in justice of such theorem: 

Theorem 1. If  f(x) — polynomial of n-go degree relatively x with a senior 

member аоx
n 

, that difference )(xfk  at k<n є by the polynomial (n-k) of th 

degree with a senior member аоn(n-1)…(n-k+1)h
k
x

n-k 
, when  k=n,  

)(xfn =a0n!h
n 
і at k>n difference )(xfk 0. 

Theorem 2. If n-1 differences of function of f of steel are for any step of n, 

this function is the polynomial of n-go degree.  

Theorem 2 widely apply in calculable practice. Due to it for finding of 

intermediate values of function by the table of differences with the permanent 



 29 

step of h limited to the calculation of values of interpolation polynomials, the 

degree of which equals an order practically permanent differences . 

Properties of eventual differences are formulated higher just only for the exact 

differences of function. But in the process of calculations of value become 

round, that is why order practically permanent differences substantially depends 

on exactness with which calculate the value of function, and from the size of 

step of table. 

 

2.4 First interpolation polynomial of Newton 

 

Let the value of function be set for the equidistant values of argument х0, x1= 

x0+h, х2 = x0 +2h,..., xn = x0+nh.  

Will designate these values of function accordingly through уо, у1, у2, ... , уn. 

Will build the interpolation polynomial of n-go degree of kind: 

 

Pn(х) =q0 + q1 (х— xо) + … + qk (х— x0) … (х— xk-1) + … + 

+qn(x-x0) … (x-xn-1)                 (2.18) 

 

so that in the knots of interpolation хі (і = 0,1,..., n) he acquired the values of  

yi (and = 0,1 ..., n), that satisfied terms 

 

Рn(хі) =уі (і = 0,1. ... , n)                       (2.19) 

 

It was before well-proven that the unique interpolation polynomial of 

degree of n is, which satisfies terms (2.19). There is an interpolation polynomial 

of Lagrange them. However, as a formula (2.18) shows, the interpolation 

polynomial of n-go degree can be written down in a kind, different from the 

interpolation polynomial of Lagrange. If in the polynomial of Lagrange each of 

elements is the polynomial of n-go degree and all elements between itself are 

equal in rights, in a polynomial (2.18) elements are polynomials the orders of 

which with a removal from the beginning rise on unit. 

Using terms (2.19), will define coefficients q0 , q1 , … qk, … ,qn polynomial 

(2.18). 

Let in  (2.18) х = хо. From (2.19) will get 

 

Pn (х0) =q0 =у0. 

If х =х1, have 

Pn (х1) =q0 + q1 (х1— xо)    or 
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q1=(y1-y0 )/(x1-x0)=y0/h 

 

Like, putting the found values of coefficients in  a formula 

 

q2=
2
y0/2h

2
,    q3=

3
y0/3!h

3
, …,qn=

n
y0/n!h

n
 

 

Putting the found values of coefficients in (2.18), will get 

 

Рп(Х)=y0+y0/h*(Х-Х0)+
2
y0/2h

2*
(Х-Х0)(Х-Х1)+.…+ 

 

+
n
y0/n!h

n*
(Х-Х0)(Х-Х1)*…*(X-Xn-1)   (2.20) 

 

This polynomial is named the first interpolation polynomial  of Newton. 

Replacing the function of f(x) proper it by the interpolation polynomial of Rт(x) 

of Newton, will get close equality  

 

f(x)≈Pn(x).        (2.21) 

 

This formula is named the first interpolation formula of Newton. The 

polynomial (and formula) of Newton differs from the polynomial (and formulas) 

of Lagrange. But if these polynomials are built for the that function of f and the 

same system of knots of xi (i = 0,1 ...,n), after a theorem about the unicity of 

decide of interpolation task they identically will be evened each other. 

If to the set system of equidistant knots of interpolation to add another, the 

proper interpolation polynomial of Lagrange needs to be built anew, and one 

new element is added in the interpolation polynomial of Newton only, and the 

already calculated elements are kept without changes. From a formula (2.21) for 

n =1 will get the formula of linear interpolation 

 

f(x)≈y0+y0/h*(Х-Х0)           (2.22) 

 

and for n=2 — formula of quadratic interpolation 

 

f(x)≈y0+y0/h*(Х-Х0)+
2
y0/2h

2
 
*
(Х-Х0)(Х-Х1).     (2.23) 

 

In calculable practice more comfortable to use other form of record of 

polynomial of Newton (2.20). If to put t =(x-x0)/h  
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x- x0 = th,  х-x1 =x-х0- h = th-h= (t-l)h,  x—x2=(t-2)h,..., x-xn-1=(t- (n-l))h 

 

 and (2.24) will get 

 

Pn(x)=Pn(xo+th)=у0+у0t +1/2!*2
у0t (t-l)+… + 

+ 1/n!*n
у0 t (t-1) …(t-(n-1)).                   (2.24) 

 

 

and the first interpolation formula of Newton (2.21) 

 

f(x) ≈ Pn(xo+th).                         (2.25) 

Difference 

 

f(x) - Pn(xo+th)=Rn (х)                   (2.26) 

 

name the remaining member of the first interpolation formula of Newton. 

As for this function of f and this system of equidistant knots of (і=0,1, ... , n) 

there is the unique interpolation polynomial of degree of n, interpolation 

polynomials of Lagrange and Newton will coincide between itself, that Ln(x) in 

Рn(х). And that is why and the remaining member of interpolation formula of 

Newton (2.21) will coincide with the remaining member of formula of 

Lagrange. With introduction of variable of t a remaining member Rn acquires a 

kind 

 

|Rn (х)| = |Rn(x0+ th)| < 

 

 

 

where  Mn+1 = max |f
(n+1)

 (х)|  

 

Formula (2.21) or (2.25)   name also the interpolation formula of Newton 

for interpolation forward.  

If the first differences of function practically to steel, use the formula of linear 

interpolation, and if the second differences of function practically to steel, use 

the formula of quadratic interpolation 

2.5 Second interpolation polynomial of Newton 
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If the value of argument lies nearer to the end segment interpolation, to apply 

the first interpolation formula of Newton unprofitably, because the eventual 

differences of function of higher orders will not be enough. If, for example, it is 

needed to calculate the value of function in the point of хє[xn-1,xn], for the first 

interpolation polynomial of Newton there are only the first and second 

differences of function.  

Therefore in the end segment interpolation use the polynomial of kind 

 

Рn(х) = bо+b1(х— хn)+b2(х—хп)(х— xn-1)+ …+ 

+ил(ч— хп)…(х — чт-(л-1))+…+ит(ч-чт)…(ч-ч1)  (2.27) 

 

Coefficients of bо, b1, ... , bn  polynomial (2.27) determine so that a .yogo value 

in the equidistant knots of interpolation coincided with the value of the proper 

function, that the terms   of Rp were executed Рп (Хi) = Уi,  

(i=0,1, ... ,n). 

Putting consistently in a formula (2.27) in place of x value of хn, хn-1,…, х1, find 

the coefficients  of bо, b1, ... , bn  . If in (2.27) to put х = хп,,    that will get 

 

Рn (Хп)=b0,,          bo = Рп (Хn) = Уп . 

Let х = xn-1 , have 

Рт(хт-1) = ио+и1(хт-1— хт)=и0-и1р б  нт-1-нт=-и1р   that      и1=нт-1.р 

 

Putting in (2.27) х =xn-2  and replacing the coefficients of bо, b1, ... , bn    by their 

values, will get 

b2=
2
yn-2/2h

2
 

 

In general, when x =x0  from (2.27) find  

 

bn=
n
y0/n!h

n 

 

Putting the value of these coefficients in (2.27), have 

 

Pn (X) = уп +yn-1/h (X - Хп) + ... + 
n
y0/n!h

n
 (X - Хп) ...(Х-Х1)   (2.28) 

 

This polynomial and name the second interpolation polynomial of Newton. 

Replacing the function of f(x) the second interpolation polynomial of Newton, 

will get close equality 

f(x)≈Pn(x).                       (2.29) 
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Equality (2.28) is named the second interpolation formula of Newton, and 

difference  f(x) — Рn(х) = Rn(x,f) — remaining by the member of this formula.  

From formulas (2.28) and (2.29) for n=1 will get the formula of linear  

interpolation 

f(x)≈  уп +yn-1/h (X - Хп) , 

 

and for n = 2 — quadratic interpolation 

 

f(x)≈ Pn (X) = уп +
h

1
yn-1 (X - Хп) + 2!2

1

h
yn-2 (X - Хп) (Х-Хn-1) 

 

In practical calculations more comfortable to use other record of polynomial 

(2.28). If to enter such denotation t =(x-xn)/h   or  th= (x-xn)  

 

And a polynomial (2.28) assumes an air then 

 

Pn(x)=Pn(xn+th)=yn+yn-1t+
!2

1
*

2
yn-2*t(t+1)+ 

+
!

1

n
*

n
y0*t(t+1)(t+n-1)    (2.30) 

 

Are differences included in expressions of polynomial (2.28)  (2.30)  yn-1,  
2
yn-

2, ... , 
n
y0, what take place in the diagonal table of differences bias from below 

upwards, that is why a formula (2.30) is used for interpolation at the end of 

table. If is it needed to calculate the value of function in the point of x, after xn 

take the nearest, but anymore than kh value of argument from a table, so that  

хє(хп-1;хп) і │t│ < 1.  

Therefore a formula (2.30) is named also the interpolation formula of Newton 

for interpolationa back. 

As interpolation polynomials of Lagrange and Newton is the different 

forms of record of the same interpolation polynomial, an estimation of 

remaining member of formula of Newton will be the same, as well as for the 

formula of Lagrange, built for a that function and that system of knots. 

Therefore for the absolute error of interpolation formula (2.30) there is a just 

estimation 

 

|Rn (х)| = |Rn(xn+ th)| <                                           (2.31)  

 

1

1
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n
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where Mn+1 = max |f
(n+1)

 (х)| 

 

If the derivative of function is unknown, but there are tabular differences of 

function to (n+1) the th order, remaining member Rn(x;f) interpolation formula 

(2.31) it is possible to give approximately a formula 

 

        Rn(x;f)  ≈ 

 

Example 2. To build the interpolation polynomial of Newton for a function 

f(x)=lnx with knots x=2, 3, 4, 5. A value of function is in the knots of 

interpolation 

Table 2.2 

х 2 3 4 5 

y 

 

0,6931 

 

1.0986 

 

1,3863 

 

1.6094 

 

Will build a table for the calculation of differences 

Table 2.3 

x У Δy Δ
2
y Δ

3
y 

2 

3 

4 

5 

 

0.6931 

1,0986 

1,3863 

1.6094 

 

4055 

2877 

2231 

 

—1178 

—646 

 

532 

 

 

Here n=З, h = 1 and in force (2.20): 

 

P3(x)=0,6931+0,4055(х-2)–0,78/2*(х-2)(х-3)+0,0532/6**(x-2)(x-3)(x-4). 

 

Example 3. In a previous example to estimate the error of interpolation 

polynomial of Newton at x=3,5  

For the estimation of error will take advantage of inequality 

 

)!1(

)()1(
1




 

n

nttt
yn


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|R 3 (3,5)|≤М4(2; 5)-
!4

)5,3(4A
 

 

Accordingly А4(х)=(х-2) (х-3)(х-4)(х-5)       

and             | А4 (3,5) | = 1,5*0,5*0,5*1,5 = 0,5625, 

 

f(x)=lnx, f’(x)=1/x, f’’(x)=-1/x
2
, f’’’(x)=2/x

3
, f(4)=-6/x

4 

 

From   М4(2; 5)=3/8 and finally   |R 3 (3,5)|≤3/8*0,5625/4= 0,0088.  

In actual fact error a bit less than. Determining In3,5 on chetiriznachnikh tables, 

will find In 3,5—Рз (3,5) =1,2528-1,2552=0,0024. 

 

Example 4. To calculate in points x =0.1, 0.9 value of function of у=f(x), set 

table. 2.4, comfortably to erect the process of calculations in  a table. 2.  Every 

next eventual  difference goes out by deduction in previous the column of 

overhead line from nizhnei.     

 

Table 2.4 

х y ΔУ Δ
2
у Δ

3
y Δ

4
y Δ

5
y 

0 1.2715 1.1937 -0.0146 0.0007 -0.0001 0.0000 

0.2 2.4652 1.1791 —0.0139 0.0006 -0.0001  

0.4 3.6443 1.1652 —0.0133 0.0005   

0.6 4.8095 1.1519 —0.0128    

0.8 5.9614 1.1391     

1.0 7.1005      

 

At   х = 0.1   have t =(x-x0)/h =(0,1-0)/0.2 =0.5. On a formula (2.24) will get 

f(0,1)=P4(0,1)= 1.2715 + 0.5*1.1937 +
!2

)15,0(5,0  (- 0.0146) + 

+
!3

)25,0)(15,0(5,0  *0.0007+
!4

)35,0)(25,0)(15,0(5,0  (-0.00004)=- 1.8702. 

 

For comparison on the formula of linear interpolation get 

f(0,1)= 1.8684 
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A value of function is in a point х = 0.9 it is needed to calculate on a formula 

(2.30). In this case have t = (x-xn)/h= (0.9 - 1) /0.2= -0.5. Than 

 

F(0,9)= Pn(0.9) = 7.1,005 - 0.5.1.1391 -
!2

)15.0(5.0   (-0.0128)- 

-
!3

)25.0)(15.0(5.0   0.0005-
!4

)35,0)(25.0)(15.0(5.0   (-0.0001)= 

=7.1005 - 0.5698 + 0.0016 -і 0.00003 +0.000004=6.5325 

 

We considered the construction of interpolation polynomial of Newton for 

equidistant knots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 NUMERICAL DIFFERENTIATION OF FUNCTIONS 

 

3.1 Introduction 

 

By numerical differentiation of functions resort when asked tabular function, so 
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methods of differential calculus simply inapplicable or function when asked 

quite complex analytical expression and therefore the calculation of derivatives 

associated with considerable difficulties. 

To build numerical differentiation formulas defined on the interval [a; b] 

replace function f corresponding interpolation polynomial P (x). Then 

 

f(x)-P(x)=R(x,f),                       (3.1) 

 

where R(x;f)  - the error term interpolation formula.  

 

If the function f on [a; b] is derived to the n-th order inclusive, then 

differentiating the identity (3.1) in x, are 

 

f'(x)-P'(x)=R'(x,f), 

f''(x)-P''(x)=R''(x,f), 

………………….. 

f
(k)

(x)-P
(k)

(x)=R
(k)

(x,f) 

 

The approximate value of derivatives of f are the first terms of the right sides of 

equations: 

 

f'(x)≈P'(x),   f''(x)≈P''(x),…,f
(k)

(x)≈P
(k)

(x),       х є [а,b]            (3.2) 

 

Then the remaining members of ri (x) (i = 1,2, .... K) numerical differentiation 

formulas (3.2) will be derived from the remaining member interpolation formula 

(5.55), ie 

 

ri(х)= f
(i)

(x)-P
(i)

(x)                    (3.3) 

 

It should be noted that the smallness of the remainder term interpolation formula 

R (x; f) does not mean the smallness of the remaining members of the original 

(the error of numerical differentiation) ri (x), as derived from small functions 

can be quite large. For example, the function y1(x)=f(x)  y2(x)=f(x)+
2

3cos

n

xn
 for 

large values of n may vary in arbitrarily small  

 

│у1-у2│≤
2

3cos

n

xn
≤

2

1

n
. 
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But derivatives for some values of x and large values of n can vary significantly 

among themselves: 

 

│у'1-у'2│≤
2

33 sin

n

xnn 
≤ xnn 3sin ≤n 

 

This shows that the continuous dependence of values of the derivative of the 

function does not exist. Therefore the problem of numerical differentiation, in 

general, are less accurate in operation compared to interpolation is ill-posed 

problems. Fig. 3.1 at the point xi ordinates polynomial function f and R are the 

same, however tangential angular coefficients are significantly different. 

 

 

 

 

 

 

 

 

 

 

 

 

If interpolation polynomial P in a particular area with sufficient accuracy 

brings the function f, and she fairly smooth function f varies smoothly in this 

region, we can expect that at sufficiently small step interpolation polynomial 

interpolation derivatives as little different from original function f.  

