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Introducing Remarks 

 

In the book there are presented new and reviewed known quantum theory, 

including  geometry, quantum mechanics and theoretical nanoelectronics 

methods and new computational algorithms , which are used in  in solving some 

important and complicated classes of problems in computational mathematics, 

quantum geometry and mechanics, theoretical nanoelectronics and so on.  

Especial attention is devoted to review of quantum transport in 

nanoelectronic devices includes the following topics discussed in the frame of 

the «bottom – up» approach: 1). Non-equilibrium Green’s functions (NEGF) 

method in matrix representation with applications to model transport problems 

for 1D and 2D conductors using the nearest neighbor orthogonal tight-binding 

model. General method to account for electric contacts in Schrödinger equation 

when solving electron quantum transport problems is also given; 2).  Classical 

and quantum Hall effects, measurement of electrochemical potentials, the 

Landauer formulae and Buttiker formula, measurement of Hall potential, 

inclussion of magnetic field in the NEGF formalism as well as the quantum Hall 

effect, Landau levels, and edge states in graphene; 3). Spin transport via the 

NEGF formalism in the spinor representation, in particular, spin valve, rotating 

magnetic contacts, spin precession and rotating spins, Zeeman and Rashba spin 

Hamiltonians, quantum spin Hall effect, calculation of the spin potential, and 

four-component description of electron transport; 4). Elastic and spin dephasing 

modeling, account for the non-coherent processes using Buttiker probe, 1D 

conductor with two and more scatterers, quantum interference, strong and weak 

localization, potential drop across scatterers, quantum oscillations in NEGF 

method without dephasing and with its account under phase and impulse 

relaxation regimes, destructive and constructive interference effects, four-

component description of spin transport with account for dephasing and finally 

ending with discussion of quantum nature of classics including spin coherence 

and pseudo-spin formalism. This part of the review is closely based on lectures 

of Prof. Supriyo Datta «Fundamentals of Nanoelectronics, Part II: Quantum 

Models» given on-line in 2012 under initiative of Purdue University/nanoHUB-

U [www.nanohub.org/u].  

Для магістрів та аспірантів спеціальностей «Обчислювальна 
математика», «Оптика та лазерна фізика»  «Математична фізика», тощо.  



6 

 

Abbreviations (used in the text): 

 

AGNR- armchair graphene nanoribbon,  

LL-  Landau levels, 

MBPT- many-body perturbation theory, 

NEGF- non-equilibrium Green’s function, 

STM-  scanning tunneling microscope, 

QSH-  quantum spin Hall effect, 

ZGNR- zigzag graphene nanoribbon. 
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Chapter 1  

THE METHOD OF NON-EQUILIBRIUMGREEN'S FUNCTIONS AND 

MODEL THE TRANSPORTATION PROBLEM 

 

1.1 Introduction 

 

In continuation of previous publications [1 – 3] under the concept of 

"bottom – up" nanoelectronics [4, 5] consider the method of non-

equilibriumGreen's functions in the matrix formulation and apply it to the 

analysis and solution of model transport problems of electron transport on the 

example of the homogeneous and inhomogeneous 1D and 2D conductors, 

including graphene, and we formulate a General method of accounting for 

electrical contacts in the Schrodinger equation. 

Modern laptop contains almost a billion or more field-effect transistors 

with long channel conductivity ~ 40 – 50 nm, which corresponds to a few 

hundred atoms. Decreasing the length of the conduction channel of a physical 

nature electron transport varies qualitatively (Fig. 1.1). 

 

 
Figure 1.1 – With the reduction in the length of the conduction channel, L is the 

physical nature of electron transport varies qualitatively from diffusive to 

ballistic and further to quantum 

 

 For long enough conductors transport is diffusive with a trajectory 

resembling a random walks. If the length of the conduction channel becomes 
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less than the average mean free path, transport of electrons goes into ballistic 

mode of transfer. When shorter lengths of channel conductivity begins to show 

the wave nature of electrons in these quantum effects such as interference and 

tunneling. 