But we should not forget that with increasing order derivative precision 

numerical differentiation mostly falling sharply.  

Therefore, in practice, numerical differentiation formulas for derivatives 

of higher second order is used infrequently. 

3.2 Numerical differentiation formulas based on Newton's first 

interpolation formula 

 

Let the function f given as equidistant points Хі(і = 0,1, ... , п) segment  [а;b] 

values  Уі=f(xi) (і= 0,1,...,n). To find the derivative  f' i f'' a point x to close X0, 

function f approximate polynomial interpolation replace the first Newton (5.34), 

Figure 3.1  
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built by nodes хо, х1, ... , хn. 

 

Pn(x)=Pn(xo+th)=у0+у0t +1/2!*
2
у0t (t-l)+… + 1/n!*

n
у0 t (t-1)…(t-(n-1)), 

 

where t =(x-x0)/h.  Taking into account that the derivatives 

 

df/dx=df/dt*dt/dx=1/h*df/dt 

 

prodyferentsiyuvavshy on t approximate equality (5.58), we receive:  

 

)
!3

263

!2

12
(

1
0

3
2

0

2

0 





 y
tt

y
t

y
h

y                             (3.4) 

)
!3

66
(

1
0

3

0

2

2



 y
t

y
h

y                             (3.5) 

 

Similarly, we can calculate higher order derivatives. If derivatives are calculated 

by formulas (3.4), (3.5) at x, then choose the closest point ho brief argument 

value that is less than the numerical differentiation formulas (3.4), greatly 

simplified if the values of the derivatives calculated at the nodes of 

interpolation. Since each tabulated values can be taken as ho then. putting in 

formulas (3.4) and (3.5), t = 0, we obtain 

 

)
!3

2

!2

1
(
1

0

3

0

2

0  yyy
h

y                       (3.6) 

)
6

5

12

11
(

1
0

5

0

4

0

3

0

2

2
 yyyy

h
y     (3.7) 

 

Using equality (3.3), see the error of numerical differentiation formulas. Since 

the error term first interpolation formula  

 

|Rn (х)| = |Rn(x0+ th)| < 

 

 

where  Mn+1 = max |f
(n+1)

 (х)|  

 

2

2

22

2 1
)
)(1

(
dt

fd

hdt

xdf

hdx

d

dx

fd

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Hence, if t = 0 (x = xo) for remainder term numerical differentiation formula 

(3.6) we have 

 

                                    R1 (х) = 

 

But the original            in many cases it is difficult to assess. Therefore, when 

sufficiently small h suggest that 

 

Then the error term for derivative at х = хо  is 

 

                              R1 (х0) = 

 

The formulas of numerical differentiation, based on the second Newton 

interpolation formula. 

To find the derivative of a function given in tabular equidistant nodes хо, 

х1, ... , хn, at x contained at the end of the table, use a second Newton 

interpolation formula (2.30). Writing each term of this formula in a series of n, 

formula (2.30) takes as follows: 

Pn(x)=Pn(xn+th)=yn+yn-1*t+
!2

2 tt 
*

2
yn-2+ 

+
!3

23 23 ttt 
*

3
y0+…+

!

1

n
*

n
y0*t(t+1)…(t+n-1)        (3.8) 

because 

df/dx=df/dt*dt/dx=1/h*df/dt                       (3.9) 

then differentiating with respect to t approximate equality (3.8), we obtain 

  

f'(x)=
h

1
(yn-1+

!2

12 t
*

2
yn-2+

!3

263 2  tt
*

3
y0+… )   (3.10) 

 

Example 1. Compute a point x = 0.1 the first and second derivatives of functions 

given table (Table. 3.1). 

Table 3.1 

x У Δу Δ
2
y Δ

3
y Δ

4
у Δ

5
y 

0 1.2833 0.5274  0.0325  

 

0.0047  

 

0.0002  

 

0.0000 

 

2

2

22

2 1
)
)(1

(
dt

fd

hdt

xdf

hdx

d

dx

fd

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0.1  

0.2 

0.3 

0.4 

0.5 

1.8107 

2.3606 

2.9577 

3.5969 

4.2833 

0.5599 

0.5971 

0.6392 

0.6864 

 

0.0372 

0.0421 

0.0472 

 

0.0049 

0.0051 

 

0.0002 

 

 

 

 

There  h= 0.1, t=(0.1 — 0)/0.1 = 1. Using these formulas (3.4) we find 

 

у'= 10 (0.5274 + 
2

11*2   • 0.0325 + 
6

21*61*3  * 0.0047 +   

+
24

61*221*181*4   * 0.0002)=5.436,       

 у"= 100(0.0325 + 
6

61*6  * 0.0047 +
24

223612   *0.0002)=- 3.25.   

Newton interpolation polynomial expression to make a difference through 

derivatives Δ
k
y (k=1, 2, ...). However, in practice it is often advantageous to 

express the value of derivatives not because of the difference, and directly 

through the function values at the nodes. To obtain these formulas is convenient 

to use Lagrange equation with a uniform units (Xi- Xi-1= h = const, i = 1, 2, ..., 

n). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4 NUMERICAL INTEGRATION FUNCTIONS 

 

4.1 Statement of the problem 

 

If the function f is continuous on the interval [а,b] and famous and 
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original F'(x)=f(x), the Newton-Leibniz formula holds: 

 


b

a

dxxf )( = F(b) - F(a).                      (4.1) 

 

However, this formula is difficult and even virtually impossible to use then. 

when the original F can not be expressed in elementary functions, such as in the 

following integrals dxe x




1

0

2

,   dx
x

x

1

0

sin
 ; integrand f asked tabular or graphical 

and analytical expression of the unknown; analytical expression of the original  

F very complex and difficult to calculate. 

In these cases it is necessary to build a formula for approximate 

calculation of definite integrals. Particularly important are the methods of 

numerical integration of functions where to find an approximate value of certain 

integral values are used integrand and its derivatives in a finite number of points 

that are predominantly interval of integration. These formulas calculate the 

approximate value of certain integral equations called mechanical quadrature, or 

quadrature formulas. 

The most common quadrature formula in which the values of the 

integrand f at some points of the segment of integration, ie formulas look 

 

 




b

a

n

k

kk xfAdxxf
1

)()(                      (4.2)  

 

The amount of the right side of (4.2) is called the quadrature sum, real 

numbers хk and Аk respectively nodes and coefficients quadrature formula. We 

assume that nodes quadrature formula (4.2) are numbered in ascending order  х1 

< х2 < ... < хn: 

Equality (4.2) close. The difference between the definite integral and quadrature 

sum 

Rn(f)=  




b

a

n

k

kk xfAdxxf
1

)()(  

called the remainder term or accuracy of the quadrature formula (4.2). 

In the error arising from the replacement of integral quadrature sum (error 

method │Rn(f)│), is the error that caused the execution of arithmetic operations 

on approximate numbers – values  f(xk) equal Δf, the absolute error of the 
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quadrature sum 


n

k

kk xfA
1

)(  equal 





n

k

kf AR
1

~
 

 

This so-called fatal error that caused the approximate values f(xk). While 

there is no computation error due to rounding of intermediate results. This error 

can be made much smaller compared to the immeasurable if intermediate 

calculations comply with spare figures who reject the final result. Estimating the 

error of numerical integration, we must also take into account the final rounding 

error Δо. Thus, the total error of numerical integration Δi is the sum of the above 

three errors, ie  

 

Δi=│Rn(f)│+ R
~

+ Δо = │R(f)│+ 



n

k

kf A
1

 + Δо       (4.3) 

 

To construct quadrature formulas of the form (4.2) is often used to parabolic 

interpolation integrand  f. To do this, in the interval [а;b] choose a finite 

sequence of points хо, х1, х2, ... , хп i buduyut іnterpolyatsіyny Lagrange 

polynomial  

 

    Рп (х) =  Ln(Х, Xi)* Yi = Ln (х, хо) у 0 + Ln (х, x1)y1+… +    Ln (х, xn)yn= 

n
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 +Rn(f,x) 

 

Rn(f,x)— error term (error) interpolation. 

 

After integration last equality in x, ranging from a to b, we obtain 

 

 




b

a

n

k

kk xfAdxxf
1

)()(  +Rn(f)    (4.4) 

where 

 

Ak  dxy
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Rn(f)= 
b

a

n dxxfR ),( .                         (4.6) 

 

If the error term Rn(f,x) interpolation function f is small throughout the period  

[а;b], then in (4.4), which is an exact equality of terms Rn(f) can be neglected. 

Then we obtain an approximate equality 

 

 




b

a

n

k

kk xfAdxxf
0

)()(                       (4.7) 

 

Quadrature formula (4.7), the coefficients of which are calculated by formulas 

(4.5) is called interpolation. Odds interpolation quadrature formulas are 

dependent on the choice of interpolation nodes, but not on the type of the 

integrand. Fair theorem, served without proof. 

 

4.2. Main theorems and methods 

 

Theorem. To quadrature formula (4.7) with n + 1 nodes was 

interpolation, it is necessary and sufficient that it is accurate if f is a polynomial 

of degree not higher than n. If the limits of integration a and b are nodes of 

interpolation, the quadrature formula (4.7) is called a closed formula type, 

otherwise - open. 

From the formula (4.5) to calculate the coefficients Ak quadrature formula 

(4.7) shows that the values of the coefficients Ak are independent of the choice 

of the integrand f, and are dependent on the choice of units  xk (k =0,1, ... , n). 

Having calculated the values of the coefficients Аk (k=0,1, ... ,n) once the 

formula (4.7) can be used to calculate approximate values of various functions 

defined by integrals f. 

Equation (4.7) for exact polynomial n-th degree, but then  f(x)≡Ln(x) 

(interpolation error  Rn (f,x) =0). In particular, the formula (6.7) exactly when 

f(x)=x
k
 (k =0.1, ... , п). However, Rn(x

n+1
) ≠0. 

They say that the quadrature formula has algebraic degree of precision n, 

if it is accurate to f(x )= х
k
 (k=0,1, ... , n) (or, equivalently, for any polynomial of 

degree not higher than n), and does not give an accurate result for  f(x )= x
n+1

. 

Thus, interpolation quadrature formulas with n + 1 nodes must algebraic degree 

of accuracy not less than n. 

Formula rectangle. The approximate value of the integral 
hx

x

dxxf
0

0

)( , where f is 
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continuous on  [х0, х0+h], You can search for a function f polynomial 

interpolation replace zero degree, ie for all хє [х0, х0+h] put f(x) = f(c), де с є 

[х0, х0+h]. Then we obtain an approximate equality 

)()(
0

0

chfdxxf

hx

x




.            (4.9) 

If f(x) > 0 and continuous on [х0, х0+h] , the approximate 

equality (4.9) can be interpreted geometrically as follows: 

approximate value for the area of the curvilinear trapezoid 

ABCD (Fig. 4.1) is bounded from below the abscissa, top 

graph of f, and the sides straight х =хо і х = хо+h, set 

value area of the rectangle MNCD. Therefore, formula 

(4.9) was called formula of rectangles.                                         Figure 4.1 

If  с =x0  або с =хо + 
2

1
h, then (4.9) the formula is called left rectangles 

 

11201

0

0

)( 


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yhyhyhdxxf            

(4.10) 

 

If с=хо+h,  then (4.9) is called the formula right box 
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If с =хо+
2

1
h, then (4.9) the formula called medium rectangles. 
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Find the remaining members formulas rectangles, suggesting that the integrand 

function f on  [хо; xo+h] has continuous derivatives of the first order (in the case 

of formulas left and right rectangles) and continuous derivatives of the second 

order (in the case of formula medium rectangle). 

      Errors method for evaluating formulas: 
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│R1(f)│ 1
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│R2(f)│ 22
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

 ,    (4.14) 

where 

M1= )('max
],[

xf
ba

,  M2= )(''max
],[

xf
ba

, 

Figure 4.2 presents the scheme of numerical integration algorithm functions by 

the formula medium rectangles.  

Program 4.1 

 

10 PRINT " — Numerical integration method    

      "—  

20  PRINT " —— medium Rectangle " 

      —— 

ЗО INPUT " Enter the lower limit of integration  

     А="; А  

40 INPUT " Enter the upper limit of integration      

     В="; В  

50 DEF FNY(X)=X*COS(X)  

60 INPUT " Enter the number of intervals N-   

     "N 

70   М=0; S=0: H=(B-A)/N: X=A-H/2  

80   Х=Х+Н  

90   F=FNY(X)  

100 S=S+F: M=M+1  

110 IFM<>N THEN80  

120 I=S*H 

130 PRINT "For А="А; "В="В; "N="N  

140 PRINT " The value of the integral І="І  

150 GOTO 60  

160 END 

 

 
Figure 4.2 - Algorithm 

Example 1.Metod rectangles calculate the integral 

I= 2

1

0 1 x

dx


 . 
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Formula "Left" rectangles (4.10). As we step constant h = 0.1, then the formula 

"Left" rectangles (4.10) have: 

I=0.1(1+0.990+0.962+0.917+0.862+0.800+0.735+ 

+0.671+0.610+0.552)=0,8099 

By formula "right" rectangles we obtain the following result: 

І = 0.1(0.990+0.962+0.917+0.862+0.800+0.735+ 

+0.671+0.610+0.552+0.5)=0.7599 

The error in the calculation of the integral is ΔI2=I2-I=0.00021(about 0.027%) 

To calculate the integral in the formula "average" rectangles must first calculate 

the value of the function at points Xi+1/2 

Table 4.1 

 

Xi+1/2 0,05 0,15 0,25 0,35 0,45 0,55 0,65 0,75 0,85 0,95 

Yi+1/2 0,99 0,97 0,94 0,89 0,83 0,76 0,70 0,64 0,58 0,52 

 

Then 

 



b

a

dxxf )(  = y1/2h+y3/2h+…+yi-1/2h+…+yn-1/2h=0.7856 

 

Formula Keystone. To calculate the approximate value  I= 
hx

x

dxxf
0

0

)(  integrand  f, 

is twice continuously differentiable on the interval [хо; xo+h]  (h > 0), replace 

interpolation Lagrange polynomial that passes through the points  (хо; f(xo)) і 

(xo+h; f(xo+h)); 
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(4.15) 

 

hxx  00   

 

After integration this equality for x in the range of ho ho to + h, we obtain  


hx

x

dxxf
0

0

)( =
2

h
(f(x0)+f(x0+h))+ 





hx

x

dxhxxxxf
0

0

))()((''
!2

1
00  

 

     Rejecting this equality in the error term 



 48 

 

R2(f)= 




hx

x

dxhxxxxf
0
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))()((''
!2

1
00 .            (4.16)  

 

we obtain quadrature formulas 

 


hx

x

dxxf
0

0

)(
2

h
 ((f(x0)+f(x0+h))        (4.17) 

If f (x) is continuous on the interval function is an integral 

 [хо; хо +h], then the approximate equality (4.17) can be 

interpreted geometrically as follows: for the approximate 

value of the curvilinear trapezoid ABCD (Fig. 4.3) takes the 

shaded area of trapezoid ABCD. Therefore, the formula was 

called trapezoid formula. 

Figure 4.3 

 

If f"(x) continuous on the interval [хо;хо+h], then applying generalized theorem 

to the integral of the mean (4.16), we find the absolute error estimate for 

numerical integration formula trapezoids: 

 

│R2(f)│ 2

3

12
M

h
 ,    (4.18) 

where 

      M2= )(''max
],[

xf
ba

, 

 

To calculate the approximate value of the integral 
hx

x

dxxf
0

0

)( , where f with 

continuous derivatives of first and second order in [a; b], with reasonable 

accuracy, the interval [a; b] is divided into n equal segments of length h= (b - 

а)/n and each of the segments [хk, хk+1], (k =0,1,...,n-1) apply a formula with 

remainder term trapezoids. While rejecting equality in the error term R2(f) obtain 

the quadrature formula  
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h= (b - а)/n      (4.19) 
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called general formula trapezoids. 