 
Figure 1.2 – Schematic description of (a) active channel conductivity interacting 

with the source and drain, and two limiting cases – (b) diffusive transport in 

macroscopic conductors and (b) ballistic transport in nanotransistors  

      

Historically a deeper understanding of the physical nature of electrical 

conductivity occurred top – down: from the massive macroscopic conductors 

transistors to molecular and even atomic dimensions. Even 20 years – 25 ago 

there were the usual arguments about how to understand the concept about 
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electrical resistance, if the conductor size is approaching atomic dimensions. 

Despite the extraordinary achievements in the field of experimental metafisica 

and Nanophysics, and to this day when discussing the conductivity is dominated 

by the concept of top – down instead of the more natural concept of bottom – 

up, which makes the analysis and discussion of nanoelectronics devices 

sometimes ludicrously complicated [6, 7]. The concept of bottom – up is 

illustrated in Fig.1.2. 

Any device nanoelectronics has active channel conductivity, which is 

described by the Hamiltonian [H], which includes potential energy U, obliged 

all other charges as external (on the electrodes) and internal (in the channel). 

The channel conductance interacts with the source and drain and with all other 

contacts in a specific device, which are in local equilibrium, as defined by the 

relevant electrochemical potentials (Fig. 1.2a). The interaction between the 

channel and the contacts is described by the matrices of the self-energy (self-

energy) [Σ1] and [Σ2] [8]. The interaction of the electron in the channel with its 

surroundings is described by the self-energy matrix [Σ0], which in contrast to the 

matrix [Σ1] and [Σ2], must be calculated consistent. The dimension of these 

square matrices is determined by the number N of basis functions used for the 

quantum-mechanical description of the conduction channel and contacts. The 

specific form of the matrices used method of solving the Schrodinger equation is 

semi-empirical, based on the density functional theory or from first principles, 

as well as the choice of basis functions. Once these matrices are composed, the 

further procedure for the calculation of conductivity, current and other electrical 

properties of a standard, to which this paper is devoted to model transport 

problems, representing not only scientific, but also informative and educational 

interest. 

In Fig. 1.2 shows two extreme cases of the electron transport is diffusive 

(Fig. 1.2b) and ballistic (Fig. 1.2b). In the ballistic limit of transport of electrons 

is controlled by the contact matrix [Σ1] and [Σ2], whereas interactions within the 

channel are negligible. In contrast, in the diffusion limit of transport of electrons 

is controlled by the interactions inside the channel, described by a matrix [Σ0], 

and the role of the contact matrices [Σ1] and [Σ2] is negligible. Not surprising 

that until about 1990, the contacts are not even depicted in the diagrams. 

Between the Hamiltonian matrix [H] and matrix [Σ0,1,2] there is an important 

difference: the matrix of the Hamiltonian is conservative dynamic forces and is 
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Hermitian, whereas the matrix of the self-energy into account entropic factors 

and are not Hermitian. 

The Schrodinger equation itself is not suitable to explain such seemingly 

obvious processes, such as spontaneous transition of an electron from the 

excited state to the ground and the impossibility of a spontaneous return process. 

This tendency for systems of any complexity to relax unidirectionally downward 

energy seems obvious and has no explanation in the framework of quantum 

mechanics. Such processes as diverse unidirectional phenomena in the world 

around us, are entropic in nature. In the design and analysis of any electronic 

devices, quantum or classical dynamics equations must be supplemented by 

entropic forces. So there was a statistical mechanics of non-

equilibriumprocesses, Central to which is 140 years old is transport Boltzmann 

equation [9, 10]. The quantum analogue of the Boltzmann equation is the 

method of non-equilibriumGreen's functions (NEGF), whose foundations were 

laid in the works of Martin and Schwinger [11], Kaganova and Bame [12] and 

Keldysh [13].  

Both approaches – classical Boltzmann and quantum formalism NEGF 

consolidates the fact that they are simultaneously taken into account and 

dynamic and entropic forces. In the ballistic limit, however, dynamic and 

entropic processes are spatially separated (Fig. 1.2b). Electrons skips from one 

contact to another under the action of dynamic forces. Inside contacts, the 

electrons are not in equilibrium, but quickly come to equilibrium under the 

action of the entropic forces. A similar development model in the ballistic limit 

is called the elastic resistor model Landauer proposed by Rolf Landauer in 1957 

[14 – 16] long before its triumphal experimental confirmation in nanotransistors. 