 

Because f"(x) continuous on the interval [a; b], then there is a point  [а; b] 

such that the error term of generalized formula shall become final form 

trapezoids 

 

R2(f)=-
12

2h
(b-a)f"(  ),  [а; b]    (4.20) 

 

From (4.20) it follows that the generalized trapezoid exact formula for the linear 

function for the second derivative of a linear function is zero. Calculate the error 

of numerical integration by general formula trapezoids impossible because point 

 [а; b] Formula (4.20) is unknown. But it is easy to estimate the absolute error 

of the approximate integration formula (4.19) 

 

                        │R2(f)│ 22
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 ,          (4.21) 

where 

 

M2= )(''max
],[

xf
ba

,   h= (b - а)/n 

 

Note: 1. The remaining members of the general formula rectangles and 

trapezoids medium (see. (4.14) and (4.20)) have opposite signs. 

 Thus, the formula approximating the integral of lack and excess, if f"(x) keeps a 

sign on [a; b]. Therefore, the approximate value of the integral I can take 

pivsumu these bilateral approximations that put  

 

I ≈ 0,5(Iср + Iтр) =І*. Th 

 

en the absolute error of approximation І* 

 

|І-І*| <
2

1
|Іср-Ітр|. 

Example 2. The method of trapezoids calculate the integral 2

1

0 1 x

dx


  , 

Two faithful decimal digits. 
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To select a step, which we will calculate the values of the integrand, we estimate 

the magnitude of the correction member.Маємо: 

 

f(х) = 21

1

x
,   f’(x)=

22 )1(

2

x

x




 ,    f’’(x)=-2* 32

2

)1(

31

x

x




 

 

and the interval 0≤x≤ 1               │f’’(x)│≤2│1-3x
2
│≤4. 

 

By the condition of the task error should not exceed 0,005. We have: 

 

4
12

1
2n

 ≤ 0.005   or    n
2
≥200/3 

For ease of computation it is desirable to step expressed a round number. 

Therefore, we take n = 10, then step h = 0,1. The error will be much less 

computation error formula, if ordinates are calculated to the nearest three 

decimal znakiv.Blank calculation will now type in Table 4. 

Table 4.2 

i Xi Xi
2 

1+xi
2 

Yi=1/(1+xi
2
) 

0 0 0 1 1 

1 0,1  0,01  1,01 0,990  

2 0,2 0,04 1,04 0,962 

3 0,3 0,09 1,09 0,917 
4 0,4  0,16  1,16 0,862  

 5 0,5 0,25 1,25 0,800 

6 0,6 0,36 1,36 0,735 

7 0,7 0,49 1,49 0,671 

8 0,8 0,64 1,64 0,610 

9 0.9 0,81 1,81 

 

0,552 

10 1 1 2 0,5 

 

 

 

 

 

 

 

 

1,5     7,099 

  

Hence, by virtue of formula (4.19) :  

2

1

0 1 x

dx


  ≈0,1 (0,5*1,5+7.099) =0,1*7,849 =0,7854981. 

For comp 
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arison, find the value given by the integral formula of Newton - Leibniz (to four 

decimal digits faithful): 

 

2

1

0 1 x

dx


  =arctagx 1

0
 =arctgl—arctg 0= 0,7854. 

 

Thus, in this case the formula trapezoids gave a more accurate result. The error 

here is ΔI2=-0.00042 (about 0.054%).  

Formula by Simpson. To build a three-point quadrature 

formula with equidistant nodes to calculate an 

approximate value 




1

1

)(
i

i

x

x

dxxf , where  f(х) — continuous 

on   [хi-1;хi+1] together with its derivatives up to fourth 

order inclusive, you can use interpolation Lagrange 

polynomial 2nd order, the schedule of which passes 

through the point:                                                                    Figure 4.4.    

 

Мі-1(хi-1; f(хi-1)), Мі(хi; f(xi)) іМі+1 (хs+1;f (хi+1 h)) 

 

and integrate it over x in the range of  хi-1 до хi+1, to xi+1-xi=xi-xi-1=h.  

The unit area can be calculated by using the definite integral: 
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After these calculations for each elementary segment {xi-1,xi+1}(і=1,2,…,n), 

summarize the equations: 

 

S=1/3*h(уо+4y1+2y2+4y3+2y4+. . . . + 2уn-2 + 4уn-1, + уn). 4.22) 

 

Thus, the formula can be written as: 

 

])(2)(4[
3

)( 2421310 nnn

b

a

yyyyyyyy
h

dxxf    +R(f)

 (4.23) 
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This is Simpson's quadrature formula or formula with remainder term parabolas. 

It is exact for polynomials of the third degree, for the fourth order derivative of 

this polynomial is zero. 

Assessment absolute error of numerical integration formula Simpson: 

 

│R(f)│ 444

4

2880

5)(

180
M

n

ab
M
ab

h

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 ,    (4.24) 

where 

M4= )(max )4(

],[
xf

ba
,   h= (b - а)/n 

Example 3. Simpson's rule to calculate the integral 2

1

0 1 x

dx


  

All calculations will be carried out in Table 4.3 

Table 4.3 

i Xi 

Yi=1/(1+xi
2
) 

i=0,   i=10 Непарні i Парні i  

0 0 1   

1 0,1   0,990   

2 0,2   0,962 

3 0,3  0,917  
4 0,4    0,862  

5 0,5  0,800  

6 0,6   0,735 

7 0,7  0,671  

8 0,8   0,610 

9 0.9  0,552  

10 1 0,5   

 

Find the value of the integral in formula (4.23): 

 

785398.0]5.0)610.0735.0862.0962.0(2

)552.0671.0800.0917.0990.0(41[
3

1.0
)(





b

a

dxxf  

If we compare the results of calculations of the integral obtained by three 

different methods then you can conclude the following: 

Simpson's rule has higher accuracy; For Simpson's rule requires almost half the 

table of the function, because the method of rectangles need additional data in 
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secondary points. 

Compare and practical error of quadrature formulas. Generalized formula 

trapezoids and Simpson - a formula of closed type. Medium Rectangle - open, 

and left and right rectangles - napivzamknutoho and semi-open type. As already 

stated, the exact value of the integral is determined by the formulas: left and 

right box if the integrand has become; rectangles and trapezoids medium if the 

integrand is linear, and the formula Simpson, if the integrand is a polynomial of 

degree not higher on the third. 

The accuracy of the quadrature formula is characterized order remainder term 

R(f) regarding the degree of integration step h. From formulas (4.13), (4.14), 

(4.21) and (4.23) shows that the error term R(f) quadrature formulas depends on 

the integration step h і R(f) → 0 (h→0). They say that the error term R(f) the 

order р (р — integer) relatively h, if there is a finite boundary 

 

0
)(

lim
0




M
h

fR
ph

 

 

and record it so: R(f) = O(h
p
). 

Thus, the remaining members formulas left and right rectangles h with respect to 

the first order: R(f) =0(h), medium rectangles and trapezoids - second:: R(f) = 

0(h
2
), and Simpson – fourth : R(f)=0(h

4
). Quadrature formulas considered the 

better, the more the order of the remaining member R(f). With the previously 

quadrature formula is the most accurate formula Simpson, and the least accurate 

- formulas left and right rectangles. Accuracy formulas rectangles and trapezoids 

medium identical. 

As noted above, sometimes estimate the error term quadrature formula is 

difficult or impossible, such as when asked function graphically or tabular and 

analytical expression of the unknown, or when asked difficult analytical 

function expression and its derivatives is difficult to assess. But if a certain order 

derivative is found, then evaluate it modulo the interval of integration is always 

possible by building using a computer spreadsheet values of the derivative. 

However, to estimate the error term R(f) quadrature formula can and if you can 

not evaluate the top module of the original integrand. It is only important to 

know the order remainder term R(f) relative integration step h For this purpose 

the double conversion. 

Let the remaining members of some quadrature formulas of the order, the 

relative integration step A, ie R(f) = 0(h
p
), р Є N. We also assume that the 

original, which is a remainder term R(f) the interval of integration [a; b] changes 
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little, so it can be considered approximately constant. Then the error term R(f) 

come look 

 

R(f)=Mh
p
, 

 

where M - some unknown constant. 

 

If the interval [a; b] divided by n and 2n equal parts 

 

h=
n

ab 
, 

n

abh

22


  

and calculate the approximate values of the quadrature formula In and I2n, 

integral, and the corresponding residual denoted by members Rn(f) and R2n(f), 

then we obtain two equal 

 

I = In + Rn(f) = In + Mh
p
, 

I = I2n + R2n(f) = In + M(h/2)
p
,   (4.25) 

 

This equality can be seen as a linear system of equations I and M. excluded from 

this system I, find the value for M 

 

M=
p

nn

p

p

h

II 



2

12

2
 

 

Substituting this value M in the expression for R2n(f) we obtain 

 

R2n(f)= 
12

2




p

nn II
                (4.26) 

 

Thus, the error term quadrature formula is proportional difference of two 

integral approximate values calculated with the same quadrature formula with 

steps h and h/2. This estimation error quadrature formula called Runge rule. 

Now, if (4.26) to substitute into the second equation of (4.25), we find the 

revised values of the integral 

In,2n=I2n+ 
12

2




p

nn II
                          (4.27) 

 

Calculate the approximate value of the integral formula (4.27) is called by 

Richardson extrapolation. If In≠ I2n then revised values In,2n never lies between In, 
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I2n  . If I2n> In then the formula (4.27) implies that  In,2n > I2n = max {In, I2n} And 

if I2n < In то In,2n < I2n = min {In, I2n} Consequently, the approach In,2n  

determines the approximate In and I2n a transaction extrapolation, because he 

himself method of calculating In,2n , called extrapolation. 

To calculate the approximate value of the integral of accuracy is> 0 by double 

conversion should: 

1. Calculate the approximate value of the integral In and I2n increments h and h/2 

2. Formula (4.26) to calculate the approximate value of the error R2n(f) 

numerical integration. 

3. Compare R2n(f) with e. If |R2n(f) )| < ε, then the formula (4.27) to calculate the 

revised values of the integral In,2n  and the calculation process to stop. If |R2n(f) 

)|> ε, then retaining value I2n, interval [a; b] 4n divided into equal parts and 

calculate R2n(f)  Which again is compared to ε. This process of successive 

doubling of the number of nodes quadrature formula (halving integration step) 

continue until at some step k is executed inequality 

|R2n(f) )| < ε. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5 NUMERAL METHODS OF DECISION Of EQUALIZATIONS 

WITH ONE VARIABLE 

 

5.1 Raising of task 
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Let equalization is set with one variable F(x)=0  (5.1) where a function is 

F(x) certain and continuous on some interval [a; b] 

To decide of equalization means to find the plural of his roots, that such values 

xє[а; b], at which equalization (5.1) will grow into an identity. The root of 

equalization (5.1) is named yet the zero of function of F(x). If a function  is a 

polynomial of algebra, equalization (5.1) is named algebra. If the function of 

F(x) contains trigonometric, to the index or logarithmic functions, then 

equalizations (5.1) name transcendent. Finding the exact meanings of roots of 

the set equalization is possible only for the simplest functions of F(x): 

polynomials of algebra not higher fourth-degree, some polynomials of degree of 

n≥5 and some transcendent functions. 

Universal methods do not exist for finding of the exact meanings of roots of 

equalizations of algebra of degree of p=5 and transcendent equalizations. In 

addition, deciding practical tasks, often reach equalizations with coefficients, 

which are close numbers. Then raising of task of finding of exact roots does not 

make sense. Therefore an important value is acquired by the close methods of 

finding of roots of equalization with sufficient for practice exactness. The task 

of finding of roots of equalization (5.1) is considered deciding, if roots are 

calculated with the beforehand set exactness. 

Let  х* is an exact root, and x   — it close value. Talk, that a root x  is 

calculated with the beforehand set exactness is, if | х*- x | < ε. Let, for example, 

х* є [a; b] and b-a < ε, then numbers but also b are close values of root of х* 

accordingly with a shortage and surplus with exactness is. In this case for a close 

value   with exactness it is possible to take any number from interval [a; b]. 

Finding of close roots of equalization (5.1) consists of two stages:  

1) separation of roots, that finding enough small cuttings-off on each of which 

one is and only one root of equalization;  

2) a calculation of roots is with the beforehand set exactness. The first stage is 

named yet the task of determination of cuttings-off of isolation of roots, and 

second — by clarification of close roots. The first stage is more difficult of the 

second, as for a general case there are enough effective methods of separation of 

roots. For finding of roots with the beforehand set exactness apply methods 

which enable to specify the found approaching of roots. 

Will mark that the scolded equalizations (5.1) can be actual and complex. The 

close methods of calculation only of actual roots of equalization are farther 

considered (5.1). 

Separation of roots. a theorem is about estimation of error of close value of root. 

The root of x* equalization (5.1) is considered separated on a segment [a; b], if 
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x*є[a;b] and on this segment this equalization does not have other roots. To 

separate the scolded equalizations (5.1), it is needed to break up the range of 

definition of this equalization on intervals on each of which one is and only one 

root or there is not a single root. Separate roots graphic and analytical methods, 

and also method of linear search. For the separation of roots build the chart of 

function of у=F(х) a graphic method and find intersections chart with abscise 

axis and ends of cuttings-off of isolation of roots. 

The analytical method of separation of roots is based on theorems from the 

course of mathematical analysis. Will formulate them.  

Theorem 1 (theorem of existence of root). If a function is continuous on [a;b] 

and acquires the vidrizka values of opposite signs on the ends of it, that F(a) 

F(b) <0, inwardly segment [a;b] exists even one root of equalization of F(х)= 0. 

Will mark that a theorem does not give an answer for a question about the 

amount of roots of equalization (5.1), which 

belong [a; b]. At implementation of terms of 

theorem of equalization can have a few roots. 

On Fig.7.1 a plot of function of у=F(х) is listed, 

which satisfies all requirements of theorem 1 /                       

    Figure 5.1.                        and it had 4 zeros on [a;b]. In small enough near  

points, applying the xz, theorem of existence of root is impossible, because in 

transition from left to right through a point the x3 sign of function of F(х) does 

not change. A point of хз is a multiple root of equalization (5.1) and it can not 

be separated, using a theorem 1. Therefore will consider farther, that  F'(х)≠ 0 is 

for all х є [a; b]. 

Theorem 2 (theorem of existence and unicity of root). If the function of F(x), 

continuous and differentiated on [a; b], acquires the vidrizka values of different 

signs on the ends of it, and the derivative of F'(x) keeps a permanent sign 

inwardly vidrizka [a; b], equalization of F(х)= 0 on this segment has a root, thus 

unique.  

In accordance with theorems 1 and 2 algorithms of separation of roots of 

equalization (5.1) can be formulated so: 

1. To find the range of definition of equalization.  

2. To find the critical points of function of F(х).  

3. To write down the intervals of monotony of function of F(х).  

4. To define the sign of function of F(х) on the ends of intervals of monotony.  

5. To define segments on the ends of which the function of F(х) acquires the 

values of opposite signs.  

6. If necessary to narrow the found segments of isolation of roots. 
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Example 1. To separate the scolded equalizations of x3-x-1=0. 

 Function of f(x)=x3-х-1 and its derivative, f '(x)=Зх2—1, continuous on all 

numerical wasp. Will define the intervals of monotony of function of f(x). For 

this purpose will decide equalization of f '(x)=Зх2—1=0. 

His roots  

x1 =
3

3


 і x2 =
3

3  . 

 

Consequently, the intervals of monotony of function of f(x) are intervals  

 

(- ; 
3

3


)     ( 
3

3


 ; 
3

3   )    (
3

3  ; ) 

Thus  

)(lim xf
x 

 =
x

lim  x
3
-х—1 = - 

f(
3

3


 )<0,   f(
3

3  )<0 

)(lim xf
x 

 =
x

lim  x
3
-х—1 = + 

 

Consequently, intervals of monotony  

 

(- ; 
3

3


)     ( 
3

3


 ; 
3

3   ) 

 

does not contain the roots of this equalization, because function of f(х)=х3-х-1 

does not change a sign on these intervals, on an interval (
3

3  ;) located it 

unique. 

From the found endless interval will select a segment which contains the unique 

root of equalization now. For this purpose it is enough directly to check up the 

sign of function of f(x)=x3-х-1 in belongings (
3

3  ;)  celochislennikh points. 