Today is really securely mounted, ballistic resistors can withstand fairly strong 

currents due to the fact that the allocation of Joule heat is negligible. The heat 

released on contact due to its relative massiveness quickly dissipeared it. Spatial 

separation of dynamics and thermodynamics in ballistic devices is a strong 

argument in favor of the concept of "bottom – up", which seems to us to be 

attractive not only scientific, but also pedagogically.  

The equations of the method of non-equilibriumGreen functions. The 

objective of the present work, we see it, to give a compact presentation of the 

formalism NEGF with the model of Landauer in relation to nanoelectronic 

devices. Based on pioneering work from Schwinger to Keldysh [11 – 13], based 
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on quantum many-body perturbation theory (MCT) and diagrammatic 

technique, it is not enough for a few semesters to master the method NEGF. In 

this presentation, we will follow the works Datta, Meira and Wingina [4 – 7, 17 

–20], as most adequate to the task before us. 

We begin with the elastic resistor, entropic processes in which heat dissipation 

occurs only at the contacts, and the problem of the resistance of the resistor will 

look at the single-particle approximation with the addition of the Schrodinger 

equation  

 

 [H]{ψ} = E{ψ}  (1.1) 

 

two more members describing the outflow of electrons in the contacts (outflow)  

 

 [Σ] = [Σ1] + [Σ2],  (1.2) 

 

and the flow of electrons in a conductor with contacts (inflow) 

 

 {s} =  {s1} + {s2},  (1.3) 

 

namely:  

 

 E{ψ} =  [H]{ψ} +  [Σ]{ψ} + {s},  (1.4)   

 

where the Schrodinger equation directly written in matrix form, keeping in mind 

that the base functions are chosen so that the square matrices taken in the square 

brackets, and matrix-columns – in braces. Now the solution of the Schrodinger 

equation can be directly recorded using inverse matrix 

 

 {ψ} = [EI – H – Σ]
-1

{s}.  (1.5) 

 

where I is the identity matrix.  

Matrix 

 G
R
 = [EI – H – Σ]

-1
  (1.6) 

 



12 

 

got the name delayed (Retarded) Green's function, and the Hermitian conjugate 

of her matrix 

 G
A
 = [G

R
]

+ 
 (1.7)  

 

called advanced (Advanced) Green's function. The origin of these and other 

terms, generally accepted formalism NEGF, for us the future is not significantly 

more acquainted with the terminology suggest [6, 11 – 13]. We note only that 

the formalism NEGF as applied to problems in nanoelectronics is reduced to 

four equations, the first of which is the expression (1.6) for the retarded Green's 

function. Now the Schrodinger equation (1.5) can be rewritten in the form 

 

 {ψ} = [G
R
]{s}.  (1.8)  

 

The product of the column {ψ} on Hermitian conjugated string {ψ}+ gives 

 

 {ψ}{ψ}
+
 = [G

R
]{s}{s}

+
[G

A
],  (1.9)  

 

where it is considered that the transposition of matrix multiplication changing 

the order of factors is reversed.  

Non-equilibrium Green’s function is defined as 

 

 G
n
 = 2π{ψ}{ψ}

+ 
,  (1.10) 

 

so the number of electrons is given by the expression 

 

 N = Tr [G
n
] / 2π.  (1.11) 

 

Likewise describes the flow of electrons 

 

 Σ
in

 = 2π{s}{s}
+ 

,  (1.12) 

 

so now the equation (1.9) has the form 

 

 G
n
 = G

R
 Σ

in
 G

A
  (1.13)  
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and will be the second equation in the formalism NEGF.  

Completeness sake, we denote by comparison with [6] is simplified, namely:  

Σ instead Σ
R
, G

n
 instead –iG

<
, Σ

in
 instead –iΣ

<
, however, the first and second 

equations (1.6) and (1.13) is substantially the same as that of equation (75) – 

(77) in his fundamental work of Keldysh [13] obtained diagrammatic technique 

MCTV. We believe that highlighting these two equations, and then two more 

from MCTV, originally used to display them, will make the method NEGF more 

transparent and accessible, and it will read to students physicists and electronic 

engineers to solve problems when the need arises to take into account the 

electrical contacts in the Schrodinger equation. 

Give the remaining two equations formalism NEGF. The third equation is 

the matrix form of the density of States D(E), multiplied by 2π, and is called the 

spectral function A 

 

 2π·D(E) = A = G
R
ΓG

A
 = G

A
ΓG

R
 = i[G

R
 – G

A
],  (1.14) 

 

where the matrix G
R 

and G
A
 are given by equations (1.6) and (1.7), the matrix 

[Γ] is Skew-Hermitian part of the corresponding contact matrix 

 

 Γ = i[Σ – Σ
+
]  (1.15) 

 

and describes the interactions of electrons in the channel with contacts. The 

derivation of formula (1.14) for the spectral functions and the equivalence of all 

three expressions will perform below. 

All of the matrix [Σ], [Γ] and [Σ
in
] contain terms relating to specific 

terminals (contacts) included in a particular task. In equations (1.6), (1.13) and 

(1.14) the summation over all terminals have already been implemented. The 

fourth equation in the formalism NEGF is the equation for current through the 

terminal room m  

 

 
in n

m m m

q
I Trace A G

h
     , (1.16)   

 

which includes only those components of the matrices that belong to a 

given terminal m. This specific current (per unit energy), you need to integrate 
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across the spectrum of energies to get the total current through the terminal m. 

Next, we consider a simple model of the transportation problem, then go back to 

the rationale and the derivation of the equations of the method NEGF and 

discuss more complex transportation problems. 

One-level resistor: semiclassical approach. To feel the physics of the 

method NEGF you can have a simple transport problem on a single-tier 

conductor, described by the matrices 1 x 1, i.e. numbers with [H] = ε.  In this 

example we will see how to count the contacts in the Schrodinger equation, and 

then move on to the conductor with an arbitrary number of channels described 

by the matrices N x N. First, however, let us consider a single-level task in the 

semiclassical approximation (Fig. 1.3).  

  

  
Figure 1.3 – Single-level model of a conductor in a semi-classical approximation 

 

One-level conductor is in contact with two contacts with the Fermi 

population f1(ε) and f2(ε). Initially assume that the source S of the Fermi function 

f1 = 1, and the drain D function f2 = 0. This means that the source seeks to fill the 

level with energy ε, and flow seeks only to extract the electrons from this level. 

Finally when calculating total current multiply it on 

 

 f1(ε) –  f2(ε), 

 

keeping in mind that the injection of electrons occurs from both contacts, and 

the total current has a differential effect. 

When f1 = 1 on the source and f2 = 0 drain is the average number of 

electrons N satisfies the equation 

 

  1 2 1 2

d
N N S S

dt
      ,  (1.17) 
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where v1 and v2 are the speed with which the electrons leave the conductor in the 

direction of the contacts, and S1 and S2 is the speed with which the electrons 

injected by the contacts in the conductor. In the conditions of dynamic 

equilibrium dN/dt = 0, so the population of the single-level electron 

 

                                              
1 2

1 2

S S
N

 





.                                             (1.18) 

 

If mentally disabled runoff, the number of electrons is equal to the Fermi 

functions at the source, but if disconnect the source, the number of electrons is 

equal to the Fermi functions at the drain 

 

    1 2
1 2

1 2

and
S S

f f 
 

  .  (1.19) 

 

Let us regroup the equation (1.17) in  

 

    1 1 2 2

dN
S N S N

dt
     , (1.20)  

 

then the first term is the flow of electrons generated by the source, and the 

second term is the flow. In the conditions of dynamic equilibrium of both 

streams are equal and oppositely directed, and the current is 

  

                                            1 1 2 2I q S N q N S     ,                           (1.21) 

 

while any of these two expressions can be used to calculate the current. From 

(1.18) and (1.19) have an occupancy level in the conditions of dynamic 

equilibrium 

 
   1 1 2 2

1 2

f f
N

   

 





,  (1.22) 

 

substituting in the expression for the current (1.21) and bearing (1.19), for the 

current I via the Fermi functions have finally 
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                                              1 2
1 2

1 2

I q f f
 

 
 

 


.                                (1.23) 

 

1.2 One-level resistor: a quantum approach 

 

The stationary Schrodinger equation  

 

[H]{ψ} = E{ψ}          

 

follows from the time-dependent Schrodinger equation 

  

                                                     i t H t
t
 





                   (1.24) 

 

as a result of lookup 

 

      /iEtt e   .  (1.25) 

 

To describe dynamic equilibrium is usually sufficient stationary 

Schrodinger equation, but in some cases, can not do without time-dependent 

equation (1.24), for example, as we will see later, in the interpretation of some 

dependency matrices from their own energies.  