 

Have   f(
3

3  )<0, f(1)= 1-1-1 <0, f(2)=8-2-1>0 
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Fig. 5.2 

Consequently, the unique actual root of this equalization lies on a segment [1, 

2].  Set the problem it is decided . Subsequent narrowing of granic' of the found 

interval - it already is a task about clarification of root. 

 

5.2 Clarification of root by method of division of vidrizka in half 

 

The method of division of vidrizka is in half (or method of dichotomy) 

applicable for clarification of root of equalization of F(х)=0 with the beforehand 

set exactness, possible for this Electronic calculable machine, if the function of 

F(х) satisfies the terms of theorem 2. 

Will designate through х is the exact meaning of root of equalization (5.1) on a 

segment [a;b], and ε — it maximum absolute error. Essence of method is in that 

a segment [a;b] is gone fifty-fifty the 

point of с0=(a+b)/2  and calculate F(c0). If 

F(c0)= 0, х=с0 is the exact meaning of 

root. If F(c0)≠ 0, but b - а < 2ε, | X*- с0| <ε 

and a value of х=с0 will be the sought 

after close root. If F(c0)≠ 0 and b-a >2ε, 

then examine that of two cuttings-off 

[а;с0]  and [с0;b]. On ends [с0;b] the 

function of F(х) acquires the values of 

opposite signs, will designate this 

segment [a;b] (7.2). On a segment [a;b] 

the function of F(х) satisfies    / the terms of 

theorem 2. Farther segment [a;b] /2  go the point of c1=(a+b) fifty-fifty and 

meditate similarly, as well as before. 

Thus, after each the iteration a segment which the located root is on diminishes 

twice, that after n iterations it grows  short in 2n times. Does an iteration process 

proceed until the value of function after  a n iteration will not become less for 

the modules of some set number ε. Does not the absolute error of the found root 

exceed thus ε. Methods of dichotomy easily realized on Electronic calculable 

machine, but needs considerable volume of calculations, to attain high exactness 

of close root. 

The program of method has cyclic character. In the program at every passing of 

cycle the series of commands 

с=(а+b)/2       (5.2) 
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If F(a)F(b) <0 b:=c differently a:=с all. Reiteration of commands of cycle is 

continued until one of terms of F(х) will not be executed F(с) = 0 or b-a < 2 є. 

Example 1. In half  to specify the root of equalization of x3-x-1=0 the method of 

division of interval, separated on a segment [1, 2]. 
 

f(x)=x
3
-x-1, a=1,b=2,    

с0=(a+b)/2=(1+2)/2=1.5. 

f(1)=-1<0, f(1,5)=0,875>0, f(2)=5>0. 
 

Because the sign of function of f(x) changes on a segment [1; 1,5] a=1, 

b=c0=l,5. 

 

с1=(a+b)/2=(1+1.5)/2=1.25. 

f(1,25)=1,25
3
-1,25-1=-0,296875 

 

If f(с1) ≠ 0 and 1,5-1 > 2є, then examine that of two cuttings-off [1;1,25] and 

[1,25;1,5], on the ends of which the function of f(х) acquires the values of 

opposite signs. Will designate this segment [1,25;1,5]. 

 

с2=(a+b)/2=(1,25+1.5)/2=1.375. 

f(1,375)=1,375
3
-1,375-1=0,224609375 

 

Then will consider a segment [1,25;1,375]:     

 

с3=(a+b)/2=(1,25+1.375)/2=1,3125 

 

f(1,3125)=1,3125
3
-1,3125-1=-0,051513671875 

 

An iteration process proceeds until )( kcf  

In the method  of division of interval in half position of point of sk is 

determined regardless of properties of function of f(x) of -left part of the set 

equalization. Naturally to expect that the account of properties of this function 

must improve the got approaching. 

 

5.3 Method of Newton (method of tangents) 
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 Fig. 5.3 

The idea  of method consists in that a tangent is conducted to the curve in = F 

(х) at х=с and an intersection tangent 

is searched with abscise axis. Thus 

not necessarily to set a segment 

[a,b]which contains the root of 

equalization (5.1), but it is enough 

only to find some initial approaching 

of root of х=с0, in which  

 

.  . …         F(c0)F"(c0)>0/ 

 

Equalization of tangent, conducted to 

the curve of у=F(x) in a point М0  

with co-ordinates с0 і F(co), looks like:  

 

у-F(co)=F' (с0) . 

 

 

From here will find the following approaching of root of c1 as abscissa 

intersection tangent with the axis of 0х  (у =0): с1=с0-F(c0)/F’(c0) 

Like there can be the found and next approaching as intersections tangents 

with abscise axis, conducted in the points  of M1, M2, and so further (7.3). A 

formula looks like for the n+1-first approaching 

 

cn+1=cn-F(cn)/F’(cn).                             (5.3) 

 

The sufficient terms of convergence of method of Newton are given by such 

theorem. 

Theorem. Let on a segment [a;b] the function of F(x) has continuous with 

permanent signs derivatives  

F'(x) ≠ 0,F''(x)≠  0 і F(a)F(b) < 0. 

 

Then there is such okil Rа;b] root х* equalization F(x) = 0 that for any 

sequence ck}, calculated on a formula (5.3), coincides to х*. 

Will estimate speed of convergence of method of Newton. 

 It is possible to prove that for the method of Newton just estimation 

/ck - x*/ 
2

1

1

2

2
 kk cc

m

M
, 
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where     M2=  
)(

;

max
xf

bax



,                 m1=  

)(
;

min
xf

bax



 

 

From this estimation evidently, that for achievement of the set exactness 

   an iteration process needs to be continued until for two progressive 

approximations of ck and ck-1will not be executed inequality 

 

/ck – ck-1/ 
2

12

M

m
  

 

If on a segment [a;b] just inequality of М2<2т1 it can make off an 

iteration  process, when a condition is executed  /ck – ck-1/  . 

Advantage of method of Newton is before the method of iterations in that it has 

higher speed of convergence. Yes, a root of x* is [2;3 ] equalization of х
3
 - 2х -5 

=0  with exactness ε=10
-6

 and ε=10
-9

 by the method of Newton was calculated 

after five and six iterations accordingly, while it was calculated the method of 

iteration no less than for six and ten iterations accordingly. 

From a formula (5.3) evidently, that than greater value f(x) at an okoli root, the 

a less amendment is added to the previous approaching. Therefore comfortably 

to apply the method of Newton then, when at the okoli root of graphic arts of 

function y = f(x) has a considerable steepness. It is in addition, possible to find 

the method of Newton not only actual roots equalizations but also complex. The 

method of Newton easily spreads and on rozv''yazuvannya systems of nonlinear 

equalizations with many unknown.  

The lack of method of Newton is that on every iteration it is needed to 

calculate not only the value of function of f(x) but also value of its derivative. A 

calculation of derivative of f'' (x) can be considerably more difficult from the 

calculation of f(x). 

Example 2. By the method of tangents to specify the root of equalization  of x3-

x-1=0,viddileniy on a segment [1, 2]. 

Have f(x)=x
3
-x-1, f'(x)=Зх

2
-1, f‖(x)=6.  

Because on the segment [1, 2] of f‖(x) >0, a tangent needs to be taken in the 

right end of interval (that x=b=2, where f(2)=5>0). Yet not calculating c, maybe, 

that a point of c will be the right end of new segment [a1, b1]  (а<xо<c, a1=a, b 

1=с). Thinking  c=2, obsessed    f’(2)=11 and farther on a formula cn+1=cn-

f(cn)/f’(cn):  c=2-
11

5 =1.6 
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The close value of c is taken with surplus, because c>x0.  A new segment 

is guilty to be [1; 1,6] (a1=a=1, b 1=c=l,6). 

We specified the root of equalization, substituted for one of ends of weekend the 

vidrizka [a, b] point of c, more  near to root. Obviously, a greater effect can be 

will attain at approaching to root simultaneously c of two sides. It is arrived at 

application of the combined methods. 

 

5.4 A method of chords 

 

Method of chords — one of widespread iteration methods. It is yet named the 

method of linear interpolation, method of proportional parts.  Let equalization of 

f(х) is set= 0, where f(х) on a segment [a;b] has continuous derivatives of the 

first and second orders, which keep permanent signs on this segment, and f(a) 

f(b) < 0, that the root of х* equalization is separated on [a;b]. 

An idea of method of chords is in that on a small enough segment the arc of 

curve of у=f(x) is replaced a chord and abscissa of intersection chord with an 

axis Oh is 

 

 

by the close value of root.  

Let for definiteness f(x) > 0. f'(x) > 0, f(a) < 0. f(b) > 0 (7.4, а). 

 Figure 5.4 
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Will take for the initial approaching of the sought after root the х* value of x0= 

а. Through the points of A0 and In will conduct a chord 

 

)()(

)(

afbf

afy

ab

ax









 

 

and for the first approaching of root of х* will take the abscissa of x1 

intersection chord with an axis Oх. Putting y=0, x=x1 we will get 

)()(

))((

1 afbf

abaf
ax




    or   

)()(

))((
1

afbf

abbf
bx




            (5.4) 

 

A new segment which separates a root can be defined, comparing the signs of f 

(а), f (х1) and f (b). Obviously, that point of x1 nearer to the point of х*, what 

and, if у'у" > 0 (see rice. 7.4,a), and a segment which separates a root will be 

[х1,b],u to the opposite case, if у'у" > 0 (see ris.7.4, in),  a segment which 

separates a root will be [а,х1]. 

An abscissa of х2 intersection chord of A1В will be the second approaching of 

root. Continuing this process without restriction, will get the sequence of хо, х1, 

х2, ..., хn, ... close values of root of x* of this equalization. 

For хк+1, if  у'(х)у"(х) > 0 have: 

 

)()(

))((

1
k

kk
k

xfbf

xbxf
x

k
x







         к=0,1,2,…  (5.5) 

 

If  у'(х)у"(х) < 0 , then for хк+1 it is possible to write down a formula 

 

)()(

))((

1 afxf

axxf
x

k
x

k

kk
k







,   к=0,1,2,…   (5.6) 

 

The sufficient terms of convergence of method of chords are given by such 

theorem. 

Theorem. Let on a segment [a;b] the function of f(x) is continuous 

together with the derivatives to the second order inclusive, thus f(a) f(b)< 0, and 

the derivatives of f'(x) і f''(х) keep permanent signs on [and;b], then there is such 

okil root of kh* equalization of f(x)= 0, that for any initial approaching of kho 

from it an okolu sequence [хk], calculated on a formula (5.5) or (5.6), will 

coincide to Cornu of x*. 

For the estimation of error it is possible to take advantage of formula 
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/хk - x*/ 1

1

1 1




 kk xx
m
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, 

де     M2=  
)(

;

max
xf

bax



,                 m1=  
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xf

bax
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
 

 

Consequently, root of х* equalization of f(x)=0 it will be found the method of 

chords with the beforehand set exactness is, if for two progressive 

approximations of хk.і хk-1 will be carried out inequality 

 


11

1
1

mM

m
xx kk


  . 

 

Example 3. By the method of chords to specify the root of equalization  of x
3
-x-

1=0,viddileniy on a segment [1,2]. 

              f(x)=x
3
-x-1, f'(x)=Зх

2
—1, f”(x)=6. 

Because on a segment [1, 2] have f”(x)>0, f(1)<0, f(2)>0, point х1, it is on a 

formula (5.4) 

 

)1()2(

)12)(1(
1

1 ff

f
x




  =1- )1(

)1(5

12




  =1.1, 

 

it will be the left end of new segment [a1, b1] (х1<x*<b, a1=х1, b1=b. 

Will notice that the close value of s is taken with failing, because х1<х*, and at 

rounding off with surplus there is a danger to «step» over through a root. As it 

costs now to take a segment [a1, b1] segment [1,1; 2]. 

 

5.5 Combined method of tangents and chords 

 

Characteristic feature of methods tangent and chords and, that the sequences of 

their approaching are monotonous. Thus, if for this equalization the sequence of 

approaching of method of chords droningly descending, sequence of 

approaching of method of tangents — monotonous growing, and vice versa. 

Simultaneous application of these methods enables to approach root, 

equalization from two sides, reaching approaching with a shortage and surplus 
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 Will consider equalization f(x) =0, root of which х* є [а;b]. Let, for example,   

f(x) > 0, f'(x) > 0, f(а) < 0, f(b)>0 (рис. 7.5). In this 

case for the initial approaching in the method of 

chords choose the point of x = a, and in the method 

of tangents — point of b. On a segment [a;b] apply 

the method of tangents and chords (at first tangents, 

and then chords). In the total reach the new 

approaching of а1, b1 and the initial segment of 

isolation of root narrowed. For finding of the new 

approaching apply the method of tangents and 

chords already on a segment [а1;b1]. In the total does 

reach approaching of а2 and b2 accordingly, thus [а2;b2] [a1; b1]  [а;b]. Is such 

process continued until length of vidrizka [ak;bk] will become less or will equal a 

size 2ε, where ε it is the beforehand set exactness of root. 

For  the sought after value of root x  take the half-sadness of approaching ak and 

b k, that x  = 0,5(ak + bk), and their half-difference will give the module 

maximum absolute error of close root, that 

 

kk baxx  5,0*  

 

Will mark that the at every step combined method for the immobile end of s in 

the formula of method of chords it is needed to take approaching, calculated 

thereon step after a formula, tangents.  

The formulas of the combined method of tangents and chords look like 

 

bk+1=bk-F(bk)/F’(bk),       k=0,1,2…                    (5.7) 
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1

1







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kk

kkk
kk

bfaf

baaf
aa ,   k=0,1,2…                  (5.8) 

 

For the initial approaching of bo in the formula (5.7) of method of 

tangents take that of ends of segment a [a;b] in which value of function of f(x) 

and it flexon have identical signs, then the opposite end of segment [a;b] is 

taken for the initial approaching of ао in the formula (5.8) of method of chords. 

Due to original combination of methods tangent and chords the combined 

method has higher speed of convergence, than methods of chords and tangents 

are separately taken. Yes, for equalization of х
3
-2х-5= 0 his root of x*є [2;3 ] 

within 10
-6

 and 10
-9

  it is calculated the combined method for two and three 

Fig. 5.5 
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iterations accordingly, while for the method of tangents it is needed it was five 

and six iterations accordingly, and for the method of chords — twelve and 

nineteenth iterations accordingly. 

Example 4. By the method of chords and tangents to specify the root of 

equalization  of x
3
-x-1=0, separated on a segment [1,2].   

On a segment [1, 2] have 

 

f(x)=x
3
-x-1,  f(1)=-1<0,    f(2)=5>0; 

f'(x)=Зх
2
-1, f”(x)=6>0. 

 

Consequently, 
1

a  it is needed to calculate on a formula  

)()(

))((

1 afbf

abaf
aa




  — method of chords, b1- on a formula   b1=b-F(b)/F’(b)- 

method of tangents. Taking the results of calculations for  to the formulas from 

examples 3 and 4, obsessed, that  segment [a1, b1]   there must be  a segment 

[1,1; 1,6]. 