For the single-level problem [H] = ε, the evolution of the wave function is 

described by the equation 

 

 
d

ih
dt
  , (1.26)  

 

with the use of which he comprehensively have paired 

 

  * 0
d

dt
  , (1.27)  
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in other words, the population of the isolated energy level does not change with 

time.  

       What we need here is not an isolated system, and a conductor connected to 

two contacts. Standard textbooks on quantum mechanics, unfortunately, does 

not show how to describe for us the situation. Modify the Schrodinger equation 

as follows 

 

 
1 2

2

d
ih i

dt

 
  

 
  
 

                             (1.28) 

 

so that the evolution of the electron density 

 

 
1 2* *

d

dt

 
 

 
   

 
  (1.29) 

 

like the dynamic equation semi-classics (1.17), with the possible exception of 

speeds S1 and S2, with which the electrons injected by the contacts to the 

conductor, but we'll come back later. Equations (1.29) and (1.17) are consistent 

with each other, if you put 

 

 1 1  ,  (1.30) 

 

 2 2  . (1.31)  

 

Stationary analogue of the equation (1.28) 

 

 
1 2

2
E i

 
  

 
  
 

 (1.32)  

 

is obtained by substituting the solution for a single value of energy Е = ε 

 

     /iEtt E e   .  (1.33) 
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Equation (1.32) has the obvious solution ψ = 0, which indicates that the 

dynamical equilibrium of the electrons are not able to populate the level with 

energy Е = ε. While not included source S1 of receipt of electrons in conductor 

electrons can only leave the vehicle, leaving the contacts (Fig. 1.4). 

 

  
Figure 1.4 – Evacuation and the flow of electrons in the quantum model, one 

level of conductor 

 

Introduce the stationary Schrodinger equation (1.32) of the contact 

members1 as the source of electrons 

 

                                     1
2

E i s


  
 

   
 

,                               (1.34) 

 

where  

γ = γ1 + γ2.  

 

In contrast to the semiclassical model (1.17) in the quantum model 

introduces a single source of electrons instead of two, the reason why will 

become clear below. Equation (1.34) allows you to associate the wave function 

with the electron source 

 

  
1

/ 2

s

E i


 


 
.  (1.35) 

 

We note that the wave function takes on its maximum value when the 

electron energy E becomes equal to the energy level ε. The peculiarity of the 

quantum model is that the wave function is not substantially disappears when 
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the deviation E from ε by an amount less γ. This is an example of "broadening" 

or uncertainty of the energy missing in semiclassic.  

Rate the quality of the electron source s1 as follows. Will index the total 

number of electrons in the entire spectrum of energies and equate it to the semi-

classical expression (1.22) given the fact that  f1 = 1 and  f2 = 0 (Fig. 1.4)  

  

 
1 1

1 2 1 2

*dE
 


   





 
  ,  (1.36) 

 

where the second equality is obtained taking into account (1.30) and (1.31).  

Calculate the left part of equation (1.36) using the expression for the wave 

function (1.35), 

 

 

 

1 1 1 1

2
2

* 2 *
*

2

s s s s
dE dE

E







 

 

 
 

   
 

  , (1.37)  

where  

 

 

 
2

2

2

2

dE

E












 

   
 

 . (1.38)  

 

Equating (1.36) and (1.37), we obtain 

 

 1 1 12 *s s  .  (1.39) 

 

In other words, the source of electrons is proportional to the rate of removal 

of electrons from a conductor, which seems plausible: if the contact is well 

connected with the conductor, the electrons just as well leave the contact as you 

come back from Explorer. 

As in the case of the classical expression for the current (1.21), the current 

in quantum models will receive from the rate of change of the electron density 

(1.29) 
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   1 2* Inflow of contact 1 * *
d

dt

 
      (1.40)  

 

adding a flow of an injecting contact s1 that are not included in the temporary 

Schrodinger equation (1.28). 

The left and right side of equation (1.40) is zero, since we are talking about 

the current state of dynamic equilibrium. As in the classical model, the current 

can be calculated either as the sum of the first two terms, or as the third 

summand in equation (1.40) 

 

   1 2Inflow of contact 1 * *
I

q

 
    .   (1.41) 

 

Integrating across the entire spectrum of energies, for the current received 

 

 
2 *I q dE







   (1.42) 

 

and substituting (1.35) and (1.39) for the current in quantum models have finally 

 

 
   

1 2

2 2

1

2 / 2

q
I dE

E

 

  






 

 , (1.43) 

 

what can be compared with the expression for the current in a semi-classical 

model (1.23), bearing in mind that f1 = 1 and  f2 = 0, γ = γ1 + γ2,  

 

 
1 2

1 2

q
I

h

 

 



.  (1.44) 

  

1.3 Quantum broadening 

 

Calculation of the current in the quantum model (1.43) involves integration 

over the entire spectrum of energies, because the quantum consideration of a 
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single localized level blurred into a continuous energy distribution (Fig. 1.5) 

according to the density of states D(E) 

 

             
   

2 2

/ 2

/ 2
D

E

 

 


 
.      (1.45) 

 

 

 
Figure 1.5 – Unlike classical views (left) single localized energy levels in the 

quantum model (right) was being undermined by the Heisenberg uncertainty 

principle 

 

Direct experimental measurement of the conductivity of single molecules 

of hydrogen [21], the spectrum of which actually corresponds to the single-level 

model of the resistor, can serve as a direct proof of validity of quantum 

broadening of energy levels.  

       Comparing (1.43) with the expression for the current of the elastic resistor 

(32) in [1] obtained the conductivity of the single-level model taking into 

account the quantum broadening 

 

  

 

2

1 2

2
2

2

q
G E

h
E

 





 

   
 

. (1.46)  

 

Assuming equal communication conductor with two contacts 

 

 1 2
2


     (1.47) 

 

and the temperature low enough to ensure that the measured conductivity was 

equal to G(E = μ0), have 
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  
 

   

22

0 2 2

0

/ 2

/ 2

q
G G E

h




  
  

 
.  (1.48) 

 

Thus, the quantum model one-level resistor shows that the measured 

conductivity will be maximum and equal to the quantum of conductance q
2
/h, if 

the electrochemical potential μ0 will be sufficiently close to the energy level ε. 

Experimentally measured conductance quantum is equal to 2q
2
/h, where the 

deuce is associated with degeneration on the back, because in reality all energy 

levels come in pairs with spins α and β, so the single layer model of the resistor 

actually has a two-level taking into account the spin degeneracy.  

 

To the question about the interference of sources of electrons in a 

conductor.  Unlike classical models of resistor, which simultaneously took into 

account both the source of the electrons with the two contacts in the conductor 

(1.17), in the quantum model (1.34) was based on the injection of electrons only 

from the source (f1 = 1), and flow was maintained empty (f2 = 0).  

It's not a question of convenience of reasoning. If instead of (1.34) in the 

Schrodinger equation simultaneously consider both an injecting contact 

  

                                             1 2
2

E i s s


  
 

    
 

,                      (1.49) 

 

for the wave function will receive 

 

        
1 2

2

s s

E i









 
,                          (1.50)  

 

so in the electron density shows two cross-interference terms 

 

 

 

 1 1 2 2 1 2 2 12
2

1
* * * * *
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s s s s s s s s

E
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



   
 

   
 

,   (1.51)  
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which has never been observed experimentally, since the injection of two 

separate contacts, the electrons enter the conductor with uncorrelated phases, 

evolving in time in an arbitrary manner and on average gives zero contribution.  

The first two pairwise works give positive contributions and are observed 

experimentally. 

Contacts in electronic devices are usually not coherent, and this fact must 

be taken into account while modeling. The Schrodinger equation cannot 

simultaneously take into account multiple electrical contacts. To consider 

contacts need one by one to calculate properties that depend on works of the 

wave functions, such as electron density, the current, and the other, and then 

sum the contributions from different contacts. 