Remark. In this case combination of method of chords with  the method of 

division of segment in half would give more narrow segment [1,1; 1,5]. But in 

general case  of combining these two methods can not be specified terms which 

provide approaching to root from two sides. It is investigation of that, as 

specified already, method of distributing of segment in half not decide with the 

conduct of function of f(x) of -left part of the set equalization. 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6 SOLVING SYSTEMS OF LINEAR ALGEBRAIC 

EQUATIONS STATEMENT OF THE PROBLEM 

 

6.1 Let the system of n linear equations in n variables 
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i

n

j

jij bxa 
1

 (і = 1.2,...n).                    (6.1) 

 

System (6.1) can be written as a matrix equation 

АХ=В,                            (6.2) 

 

Ordered set of n numbers c1, c2, ..., cn, which, when substituted in (6.1) instead 

of x1, x2, ..., xn, converts all equations in the correct numerical equality, called 

the solution of system (6.1). If the determinant of the system (6.1) =detA0 it 

has a unique solution, it will be calculated by Kramer 

 

A

A
x k
k

det

det
     (к=1,…,n)     (6.3) 

 

where the matrix Ak take out from the matrix A, replacing it with the k-th 

column column terms. Cramer formulas are of great theoretical significance, but 

because of the large amount of computational work was effective in the 

numerical solution of linear systems. These formulas should calculate the value 

of (n + 1) th determinants of order n, for which perform a significant number of 

arithmetic operations. Methods for solving systems of linear equations can be 

divided into two groups: precise and iterative Exactly call these methods allow 

you to find the exact solution of system (6.1) by executing finite number of 

arithmetic operations on the assumption that all calculations are performed 

exactly (without rounding), and the coefficients of the system and free members 

- the exact number. In practice, all calculations are performed with a limited 

number of decimal places, and irrational coefficients and free terms, if any, are 

replaced by rational numbers. Therefore, in the calculations resorted to 

rounding, which means that decisions which are calculated using exact methods 

actually are approximate numbers of certain errors (rounding errors). To include 

accurate method Gauss method of square roots, etc. Cramer rule. Iterative call 

these methods allow to find an approximate solution of system (6.1) with the 

specified accuracy in advance by performing finite number of arithmetic 

operations, although most computations can be carried out without rounding and 

rates and terms of the system to be accurate numbers. The exact solution of 

system (6.1) using iterative methods can be found only in theory as border 

convergent infinite process. Solving the system of equations iterative methods, 

in addition to rounding errors, we must also take into account the level of 
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accuracy of the method. By the iterative method include iteration method Seidel 

and others. In exploring the various issues of economy, science, technology, etc. 

have to solve a system of linear algebraic equations. In particular, such systems 

reduces the numerical solution of differential and integral equations. In such 

systems, the coefficients and free terms equations - approximate number. This 

leads to additional (so-called fatal) errors that must be considered in the process 

of calculation and rounding the final result. The coefficients of linear systems 

that arise during the processing of the experimental results misspelled 

observations. If the coefficients of system performance formulas, the calculation 

of their results in rounding errors. If the system of equations in the machine 

memory even add exactly is in the process of solving computer must have 

rounding errors that can not affect the accuracy of the solution. However, if the 

matrix A of the system (6.2) almost degenerate, we can expect that small 

changes in the coefficients and (or) free states also lead to significant changes in 

its interpretation. If small perturbations of coefficients and (or) the terms of the 

system (6.1) is very disturbing its solution, the following system of equations 

called poorly determined. Conversely, if a small perturbation coefficients and 

(or) the terms of the system (6.1) was disturbing its solution, then a system 

called well conditioned. An indication of poor conditioning system of linear 

equations is its almost vyrodzhenist. In other words, if the value of the 

determinant of a rather small compared to its coefficients, the system is close to 

degenerate (special). Then only considered such a system of linear equations 

that are not degenerate (special), that their determinant is not zero, is a well-

defined, ie the determinant of the system is of no lower order than its 

coefficients and coefficients and terms of the system - the exact number. 

 

6.2 Method of successive exclusion of variables (Gauss method) 

 

The simplest method for solving systems of linear algebraic equations method is 

consistent exclusion of variables or method of Gauss. There are several versions 

of this method. Consider the scheme of a single division for which the system 

solved in two stages. In the first stage the original system of equations is 

equivalent to deceive her system triangular shape. This conversion process is 

called direct way. In the second stage, called reverse course, find the solution of 

linear systems of equations triangular shape. 

Confine ourselves to a system of three equations with three variables 
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













3333232131

2323222121

1313212111

bxaxaxa

bxaxaxa

bxaxaxa

                         (6.4) 

 

 key which is not zero. Let deeds a11 0 (this can always be achieved 

permutation equations system for  0, so there is always this equation, which 

a1i 0). Divide the coefficients of the first equation of system (6.4), including 

the free term, the coefficient a11 recieve new equation 

)1(

13

)1(

132

)1(

121 bxaxax                   (6.5) 

111

)1(

1 /aaa jj      (j=2,3,4).                   (6.6) 

 

Exclude now variable x1 of the second and third equations of system (6.4). 

For the equation (6.5), multiply by a factor consistently first a21 and subtract it 

from the second equation of (6.4), and then the a31 and subtract the third 

equation of (6.4). Remove the system of two equations with two variables x2 and 

x3 

 

                                           







)1(

33

)1(

332

)1(

32

)1(

23

)1(

232

)1(

22

bxaxa

bxaxa
                                 (6.7) 

 

where the coefficients )1(

ija calculated by the formulas  

)1(

11

)1(

jiijij aaaa     (і = 2,3; j = 2,3,4).                (6.8) 

Superscript (1) indicates that the coefficients of system (6.4) completed the first 

conversion. 

Then divide the coefficients of the first equation of (6.7) )1(

22a  in  (if )1(

22a = 0, the 

equation permuted places). Remove the equation 

 
)2(

23

)2(

232 bxax                    (6.9) 

where 
)1(

222
)1()2(

2 /aaa jj      (j=3,4).                   (6.10) 

From the system (6.7) exclude variable x2 is the same as x1, system (6.4). 

Remove the equation 
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)2(

33

)2(

33 bxa                    (6.11) 

where 
)2(

2

)1(

32

)1(

3

)2(

3 jjj aaaa      (j=3,4).            (6.12) 

 

From equation (6.11) we have 

)3(

33 bx                    (6.13) 

wherе 
)2(

33

)2()3(

3 /3 abb                     (6.14) 

 

After a three-step transformation we obtain the system of equations triangular 

shape 















)3(

3

)2(

3

)2(

2

)1(

3

)1(

2

)1(

1

3

223

11312

bx

bxax

bxaxax

                                 (6.15) 

 

which is equivalent to the system (6.4). 

This direct method of Gauss course completed. The described process 

transformation system (6.4) is equivalent to her system (6.15) can be done if the 

conditions a110,  )1(

22a  0, )2(

33a  0 .  

Proximity diagonal coefficients of system (6.4) to zero can lead to significant 

loss of accuracy. 

Since the system (6.4) and (6.15) are equivalent, then the solution of 

system (6.4) is a solution of system (6.15), which can be written formulas 

 















)3(

3

3

)2()2(

2

3

)1(

2

)1()1(

1

3

232

13121

bx

xabx

xaxabx

     (6.16) 

 

This complete reversal method Gauss. 

Since the transformation of equations is actually turning them coefficients 

of the variables and absolute terms, for the implementation of reforms do not 

need to write the system. Enough to write only the matrix of coefficients and 

free terms upon them to fulfill the above transformation. 
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6.3 Simple Iteration Method 

 

Application of Gauss for solving systems of linear equations with many 

unknowns rather cumbersome. In addition, the number of unknowns can be so 

great that the coefficients of the system is not always possible to place in 

memory computers. Then apply it to solving method Gauss did not. In these 

cases, solve the system of iterative methods. Consider the simple iteration 

method. Let the given system of linear equations 

 
















nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

...

.....................................

...

...

2211

22222221

11212111

                      (6.17) 

or in matrix form • 

Ах=b,                             (6.18) 

wherе   























nnnn

n

n

aaa

aaa

aaa

A

...

............

...

...

21

22221

11211

,            x=
















3

2

1

x

x

x

,      b=
















3

2

1

b

b

b

. 

 

Let diagonal elements aii (i = 1, 2, ..., n) matrix A nonzero. Then, solving the 

first equation of system (6.17) with respect to x1, and the second - a relatively x2, 

etc., we obtain a system 


















 nnnnnnn

nn

nn

xxxx

xxxx

xxxx






11,2211

223231212

113132121

...

.....................................

...

....

              (6.19)  

wherе   














ji

ji
a

a

ii

ij

ij

,0

,
               

ii

i
i
a

b

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It solve the method of successive approximations. For the initial approximation 

we take, for example, column free members, that is x 
(o)

 = β. 

Then consistently find 

i

n

j

k

jij

k

i xx  




1

)()1(        i=1,2,…,n;   k=0,1,2,…           (6.20) 

 

If the sequence of approximations x
(0)

,x
(1)

, .....,x
(k)

,… a border  х*= )(lim k

k
x


, then 

the border will be a solution of system (6.19). 

The method of successive approximations determined by formulas (6.20) is 

called by a simple iteration method or iteration. The method is simple iteration 

should end by becoming fair inequality 

 


1

1)1()(

1

1
max

l

l
xx k

i

k

i
ni


 



 

 

where ε - pre-specified accuracy approximations. Theorem. If the elements of 

the matrix A satisfying one of the conditions 

1
1

1

2

1
2





n

ji
j

ij

n

i ii

a
a

,         ii

n

ji
j

ij aa 

1

        i=1,.2,...,n; 

or     

1max
1

1







n

ji
j ji

ij

nj a

a

 
 

the system of equations (8.18) has a unique solution x * = (x 1*, x 2* , ..., x n* ), 

which can be obtained as a limit of the sequence {x (k)}, constructed by the 

formula 

 

)(
1

1

)1()( 



n

j

k

jiji

ii

k

i xab
a

x    i=1,2,…n;    k=1,2,…  (6.21) 

 

 

starting from an arbitrary initial approximation x 
(0)

 = (х
(0)

1, х
(0)

2,...,x
(0)

n).  
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Non-degenerate system of linear equations identical transformations can always 

be reduced to a system for which operated sufficient conditions for the 

convergence of the method of iterations. For example, let us have a system 

 















18

10256

923

825

321

321

321

xxx

xxx

xxx

 
 

that does not have the conditions of Theorem 2. Transform the system to the 

form in which the main diagonal elements modules would be greater than the 

sum of modules corresponding lines of other elements. Construct a new system 

in which the first and third equations are respectively first and second equation 

of the system whose coefficients satisfy the condition 

 

ii

n

ji
j

ij aa 

1

     i=1,3. 

 

The second equation we obtain a new system, if the third equation of system 

subtract first. As a result, the system will have 

 















18923

24

825

321

21

321

xxx

xx

xxx

 

coefficients which satisfy the conditions of the theorem. This system is easily 

reduced to normal form 

 




















2
9

2

3

1
2

1
4
4

1
5

8

5

2

5

1

213

12

321

xxx

xx

xxx

     (6.22) 
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performed for which sufficient conditions for the convergence of the method of 

iterations. 

Method of iterations easily implemented on a computer. The algorithm of 

solution of the form (6.19) provides: 

1. Calculate the value  l= 





n

ji
j

ij
nj

a
1

1
max . 

2. Test conditions l <1. If this condition is not met, then the calculation 

process ends and a message is displayed that the method can not be 

applied. 

3. Calculation of acceptable error 
l

l

1

1  

4. The choice of initial approximation х
(0)

i =βi (і = 1,2,...,n). 

5. Calculate the following approximation уі (і = 1,2,...,n) because previous хі 

(і = 1,2,...,n). 

 

6. The test condition max | уі — хі | < ε. If this condition is satisfied, 1<i<n 

the process of iteration is completed, otherwise proceed to perform p.5. 

 

Example 1 iteration method to find a solution of the system 

 

Х1= 0,0092Х1 - 0,0061Х2 + 0,0701Х3 + 0,6636 

Х2=-0,0643Х1+0,0755Х2 -0,0324Х3-0,8172 

Х3= - 0,0210Х1 - 0,0130Х2 + 0,0817Х3 - 1,6411 

   

assuming that the absolute error coefficient terms of the system do not exceed 

0.00005. 

 

By approaching zero solution accept terms of the system: 

 

Х1
(0)

=0,6636, Х2
(0)

=- 0,8172, Х3
(0)

=-1,6411. 

 

The following approximation is calculated by the formula 

 

Х1
(1)

= 0,0092Х1
(0)

 - 0,0061Х2
(0)

 + 0,0701Х3 
(0)

+ 0,6636 

Х2
(1)

=-0,0643Х1
(0)

+0,0755Х2 
(0)

—0,0324Х3
(0)

—0,8172 

Х3
(1)

= — 0,0210Х1
(0)

 - 0,0130Х2
(0)

 + 0,0817Х3
(0)

 - 1,6411 

or 
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Х1
(1)

= 0,0092*0.6636 - 0,0061*(-0.8172) + 0,0701*(-1.6411)+ 0,6636=0.55974 

Х2
(1)

=-0,0643*0.6636+0,0755*(-0.8172)—0,0324*(-1.6411)-0,8172=-0.86838 

Х3
(1)

= - 0,0210*0,6636 -0,0130* (-0,8172)+0,0817*(-1,6411)-1,6411 =-1,7784 

 

Similarly compute X1
(2)

 , X2 
(2)

, X3
(2)

, etc. The results of calculations record in 

the table 

 

Table 6.1 

 

Approximatel

y of 

 

 

Odds systems 

 

Free 

members 

 
Х1 Х2 Х3 

 0.0092 

-

0,0643 

-

0,0210 

 

-0,0061 

0,0755 

-0.0130 

 

0,0701 

-0.0324 

0,0817 

 

0,6636 

-0.8172 

-1.6411 

 Хi
(0)

 

 

0,6636 

 

-0,8172 

 

-1,6411 

 

 
Хi

(1)
 

 

0,5597

4 

 

-0.86838 

 

-1,77849 

 

 

 Хi
(2)

 

х^ 

 

0,5493

7 

 

-0,86119 

 

-1,78657 

 

 

 Хi
(3)

 

 

 

0,5486

6 

 

-0,85966 

 

-1,78740 

 

 

 Хi
(4)

 

х^ 

 

0,5485

9 

 

-0,85948 

 

-1,78747 

 

 

 Хi
(5)

 

 

0,5485

9 

 

-0,85945 

 

-1,78749 

 

 

 Хi
(6)

 0,5485

9 

-0,85945 -1,78749  

     

 

In this case, the fifth and sixth approximation solution of the same with five 

decimal places. Alternate rounding mark finally have 

X1 =0,5486. Х2 =- 0,8594, Хз =- 1,7875. 

 

6.4  Method seidel 

 

Seidel method - some modification of the method of simple iteration. In the 

method of simple iteration of the calculation components )1()1(

2

)1(

1 ,...,,  K

n

KK xxx  

vector-column )1( Kx  to (k + 1) th step the values )()(

2

)(

1 ,...,, K

n

KK xxx  вектора-

стовпця )(Kx ,calculated in the previous step. Seidel method differs from the 

method of simple iteration only that the calculation (k + 1) th approximation 

components xi captured values x1, x2, ..., xi-1, calculated on the same step. 

Formula for finding successive approximations are of the form 
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i

n

j

k

jj

k xx  




1

)(

1

)1(

1  

………………….. 

i

n

ij

k

jij

i

j

k

jij

k

i xxx  






  )(
1

1

)1()1(     (6.23) 

…………………… 

n

k

nnn

n

j

k

jij

k

i xaxx  




 )(
1

1

)1()1(                   k=0,1,2.... 

 

Note that the sufficient conditions of convergence for the method of 

simple iteration method for the fair and Seidel. 

The program Seidel method differs from the method of simple iteration program 

only a fragment of calculating these approximations. The program includes a 

simple iteration method must simultaneously maintain all previous )(K

ix and next 
)1( K

ix approximation, because the greatest difference | )1( K

ix — )(K

ix |  can be found 

only after iteration step. Using Seidel method, there is no need to store all found 

approaching )(K

ix  (i = 1,2, ..., n), just as they are used for. Because the program 

Seidel method )1( K

ix variable denoted in variable y that stores the calculated 

value by the time )1( K

ix until it prysvoyitsya variable )(K

ix  (in the program it is 

labeled X (I)). 

Seidel method often coincides rather than simple iteration method. For example, 

the solution x1 = 0.052980, -0.486755 = x2, xs = 2.874172 system (8.22) with 

accuracy ε = 10
-6

 by simple iteration found in 20 steps, while it is calculated by 

Seidel in 15 steps. But this is not always the case. There is a system of linear 

equations for which a simple iteration method coincides rather than Seidel 

method. For example, the system 

 









25,06,0

16,05,0

212

211

xxx

xxx
                      (6.24) 

 

terative method matches and its solution x1 = 1.034483, 0.919540 = x2 with 

accuracy ε = 10
-6

 found by 68 steps, and Seidel method were scattered; 

for the system 









25,0

15,0

212

211

xxx

xxx
,            (6.25)  
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method of iteration diverges, and Seidel method matches, and its solution x1 = 2,  

x2 = 0 calculated for 23 iterations. 

Example 2: Solve using the method Haussa- Seidel following system of 

equations: 

                                                  4X1 — Х2 + = 4,   

2X1 + 6X2 — X3=7 

X1+2X2-3X3 = 0. 

 

It is easy to verify that the solution to the following system:  

X1=1, 2X2=1, X3 =1. 

Decision. Express the unknown x1, x2 and x3 respectively the first, second and 

third equations: 

X1
=
 ¼(4+ Х2 - Хз ) 

X2=1/6(7-2X1 + X3) 

X3 =1/3(X1+2X2) 

As an initial approximation (as is common) will take x1
(0)

 =0, x2
(0)

=0, x3
(0)

=0. 

Find the new approach of the unknown:  

 

X1
(1)

= ¼(4+ Х2
(0)

 - Хз 
(0)

)=1/4(4+0-0)=1 

X2
(1)

=1/6(7-2X1
(1)

 + X3
(0)

)=1/6(7-2*1+0)=5/6 

X3
(1)

 =1/3(X1
(0)

+2X2
(0)

)=1/3(1+2*5/6)=8/9 

 

Similarly, calculate the following approximation; 

 

X1
(2)

= ¼(4+ Х2
(1)

 - Хз 
(1)

)=1/4(4+5/6-8/9)=71/72 

 

X2
(2)

=1/6(7-2X1
(2)

 + X3
(1)

)=1/6(7-2*71/72+8/9)=71/72 

X3
(2)

 =1/3(X1
(1)

+2X2
(1)

)=1/3(71/72+2*71/71)=71/72 
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Iterative process can continue until a small difference between the values of 

unknowns in two consecutive iterations. 

The advantage of iterative methods to accurate method of Gauss that the 

computer time required for computation by Gauss proportional to n, and 

iterative methods it is proportional to n per iteration. Therefore, if for solving 

linear systems of equations with n variables n iterative methods require less n 

iterations, these methods have the advantage over the method of Gauss. 

Practical problems often lead to systems of linear equations, which contain 

many zero coefficients. In such cases, iterative methods produce big savings 

computing time. For triangular matrix by using the Gauss-reaching, no longer 

will have zero elements. 

Besides rounding error when using Gauss may lead to false results, while 

minor errors made in the calculation iterative methods do not affect the final 

result. It should be noted that iterative methods make it possible to significantly 

reduce the amount of computer memory needed to store the coefficients of the 

system as approximation for calculating the coefficients xi used only ith 

equation. This is particularly important for solving systems of equations whose 

coefficients do not fit in memory computers.  
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Chapter 7 COMPUTER METHODS SOLUTIONS OF ORDINARY 

DIFFERENTIAL EQUATIONS 

7.1 Statement of the problem 

Often the problem of technology and science mathematically reduced to 

finding the solution of a certain differential equation (or system of equations) 

that satisfies certain initial conditions (Cauchy problem). Integrate this equation 

in a finite unable rare. At the same time obtain the following expression for the 

most part to which the desired function is implicit, and therefore use it 

uncomfortable.  

In practice, used mostly approximate integration of differential equations. 

It allows you to find the approximate solution of the Cauchy problem or a 

certain analytical expression (eg, Taylor series), or as some table values. 

Consider some numerical methods for solving the Cauchy problem for ordinary 

differential equations of the first order derivative with respect unleashed. 

Approximate solution of the Cauchy problem written in the form of a table of 

values. The Cauchy problem is to find the solution y (x) of the differential 

equation 

У'=f(x,y),     (7.1) 

which satisfies the initial condition 

 

y(хо)=y0     (7.2) 

 

Geometric means that we must find the integral curve y (x) of (7.1), which 

passes through the point (xo, уO). 

Cauchy problem (7.1) - (7.2) has a unique solution, such as the conditions of this 

theorem. 

Theorem (Picard). If the function f (x, y) of two variables x and y are continuous 

closed box 

 

  = {(х, у): |х - хо |≤l, |у - уо| ≤l} 

 

centered at (xo, Y0) and satisfies the condition it Lipnytsya the variable y, that 

is, there is a number К> 0 independent of x and y such that 
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|f(х1, У1) -f(x2, У2) |   К|У1 – У2|                                (7.3) 

 

for all points (x1, y1)є  and are (x2, y2)є  are, then there exists a unique 

differentiable function in у= φ (x), which is a solution of the differential 

equation (7.1) satisfying the initial condition (7.2). This solution is defined and 

continuously differentiated at least in the interval [X0-h;X0+ h], 

where 

h=min








M

b
l,  , М = ),(max

),(
yxf

yx 

            (7.4) 

 

Consider the so-called one-step numerical methods for solving the Cauchy 

problem (7.1) - (7.2) where to find the approximate solution at the point x к + 1 

= xк + h, enough to know the solution at the point хк. And because the solution 

of the problem at the point X0 with known initial conditions, these methods 

allow to calculate the value of the solution successively the following points x1 

= х0 + h, x2 = x1 + h, .... With one-step numerical methods consider only Explicit 

Runge-Kutta. Some representatives of these methods are the methods of Euler 

type, which chronologically preceded Runge-Kutta.Further assume that the 

function f (x, y) of (7.1) satisfies the conditions of Theorem Picard. 

Euler method. Let the interval [x0; x0 + l] need to find a numerical solution of 

the Cauchy problem (7.1) - (7.2). For this segment [x0; x0 + l] of  divide by n 

(for simplicity) points equal parts x0, x1, x2, ..., xn = x0 + l, where 

 

xk= хо + kh (k = 0,1,2,..., n), h=
h

l
 . 

 

The value of h is called step numerical integration of the differential equation 

(7.1). 

To solve the problem (7.1) - (7.2) numerically - it means for a given sequence 

xO, x1, х2,..., хп = хо + l, independent variable x and the number V0 find a 

numerical sequence y1, y2, ..., yn  for a given sequence of values of the 

independent variable xk = x0 + kh (k = 0,1, ..., n) to build a table of approximate 

values of the solution 'communication Cauchy problem. 
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 If the approximate solution of problem (7.1) - (7.2) 

at xk known, then After integration equation (7.1) in 

the range from xk to xk+ 1, we find its solution at the 

point of xk + 1 by the formula 

 

            y(xk+1)=y(xk)+ 
1

))(,(
k

k

x

x

dxxyxf .               (7.5) 

 

It is this formula is starting to build many numerical 

methods for solving the problem (7.1) - (7.2). 

Euler method. If the integral on the right side of 

(7.5) calculated by the formula left rectangles, we 

find 

 

           y(xk+1)=y(xk)+hf(xk,y(xk)) + 0(h
2
).          (7.6) 

 

Rejecting the term equality in this order 0 (h2), we 

obtain the estimated formula 

y(xk+1)=y(xk)+hf(xk,yk)  (k = 0,1,2,..,n-l), h= xk+1-xk,    

       (7.7) 

 

called Euler's formula. Hereinafter everywhere yк 

and y (xк) - respectively approximate and the exact 

value of the desired solution of the problem (7.1) - 

(7.2) at the point xк. The difference yк - y (xк)) is 

called the error of the approximate value yк at the 

point x. Since the tangent to the graph of y (x) at the 

point (xк, yк) has slope k, which is equal to the 

original y'k = f (xк, yк), then the equation of the 

tangent to the integral curve y (x) of problem (7.1) - 

(7.2) at the point (xк, yк) will have the form 

у - yk = y'k(x -xk)    or 

у- yk=f(xk, yk) (х - xk). 

This ordinates for yk + 1 point of intersection of the 

tangent with direct x = xk + 1 we obtain the formula 

(7.7).                                                                                             Figure 7.1.  
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This means that each of the segments [xk xk+1], (k=0,1....,n-1) integral curve 

segment replaced approximately tangent to it at the point (xk, yk). If the plane 

Oxy point mark Mk (xk; yk), k = 0,1,2, .... n and combine them in order 

segments, it will get broken (it is called Euler Lohman), which represents 

approximately schedule desired solution ' connection problem (7.1) - (7.2). This 

is the geometric meaning of the Euler method (Fig. 5.1). Note that the error of 

Euler's method at each step is of the order 0 (h
2
). The accuracy of the method is 

fairly small and the transition from point xk to point  xk + 1i. its systematic error 

increases. A flow chart of the algorithm Euler method is presented in Figure 7.2. 

 

 

  

 

 

 

 

 

 

 

 

Improved Euler method. If the integral on the right side of (7.5) calculated by 

the formula medium rectangles, that is the value of the integrand function 

f(x,y(x)) calculate the point 
2

1
k

x =xk+h/2 we find 

 

y(xk+1)=y(xk)+hf(
2

1
k

x ,y(
2

1
k

x )) + 0(h
3
)).            (7.8) 

 

The value of an unknown value function y(
2

1
k

x ))   calculate the formula(7.6) 

with step h / 2 will have 

y(
2

1
k

x )=y(xk)+
2

1
hf(xk,y(xk)) + 0(h

2
) 

Substituting this value y(
2

1
k

x ))   in (7.8), we obtain 

y(xk+1)=y(xk)+hf(
2

1
k

x ,y( kx )+
2

1
hf(xk ,y(xk)) + 0(h

2
))+ 0(h

3
)= 

Figure 7.2 
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=y(xk)+hf(
2

1
k

x ,y( kx )+
2

1
hf(

2

1
k

x  ,y(xk)) + 0(h
3
) 

Dropping this term is proportional to h
3
, will have 

 

  yk+1=yk+hf(
2

1
k

x ,y k )+
2

1
hf(xk ,yk) 

Formulas improved Euler method can be written as 

 

                                            
2

1
k

y =yk+
2

1
hf(xk ,yk                                  (7.9) 

yk+1=yk+hf(
2

1
k

x ,
2

1
k

y )                             (7.10)  

 

Thus, the improved Euler method initially by Euler (equation (7.9)) compute an 

approximate solution 
2

1
k

y  problem (7.1) - (7.2) at 
2

1
k

x =хk+
2

h
 , then the formula 

(7.10) - approximate solution yk + 1 at the point of xk + 1; at every step of 

integrating the right side of the equation (7.1) is calculated twice (at the points 

xk, yk) and (
2

1
k

x ,
2

1
k

y )). 

 

Figure 7.3 – The function plot. 

Geometric means that the interval [xk, хk+1] schedule integral curve of the 

problem (7.1) - (7.2) is replaced by the line segment that passes through the 
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point (xk, yk) and has a slope k =f(
2

1
k

x ;
2

1
k

y ).In other words, the straight line 

(Fig. 5.3) forms with the positive direction of the axis Ox angle 

φ=arctgf(
2

1
k

x ;
2

1
k

y ).As for the point(
2

1
k

x ,
2

1
k

y ), it is the point of intersection of 

the tangent to the integral curve of the problem (7.1) - (7.2) at the point (xk, yk) 

with direct x = xk + h. Accuracyimproved Euler method at every step of the 

order of 0 (h
3
). 

 

7.2 Runge-Kutta 

 

With the advent of computers and the development of numerical 

integration of ordinary differential equations rapid development are the method 

of Runge-Kutta type. Such methods are built up to the 10th order of accuracy 

inclusive. In practice,their computer is widely used because. they: 

 one-step, is to calculate the solution of the problem (7.1) - (7.2) at xk+1  should 

know the solution only at the point xk 

 allow you to perform numerical integration with variable step; 

 especially useful for computer programming,because calculating them is 

cyclical. 

In addition to these methods have advantages and disadvantages. Yes, it is 

very difficult to estimate the error of the approximate solution of problem (7.1) - 

(7.2) for guaranteed well-known local estimation error is largely overstated, but 

because of their practical value is negligible. The disadvantages include the fact 

that it is necessary to calculate the number of points in the right part of equation 

(7.1) (the function f (x, y)) at every step of integration. In an improved method 

for each step of the integration value of the function f (x, y) calculated at two 

points, and Runge-Kutta third and fourth order accuracy of the calculated 

according to three or four points. As for Runge - Kutta, order accuracy which is 

greater than four, the right-hand side of equation (7.1) at every step of 

integration always calculated in points, whose number greater than the order of 

accuracy of the method. The idea of giving this tab. 6.1. 

Tаble 7.1. 

s 2 3 4 5 6 7 8 9 10 

п 2 3 4,5 6 7,8 9 11 14 18 

 

Here s - order accuracy Runge-Kutta,  n- number of points at which the function 

is computed f (x, y) at every step of integration. 
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Then the Cauchy problem (7.1) - (7.2) rozv'yazuvatymemo numerically by the 

Runge-Kutta, order accuracy does not exceed four. Assume that the function f 

(x, y) in the rectangle has continuous partial derivatives up to some order n. 

Then the solution y (x) have continuous derivatives up to the (n + 1) th order and 

for sufficiently small values of h at the point xk + 1 = xk + h, h> 0 can be 

represented as the schedule 

y(xk+1)=y(xk)+hy'(xk)+
!2

2h
y"( kx )+…+

!n

h n
y

(n)
( kx )+O(h

n+1
).   (7.11) 

 

Derivative y
(i)

(xk) (i= 1.2,....,n) y
(i)

(xk) (i= 1.2,....,n) on the right side of (7.11) 

can be expressed in terms of the value of the function f and its partial derivatives 

at the point (xk, yk). 

We have  

 

y'(xk)=f( kx , yk)=f k                         (7.12) 

y"(xk) = f'x.(xk, yk) + y' kf'y(xk, yk) = (f' x + ff' y)k,            (7.13) 

 

where the index k hereinafter means that the corresponding function is 

calculated at the point ( kx , yk). 

Similarly calculate higher order derivatives and, being expressions with 

increasing order much more complicated. Therefore, direct use to calculate their 

approximate value solution У(xk+1) =y(xk + h) at the point xk + 1 formula (7.11) 

is unlikely to be appropriate. 

It should be noted that computer programs developed systems that enable 

the machine to perform independently formal differentiation functions unless 

asked the program to compute the function f (x, y). Thus, there is no need to 

create a program evaluation of derivatives of the function f (x, y).  

However, the cost of computer time to implement these algorithms can 

often be so great that better use numerical methods of integration of ordinary 

differential equations, Runge-Kutta particular. Instead derivatives y
(i)

k 

(і=1.2....,n+1) ,k (and = 1.2 ...., n + 1). within the right of (7.11), Runge 

suggested values approximate solution yk + 1 at the point of xk+1  calculated by 

formulas like: 

yk+1=yk+


r

i

iikw
1

                          (7.14) 
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where function  ki=hf(ci,di) (i=1,2,…,n),  ci=xk+aih, di=yk+




1

1

i

j

jjik  ,  but  

wi,ai,(a1=0) and βij- some steel that nazyvatymemo parameters Runge-Kutta 

formulas. 

The unknown parameters wi, ai, βij determined such that expansion in 

powers of h right-hand side of formula (7.14) coincides with the schedule (7.11) 

to as high degrees h for an arbitrary function f (x, y) and the random integration 

step h. 

Before building design formulas Runge-Kutta introduce the concept of 

order of accuracy of these methods. Let y(xk+1) = y (xk + h) and yk+1 and - 

according exact and approximate solutions of the problem (7.1) - (7.2) at xk+1, 

and the exact solution calculated by the formula (7.11 ) and close - by formula 

(7.14), which after expansion in powers of h can be written as: 

yk+1=yk+ha1+
!2

2h
a2+

!3

3h
 a3+…+ 

)!1(

1





n

h n
 an+1                                  (7.15) 

 

where aі (і=1,2,...) — some numerical coefficients. 

The greatest of the exponents h, at which expansion coefficients (7.11) 

and (7.15) are equal, called the order of accuracy of the approximate method. 

So, if the order of accuracy of the approximate method is s, then it means that 

the decomposition (7.11) and (7.15) coefficients 

a1=y'k, a2= y''k,  аз = y'''k,.... but аs+1≠ y
(s+1)

k\ 

Note that error method one step integration procedure is always one greater than 

the order of accuracy of the method. Therefore, the order of accuracy of the 

method is Euler unit for error method in one step is of order h
2
, and order 

accuracy improved Euler method is two, because the order of the error of these 

methods in one step h
3
. 

Runge-Kutta formulas of first-order accuracy. Let the function f (x, y) in 

the neighborhood of the point (xk, yk) has continuous partial derivatives of the 

first order. Then the solution y (x) of the Cauchy problem in the neighborhood 

of xk have continuous derivatives up to second order inclusive. Therefore, for 

sufficiently small values of h at the point xk = x k + h can be represented as 

powers of h, taking into account (7.12), as follows: 

 

У(хk+1) = y(xk)+hf(xk,yk) + 0(h
2
).               (7.11) 
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Runge-Kutta formulas of first order accuracy build as follows: 

 

yk+1=yk+w1k1                       (7.16) 

 

where k1 =hf(xk,yk), and wi unknown parameter. Expanding the powers of h on 

right side of (7.16), we obtain 

yk+1=yk+hf(xk,yk)w1                  (7.17) 

Equating coefficients at each other h in formulas (7.11) and (7.17), we 

find w1 = 1. Substituting this value w1 in equation (7.16), vpevnyuyemosya that 

formula Runge-Kutta first order accuracy (s = 1) is Euler's formula. The error of 

this method yk+1-yk every step is of order h
2
. 

Formula Runge-Kutta second order accuracy Let a function f (x y) in a 

neighborhood of (xk, yk) has continuous partial derivatives up to second order 

inclusive. Then the solution y (x) of the Cauchy problem (7.1) - (7.2) in a 

neighborhood of xk have continuous derivatives up to third order inclusive. 

Therefore, for sufficiently small values of h at the point xk+1 = x k + h can be 

represented in the form of the expansion in powers of h 

y(xk+1)=y(xk)+hy'(xk)+
!2

2h
y"( kx )+O(h

3
).    (7.18) 

 

Formula Runge-Kutta second order accuracy (s = 2) will look like this: 

yk+1=yk+w1k1 +w2k2    .                     (7.19) 

where 

k1=hf(xk,yk).                             (7.20) 

 

k2= hf(xk+ a2h, yk+β21+k1 ).                   (7.21) 

 

a w1,w2,a2 і β21 unknown parameters that define so that (7.19) was the formula 

of the second order of accuracy (s = 2),  that is the coefficients in the expansion 

(7.18) and (7.19) in a series of h are equal to each other at h and h
2
. 

Features k1 and k2 are laid in a series of h as follows: 

k1=hfk 

k2 = hfk+a2 h 
2

kxf )(  + h
2
 β21 kyff )(  + 0(h

3
). 
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Substituting these expansions k1 and k2 in (7.19), we obtain expansion in powers 

of h (leave only members proportional to h
2
) of the form: 

 

yk+1=yk+h( w1 +w2) fk +  h 
2 
(w2a2 kxf )(  + w2 β21 kyff )(  )+ 0(h

3
).        (7.22) 

 

 Equating the coefficients of hfk,  h 
2

kxf )(  , h
2
 kyff )(   

in formulas (7.18) and (7.22) to determine the four unknown parameters w1, w2, 

a2 and β21 we obtain the algebraic system of three equations like 




















2

1
2

1

1

212

22

21

w

aw

ww

                                          (7.23) 

Since the system (7.23) shows that w2 ≠ 0, a2 ≠ 0, β21 ≠ 0 and  a2= β21. It has an 

infinite set of solutions, depending on one parameter, each formula gives the 

solution of Runge-Kutta second order accuracy. 

If you put w2=
4

3
, тоді w1=

4

1
, a 2=β21= 

3

2
 and formulas (7.19) - (7.21) takes the 

form 

yk+1=yk+
4

1
(k1 +3k2), 

k1=hf(xk,yk),    k2= hf(xk+
3

2
 h, yk+

3

2
k1 ). 

 

Runge-Kutta fourth order accuracy (s = 4) can be constructed similarly to the 

previous ones, though this will require biggest calculations and solving a 

nonlinear system of algebraic equations and complex structure. Accuracy of 

these methods at each step of integration is of the order of h
5
. Most formulas are 

of the form 

yk+1=yk+


4

1i

iikw                                               (7.24)  

where 

k1 = hf(xk, yk), 
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k2 = hf(xk + a2h, yk + β21k1), 

kз = hf(xk + a3h,  yk + β31k1+ β32k2),                               (7.25) 

k4= hf(xk + a4h,. yk + β41k1+ β42k2+ β43k3). 

 

These formulas are 13 unknown parameters wi, ai, βij. 

It is proved that there is an infinite set of formulas of the form (7.24), (7.25), 

which depends on two arbitrary real parameters and a fourth order accuracy. 

We confine ourselves to the following specific examples of formulas that belong 

to this set: 

 

yk+1=yk+
6

1
(k1 +2k2+2k3+k4))   . 

k1=hf(xk,yk). 

k2= hf(xk+
2

1
 h, yk+

2

1
k1 ).           (7.26)  

k3= hf(xk+
2

1
 h, yk+

2

1
k2 ). 

k4= hf(xk+ h, yk+k3 ).      . 

 

This formula is most often used in computational practice. From the 

geometric point of view of formula (7.26) the integral curve of the problem (7.1) 

- (7.2) on the interval [xk, xk +1] replacing line segment that passes through the 

point (xk, yk) and forms a positive direction of the axis Ox angle  

 

h

kkkk
artg

6

22 4321 
 . 

 

Finally, we note that discussed above Runge-Kutta method is also used to 

normal systems of differential equations of the first order. German 

mathematician R.Tsurmyul generalized Runge-Kutta method to the case of 

differential equations of second, third and higher orders. 

 

7.3 About error estimates for approximate cauchy problem solving 

 

For Runge-Kutta used a number of a priori estimates of the error of the 

approximate solution of the Cauchy problem (7.1) - (7.2). These estimates is 
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largely overestimated. Because hardly appropriate to recommend them for 

control in practical calculations. Their importance is not so much practical as 

theoretical, because of which directly follows the conclusion of the convergence 

of these methods. In addition, a priori estimates include a number of constants to 

find that often need to perform fairly complex calculations. 

Therefore, to estimate the error of the approximate solution of problem 

(7.1) - (7.2), try to use the information you obtain the numerical calculation 

process (such assessments called a posteriori). 

The most effective evaluation of the double transfer. Spynymos more on the 

double conversion.  

Consider the following three cases: 

1. Given the integration step h and must identify the exact figures approximate 

solution at each nodal point xk 

2. Given a precision ε> 0, which must calculate an approximate solution of the 

problem, reaching out properly as the method and integration step h. 

3. Evaluate the error εk = yk - y (xk), where yk and y (xk) - respectively 

approximate and exact solutions of the problem in each nodal point xk .For this 

solution to the problem (7.1) - (7.2) in each nodal point xk calculated twice: with 

step h and h/2. Denote them respectively in the yk * k. Decimal digits 

approximations in yk *k, which coincide with each other, find exact figures 

approximate solution at the point xk. 

For absolute error at the point of xk are: 

12

*
)(**






s

kk

kkk

yy
xyy  

where s- order of accuracy Runge-Kutta. 

Example 1: Solve the Cauchy problem 

dу/dx=2(x
2
+Y), У(0)=1, 0≤x≤1, h=0.1. 

 

Decision. Formulated Cauchy problem can be solved with the known course of 

higher mathematics methods. Lowering the presentation, we write the final 

expression for the exact solution of the given initial conditions into account. It 

has the form 

Y=1.5e
2x

-x
2
-x-0.5 
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Draw now the solution of this problem numerically using the above methods. 

1. Euler method to find the values in X by the following formulas: 

Y1=y0+h*f(x0,y0)=1+0.1*[2*(0
2
+1)]=1.2000 

Y2=y1+h*f(x1,y1)=1.2000+0.1*[2*(0.12+1.2000)]=1.4420 

Y3=y2+h*f(x2,y2)=1.4420+0.1*[2*(0.22+1.4420)]=1.7384  ect. 

Numerical results are given in Table. 7.2. The modified Euler method is initially 

calculated intermediate znachennya.Napryklad to stay Y1: 

X1/2=x0+h/2=0+0.05=0.05 

Y1/2=y0+h/2*f0=1+0.05*[2*(0
2
+1)]=1.10 

f1/2=f(X1/2,Y1/2)=2*(0.05
2
+1.10)=2,205 

then          Y1=y0+h*f1/2=1+0.1*2.205=1,2205 

Numerical results are given in Table. 7.2. For the Runge-Kutta method of 

calculating an approximate value U1 in the next point X1 produced by the 

formulas: 

X1=x0+h=0+0.1=0.1 

K1=hf(x0,y0)=0.1*[2*(0
2
+1)]=0.2 

K2=hf(x1+h/2,y0+K1/2)=hf(0.05,1.1)=0.1[2*(0.05
2
+1.1)]=0,2205 

K3=hf(x1+h/2,y0+K2/2)=hf(0+0.051+0.2205/2)=0.1[2*(0.05
2
+1,11025)]=0,22255 

K4=hf(x1+h,y0+K3)=hf(0.1,1+0,22255)=0.1[2*(0.1
2
+1.22255)]=0,24651 

ΔY1=1/6(K1+2K2+2K3+K4)=1/6(0.2+2*0,2205+2*0,22255+0,24651)=0,222 

Y1=y0+ΔY1=1+0,2221=1.2221 

 

Then all calculations continue in the same manner, taking the starting point (X1, 

Y1). 

Numerical results are given in Table. 6.2. As can be seen from this table is the 

most accurate solution obtained by Runge - Kutta. Analysis of the solution using 

Euler method allows us to trace the growth of errors with increasing Xi. If Xi = 1 

error is about 18%. Thus, when a large number of nodes Euler method can lead 

to significant errors in such cases is preferable enjoy numerous methods of 

higher order accuracy. 

With decreasing step h local error Euler method will decrease, but it will 

increase the number of nodes that adversely affect the accuracy of the results. 
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Therefore Euler method is relatively rare in the small number of calculation 

points. The most common method is the one-step Runge - Kutta. 

 

Table 7.2 

Xi 

 

Euler 

method 

The modified Euler 

method 

Runge-

Kutta 

 

Exact solution 

0.1 

0.2 

0.3 

1.2000 

1.4420 

1.7384 

1.2205 

1.4923 

1.8284 

1.2221 

 1.4977 

1.8432 

1.2221 

1.4977 

1.8432 

0.4 

0.5 

 

2.1041 

 2.5569 

2.2466 

2.7680 

2.2783 

 2.8274 

2.2783 

2.8274 

0.6 

0.7 

0.8 

0.9 

1.0 

3.1183  

3.8139  

4.6747  

5.7376  

7.0472 

3.4176 

4.2257 

5.2288 

6.4004 

8.0032 

3.5201  

4.3927  

5.4894  

6.8643  

8.5834 

3.5202 

4.3928 

5.4895 

6.8645 

8.5836 

 

 

With the implementation of the Runge-Kutta method of computer automatic 

selection step course in each point xi make a double first in increments h, then 

with step h / 2. If the value obtained with the yi vary within acceptable accuracy, 

then move to the next point h (xi+1 ) double, otherwise take a half step. 

The methods can also be used to solve systems of differential equations. 
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Chapter 8 FINITE DIFFERENCE METHOD (METHOD OF GRIDS) 

8.1 Method nets, or method of finite differences 

Method nets, or method of finite differences is one of the most common 

methods for the numerical solution of partial differential equations. It is based 

on the introduction of some riznychnoyi grid in the given region. The value of 

derivatives, initial and boundary conditions are expressed in terms of value 

functions in the grid, resulting in a system of algebraic equations is obtained, 

called riznychnoyu scheme. Solving this system of equations can be found in the 

grid value grid functions that are considered approximately equal to the value 

desired functions.  We will consider equations of the second order partial 

derivatives: 

wave equation (hyperbolic) 

 

2

2
2

2

2

x

u
a

t

u








      (8.1) 

 

heat equation or diffusion (parabolic) 

 

                               
2

2
2

x

u
a

t

u








      (8.2) 

Laplace equation (elliptical) 

 

                            Δu=
2

2

2

2

y

u

x

u








  =0     (8.3) 

 

The reduced equation are called equations of mathematical physics. By their 

decision reduced many applications. 

The basis of the method is the idea of replacing nets derivatives end-

riznychnymy relations. 
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Let the plane хОу means a region G of Г. We construct a boundary in the plane 

parallel direct two families: 

х=х0+ih,        i=0,±1,±2,…      

                                          y=y0+kl,        k=0,±1,±2,… 

The points of intersection of these direct host name. Similarly introduced for 

multidimensional grid areas containing more than two dimensions. The 

rectangular grid in the most convenient of the computational algorithm. 

However, some schemes use a grid of triangular and hexagonal cells even Two 

nodes are called neighbors if they are removed from each axis Ох or Оу a 

distance equal to the grid spacing h or l respectively. Units, in which all four 

neighboring nodes  

 

 

 

 

 

 

 

Units, in which all four neighboring nodes are region G + Г, called internal 

(node A). Last of the selected nodes are called boundary (nodes B, C). The value 

of the unknown function u = u (x, y) in the grid denoted through uik = u (ho + 

ih, AA + kl). Each internal node (Ho + ih, AA + kl) replace the partial 

derivatives respects: 

h

uu

x

u kiki

ik 2

,1,1  












 ,    (8.4) 

                       
l

uu

y

u kiki

ik 2

1,1,  












              (8.5) 

 

at the boundary points we have to enjoy less accurate formulas of the form 

Figure 8.1 
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h

uu

x

u kiki

ik

,,1 












      (8.6) 

 
l

uu

y

u kiki

ik

,1, 












      (8.7) 

Similarly, the second order derivatives are replaced, for example: 

                
2

,1,2,1
2

2

h

kiukiukiu

ikx

u 


















       (8.8 ) 

                
2

1,,21,
2

2

l

kiukiukiu

iky

u 


















       (8.9) 

 

These replace the original in every grid node allows to reduce the solution of 

partial differential equations to the solution of difference equations. 

8.2 Method grids for hyperbolic equation 

Wave equation. One of the most common in engineering equations of the second 

order is the wave equation describing the different types of vibrations. Since 

fluctuations - transient process, then one of the independent variable is time t. In 

addition, the independent variables in the equation is also the spatial coordinates 

x, y, z. Depending on their number distinguish one-dimensional, two-

dimensional and Three-dimensional wave equation. One-dimensional wave 

equation describing the transverse vibrations of a thin rod (string) and other 

tasks. 

2

2
2

2

2

x

u
a

t

u








                  (8.10) 

and initial conditions: 

u(х, 0)=f(x)    і    



)0,(x

t

u  Ф(х) ,   (0≤x≤s)              (8.11) 

and boundary conditions: and boundary conditions: 
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 u(0,t)=(t), u(s,t)=(t)                              (8.12) 

Because the input variable =а
2
 results in equation (8.10) to the form 

2

2

2

2

x

uu











                            (8.13) 

then later we can take a = 1.  

Constructing a napivsmuzi t>0, 0≤x≤s two families of parallel straight: 

x=ih    (i=0,1,2, ...),           t=jl    (j=0,1,2, ...). 

Denote xi=ih, tj=jl,    u(xi,tj) = uij  and replacing the derivatives in equation (8.13) 

riznychnymy relations. Using the formulas for symmetric derivative, we have 

  
2

1,,21,

l

jiujiujiu   =
2

,1,,1 2

h

uuu jijiji  
    (8.14) 

Denoting α = l / h, we obtain an equation that will be sustainable when α <1 

ui,j+1=2uij- ui,j-1+α 
2 
(ui+1,j-2ui,j+ ui-1,j)     (8.15) 

In particular, when α = 1, equation (8.15) has the simple form: 

           ui,j+1=ui+1,j+ ui-1,j-ui,j-1           (8.17) 

Error of approximate solutions obtained from equations (8.15) in the band 

0≤x≤s; 0≤t≤T, in accordance with the type 

u-u~ 
12

2h  [(M4h+2M 3)T+T
2
M4],   (8.18) 

where u-exact solution of the problem  

 Mk=max{
kt

uk



  , 
kx

uk



  }     (k=3,4)      

Note that to obtain equation (8.15) has been used a clear diagram nodes that 

allows you to find the value function u (x, t) on the layer (i, j + 1), if we know 

the values of the two previous layers. To find the approximate solution of the 

problem, it is necessary to know the value of the solution at the previous two 

layers. They can be found from the initial conditions of the following ways. 
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i,j

i,j+1

i,j-1

i+1,ji-1,j

 

 

 

 

 

                         Figure 8.2 

 

The first method. Replaces the initial condition (8.11) derivatives иt(х,0) ratio 

l

iuiu 01   =Ф(хi)= Фi ; 

to determine the values of u (x, t) on layers j = 0, j = 1, we obtain 

ui0=fi,   ui1=fi+lФi.     (8.19) 

Estimation error values иi1 in this case has the form 


1

~
iu  -ui1

2

h  M2,     (8.20) 

where  Mk=max{
kt

uk



  , 
kx

uk



  }     (k=2)   

The second method. Replaces original иt(х,0)  riznychnym ratio
l

iuiu

2

1,1 
 

where иi,-1.- value function  u(x,t) in layer j = -1. Then the initial conditions 

(8.11) becomes 

ui0=fi,   
l

iuiu

2

1,1 
=Фi.       (8.21) 

We write equation (8.17) for layer j = 0: 

ui1=ui+1,0+ui-1,0-ui,-1       (8.22) 

Eliminating the equations (8.21), (8.22) values ui,-1, we obtain  
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ui0=fi,   ui1=

2

1
(fi+1+fi-1)+lФi      (8.23) 

Estimation error values ui1 has the form  

 1
~
iu  -ui1

4

12

h
 M4+

3

6

h
 M3 , 

where  Mk=max{
kt

uk



  , 
kx

uk



  }     (k=3,4) 

The third way. If the function f (x) has a finite second derivative, the value ui1  

can be determined using Taylor's formula 

 

ui1  ≈ ui0  +l
t

iu



 0 +
2
0

2

2

2

t

iul




     (8.24) 

Using equation (8.13) and the initial conditions (8.11), we can write 

ui0=fi,

t

iu



 0 =Фi,    
2
0

2

t

iu



 =
2
0

2

x

iu



 =f”I 

Then the formula (8.24) becomes  

ui1  ≈ ui0  +lФi+
2

2l
 f”I            (8.25) 

 

Example 1. The method of mesh find solution to the problem. 

2

2
2

2

2

x

u
a

t

u








  

u(x,0)=0,2x(1-x) sinπx , 

0)0,( 



x

t

u , 

u(0,t)=u(1,t)=0 

Decision. Take a square grid increments h=l=0,05. 
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Given the fact that u(0,t)=u(1,t)=0, will be u0j=0, u1,j=0 (j=0,1,2,…,10) 

The value of u (x, t) on two primary layers find the second method: 

ui0=fi,   ui1=

2

1
(fi+1+fi-1)+lФi 

8.3 Completion of the table 

1) Calculate the value ui0=f(xi)= 0,2xi(1-xi) sin πxi at xi=ih  and write the first 

line (it corresponds to the value to = 0) in the first column of Table 6.1 (it 

corresponds to the xo = 0) record thresholds.     

2) In the formula found ui1=
2

1
(fi+1+fi-1)+lФi ,т.к.Фi=0, то  ui1=0,5(fi+1-fі-1),    

(i=0,1,2,…,10), using the values ui0 from the first line. The results recorded in 

the second line tabl.8.1  

Table 8.1 

xi  tj 0 0.05 0,10 0.20 0,30 0,40 0,50 

0 0 0.0015 0.0056 0.0188 0.0340 0.0457 0.0500 

0.05 0 0.0028 0.0065 0.0190 0.0335 0.0447 0.0489 

0.10 0 0.0050 0.0094 0.0198 0.0322 0.0419 0.0456 

0.15 0 0.0066 0.0124 0.0209 0.0302 0.0377 0.0405 

0.20 0 0.0074 0.0142 0.0228 0.0277 0.0321 0.0338 

0.25 0 0.0076 0.0144 0.0236 0.0251 0.0260 0.0265 

0.30 0 0.0070 0.0134 0.0221 0.0227 0.0196 0.0186 

0.35 0 0.0058 0.0112 0.0186 0.0194 0.0139 0.0115 

0.40 0 0.0042 0.0079 0.0133 0.0140 0.0092 0.0054 

0.45 0 0.0021 0.0042 0.0070 0.0074 0.0042 0.0013 

0.50 0 -0.0001 -0.0001 -0.0002 -0.0002 -0.0002 -0.0002 

u(xi,0,5) 0 0 0 0 0 0 0 
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3) Calculate the value uij on these shahah formula (8.17), because α = 1. When 

j = 2 we obtain successively  

u12=u21 +u01-u10= 0,0065 + 0 —0,0015 =0,0050, 

u22 =u31 + u11—u20 = 0,0122 + 0,0028 —0,0056 = 0,0094, 

u10,2= u 11,1 + u91 —u 19,0=0,0478 + 0,0478—0,0500 = 0,0456. 

Calculations with j = 3. . ., 10 performed similarly. The last line (tabl.8.1) 

present values of the exact solution at t = 0,5. 

 

8.4 Method for equation mesh parabolic type 

 

Consider a mixed problem for the heat equation, namely a function u (x, 

t), which satisfies the equation: 

      
2

22

x

ua
t
u





             (8.26) 

initial condition   u(х, 0)=f(x)    (0≤x≤s )    (8.27) 

and boundary conditions: u(0,t)=(t), u(s,t)=(t).            (8.28) 

 

By introducing a new variable =а
2
 equation (8.26) is reduced to the form  

2

2

x

uu











 

therefore continue to take a = 1  

Construct a napivsmuzi t> 0, 0≤x≤s two families of parallel straight: 

x=ih    (i=0,1,2, ...),       t=jl    (j=0,1,2, ...)  

Denote xi=ih, tj=jl,    u(xi,tj) = uij  and make derivative approximate replacement 

2

2

x

u




 each internal node (xi,tj)  - ratio 
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Figure 8.3 

2
,1,2,1

2

2

h

jiujiujiu

ijx

u 


















           (8.29) 

and derivative 
t

u




:             

l

jiujiu

ijt

u ,1, 












          (8.30) 

Then for the equation (8.26) with a = 1 we obtain: 

l

jiujiu ,1,   =
2

,1,2,1

h

jiujiujiu                             (8.31) 

Marking =l/h
2
, We result these equations to the form:  

ui,j+1=(1-2)uij+(ui+1,j-ui-1,j)               (8.32) 

Note that for the preparation of (8.32) was used clear circuit nodes (rys.6.3). It is 

proved that equation (8.32) is stable at 0 ≤ ≤1/2.. The most convenient form of 

equation (8.32) has at  =1/2: 

ui,j+1=1/2*(ui+1,j-ui-1,j)                         (8.33) 

and at = 1/6: 

ui,j+1=1/6*(ui+1,j+4 uij+ui-1,j)                       (8.34) 

 

 

 

 

 

 

Estimates of the errors of approximate solutions obtained from equations (8.32), 

(8.33), (8.34) in the band 0≤x≤s; 0≤t≤T, in accordance with the type 

u-u~ 
3

T M1h
2
,       (8.35) 
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u-u~ 
135

T M2h
4
,                (8.36) 

u-u~ T(
122

2hl
 )M1,      (8.37) 

where u -tochne solution of the problem (8.26) - (8.28) 

M1=max{f 
(4)

(x), t), t)}        at 0 t T,    0 x s, 

M2=max{f 
(6)

(x),  
(4)
t), 

(4)
t)}     at 0 t T,    0 x s 

With reduced estimates of errors shows that equation (8.34) gives higher 

accuracy than the solution to the equation (8.33). 

8.5 Method grids for the Dirichlet problem 

The first boundary-value problem, or Dirichlet problem for Poisson's equation 

Δu=
2

2

2

2

y

u

x

u








  =f(x,y)       (8.38) 

placed as follows: find a function u=u(х, у), satisfying some areas inside the G 

equation (8.38), and the border of Mr. condition: where ),( yxГu  , where  

(x,y)-– given continuous function. Choosing the steps h and l in x and y in 

accordance with, build grid. 

xi=x0+ih    (i=0, ±1, ±2, ...),       yk=y0+kl    (k=0, ±1, ±2, ...) 

and replaces each internal node (хi, уk) derivatives end-riznychnymy ratios (8.3): 

ikf
l

kiukiukiu

h

kiukiukiu






2

1,,21,
2

,1,2,1        (8.39), 

wherе fik-=f(xi уk). 

Equation (8.39), together with the values in иik boundary nodes form a system of 

linear algebraic equations on the function u(х, у) in the nodes ((хi,уk) .The most 

simple form, this system has to rectangular area for l = h. In this case, equation 

(8.39) is written in the following form: 

ui+1,k+ui-1,k+ui,k+1+ui,k-1-4ui,k=h
2
fik        (8.40), 

as mentioned in the boundary nodes is exactly equal to the marginal functions. If 
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    Figure 8.4 

 f(x,y)=0 equation (8.38) is called the Laplace equation and the corresponding 

equations have the form 

ui,k=1/4*(ui+1,k+ui-1,k+ui,k+1+ui,k-1)      (8.41) 

In the equations (8.40) and (8.41) was used circuit 

node symbol on rys.6.4. 

Accuracy replacement differential equation 

riznychnym, ie the error term Rik  for the Laplace 

equation is estimated inequality 

Rik1/6*h
2
M4,         M4=max

4

4
,

4

4

y

u

x

u







   

The error of the approximate solution obtained difference method consists of 

three errors: 1) error difference replacement differential equation; 2) 

approximation error boundary conditions; 3) error derived from the fact that the 

system of equations difference weighed close by. 

 

8.6 Iteractive methods decision of finite-difference eguations 

The direct solution of finite difference equations methods consistent with the 

exclusion of a large number of nodes is too cumbersome. Here are more 

convenient iterative solution methods that take into account special kind of 

systems and are convenient for implementation on a computer. We consider one 

of the simplest methods - the process of averaging Lybmana for the system 

(8.41). 

According to the method of calculating Lybmana being so, choosing the initial 

approximation иij
(0)

, successive approximation иij
(k+1)  

for internal nodes of the 

grid area define the formula: 

ui,j
(k+1)

=1/4*(ui+1,j
(k)

+ui-1,j
(k)

+ui,j+1
(k)

+ui,j-1
(k)

) (k=0,1,2,3,…) 

To obtain initial approximations can specify two ways: 

1) value иij
(0)

 in the internal nodes are obtained by interpolation using the known 

boundary values; 

2) constitute a system of finite- difference equations for grid with a great step 

and solve it by process of elimination, and then interpolates the values at the 
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nodes of the mesh. It is proved that for any step process Lybmana h converges to 

the exact solution regardless of the choice of initial values. Iterative process 

matches faster if the calculation the following arithmetic using not only the 

value of the previous approach, but again found value. Of course iterations 

continue until two successive approximations do not coincide required number 

of decimal places. To estimate the error of the approximate solution of the 

Laplace equation can be used Runge principle according to which the error of 

the approximate solution иh  obtained from step h, given by the approximate 

formula:  

h1/3*(uh-u2h) 

where u2h -approximate solution obtained from step 2h. Note that this method 

iterations results in a standardized averaging operations in each internal node, so 

it is very convenient for programming computers. 

Example 2. Find the solution to Laplace's equation for the unit square with step 

h = 1/8 with boundary conditions: 

                      u(0,y)=30y, u(1,y)=0 , u(x,0)=0, u(x,1)=30(1-x
2
).  

 

8.7 Decision 

1.Calculate the initial approximation. To calculate the initial approximation first 

build into the step h = 1/8, and we write the boundary conditions: 

uoj=30yj, u8j=0 , ui,0=0 , ui8=30(1-x
2

i) . 

Using these values, we find the value uij 
(0)

 other grid formulas: 

uij (0) =
1*12 





j

n
 , де    φ2=30(1-x

2
i),   φ1=0,  n=8,     j=1,…,7 

For example, the calculation u1j 
(0)

 takes the formula: 

u1j (0) = 0*
8

05313,29



j  ,  j=1,…,7  

Similarly, u2j (0) : u2j (0) = 0*
8

0125,28



j  ,  j=1,…,7  etc. 

The results of calculation functions uij 
(0)

 are presented in tabl.6.2 
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Table 8.2 

 i 0 1 2 3 4 6 7 8 

j y        x 0,0000 0,1250 0,2500 0,3750 0,5000 0,7500 0,8750 1,0000 

0 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 

1 0,1250 3,7500 3,6914 3,5156 3,2227 2,8125 1,6406 0,8789 0,0000 

2 0,2500 7,5000 7,3828 7,0313 6,4453 5,6250 3,2813 1,7578 0,0000 

3 0,3750 11,250 11,0742 10,5469 9,6680 8,4375 4,9219 2,6367 0,0000 

4 0,5000 15,000 14,7656 14,0625 12,8906 11,2500 6,5625 3,5156 0,0000 

5 0,6250 18,7500 18,4570 17,5781 16,1133 14,0625 8,2031 4,3945 0,0000 

6 0,7500 22,5000 22,1484 21,0938 19,3359 16,8750 9,8438 5,2734 0,0000 

7 0,8750 26,250 25,8398 24,6094 22,5586 19,6875 11,4844 6,1523 0,0000 

8 1,0000 30,000 29,5313 28,1250 25,7813 22,5000 13,1250 7,0313 0,0000 

 

Table 8.3  

y        x 0,0000 0,1250 0,2500 0,3750 0,5000 0,6250 0,7500 0,8750 1,0000 

0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 

0,1250 3,7500 3,6621 3,4863 3,1934 2,7832 2,2559 1,6113 0,8789 0,0000 

0,2500 7,5000 7,3242 6,9727 6,3867 5,5664 4,5117 3,2227 1,7578 0,0000 

0,3750 11,2500 10,9863 10,4590 9,5801 8,3496 6,7676 4,8340 2,6367 0,0000 

0,5000 15,0000 14,6484 13,9453 12,7734 11,1328 9,0234 6,4453 3,5156 0,0000 

0,6250 18,7500 18,3105 17,4316 15,9668 13,9160 11,2793 8,0566 4,3945 0,0000 

0,7500 22,5000 21,9727 20,9180 19,1602 16,6992 13,5352 9,6680 5,2734 0,0000 

0,8750 26,2500 
25,6348 

24,4043 22,3535 19,4824 15,7910 11,2793 6,1523 0,0000 

1,0000 30,0000 29,5313 28,1250 25,7813 22,5000 18,2813 13,1250 7,0313 0,0000 
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Calculation of successive approximations perform the formula  

ui,j
(1)

=1/4*(ui+1,j
(0)

+ui-1,j
(0)

+ui,j+1
(0)

+ui,j-1
(0)

), using data from the previous table.  

For example, u11
(1)

=0,25*(u10
(0)

+u12
(0)

+u01
(0)

+u21
(0)

)=3,6621; 

u21
(1)

=0,25*(u11
(0)

+u31
(0)

+u20
(0)

+u24
(0)

)=3,75+7,3828+3,5156+0=3,4863 etc. 

Process iterations continue until two successive approximations results will 

differ by no more than 0, 1. All calculations are convenient to carry out the 

program MS EXCEL. At first calculates the boundary conditions uoj=30yj..  

To do this, you must enter the cell C2 formula: =30*B4 

Similarly, to calculate the conditions u(x,1)=30(1-x
2
) in cell  D12 enter the 

formula: 

=30*(1-D3*D3) 

For a stay of values of functions uij 
(0)

 using the formula: 

In cell D2 = (($ D $ 12- $ D $ 4) / 8) * A5 + $ D $ 4 

 In cell E2 = (($ E $ 12- $ E $ 4) / 8) * A5 + $ E $  

In cell F2 = (($ F $ 12- $ F $ 4) / 8) * $ A5 + $ F $ 4 etc. 

Then distribute these formulas using the manipulator required. 

 

The following table calculations are carried out with the data of the previous 

table. Therefore, enter in the appropriate sells the following formula: 
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In cell D2 = (D4 + C5 + D6 + E5) * 0,25  

In E2 = (E4 + D5 + E6 + F5) * 0,25  

 In F2 = (F4 + E5 + F6 + G5) * 0,25 etc. 

 Similarly, these formulas distribute via filling manipulator and obtain uij 
(1)

 : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 
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