 

1.4 Quantum transport through multi-level conductor 

 

Generalize the single layer model (1.34) in a multi-level (Fig. 1.6) of the 

Hamiltonian matrix N x N with N eigenvalues. The Schrodinger equation with 

two contacts, 

 

 
Figure 1.6 – Transport model for multi-level conductor 

 

one injects, has the form 

 

       1 2 1E H s     ,  (1.52) 

 

where the wave function and an injecting contact is columnar Nx1 matrix and 

the contact NxN matrix Σ1 и Σ2 not eremit with antiermit components 

 

 
1 1 1

2 2 2

,

,

i

i









    

    

 (1.53)  
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performing role γ1 and γ2 in a single-level task. 

First we will show how the four basic equations of the method NEGF (1.6), 

(1.13), (1.14) and (1.16) follow from the Schrodinger equation with posted 

contacts (1.52).  

From (1.52) are directly 

 

    1
RG s     ,  (1.54) 

 

where the retarded Green function G
R
 is given by the expression (1.6) with 

 

 1 2    . (1.55)  

 

Non-equilibrium Green's function 

 

      1 12 2n R AG G s s G   


         , (1.56)  

 

where the advanced Green's function G
A
 there is the ermitian conjugate of the 

retarded function (1.7).  

For a single-level task 2πs1s1* = γ1 (1.39), and for multi-level - is the matrix 

 

     1 1 12 s s 

 , (1.57)  

 

so 

  

  1

n R AG G G        .  (1.58) 

 

This unequal Green's function for one of the injection source. For a number 

of sources of electron density matrix, despite the wave functions, all add up, 

weighted corresponding Fermi function to obtain (1.13) with the matrix Σ
in
, 

which is a non-coherent sum of all the independent sources, so in our case, two 

sources. 

 

        1 1 2 2

in f E f E      . (1.59) 
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Equation (1.13) to (1.59) gives a matrix of electron density G
n
 Fermi 

function through two contacts. If both the Fermi function equal to unity, then all 

states are occupied by electrons, so that electron density matrix becomes a 

matrix density of states, called in the method NEGF matrix spectral function [A]. 

Assuming in (1.13) and (1.59) f1 = 1 and f2 = 1, spectral function 

 

    R AA G G          (1.60) 

 

with Γ = Γ1 + Γ2.  

We obtain two other expressions for the spectral function given in (1.14). 

From (1.54) with (1.52) and (1.55) we have 

 

  
1RG EI H


   ,  (1.61) 

 

so that the inverse matrix of the retarded Green's function, we have 

 

 
1

RG EI H


       .  (1.62) 

 

After completing the ermitian conjugate equation (1.62), we obtain 

 

 
1

1
R RG G EI H

 
 

                  
  (1.63) 

 

or else, considering (1.7),  

 

 
1

AG EI H


      .  (1.64) 

 

Subtracting (1.62) from (1.64) and bearing 

 

 i     ,  (1.65) 

  

next from (1.53), we obtain 
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  
1 1

R AG G i 
 

        .  (1.66) 

 

Multiplying (1.66) the left on [G
R
], and the right to [G

A
], obtain another 

expression for the spectral function А (1.14) 

 

 R A R Ai G G G G          . (1.67)  

 

Multiplying (1.66) the left on [G
A
], and the right to [G

R
], obtain third 

expression for the spectral function А (1.14) 

 

 
R A A Ri G G G G          . (1.68)  

 

It remains to obtain the expression for the current. As in the case and 

considering the classical and quantum-tier model, we obtain the expression for 

the current change in time as the number of electrons. We start with temporary 

Schrodinger equation 

  

                                                  
d

i H s
dt

      (1.69)  

 

and its ermitian conjugate 

 

      
d

i H s
dt

 
         . (1.70)  

have 
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d d d
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 

  

  

    

   
     
   

          

            

  (1.71) 

 

which is already used by well-known relation (1.54) and its ermitian conjugate 
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        иR AG s s G 
 

        .  (1.72) 

 

As trace of a matrix [ψψ
+
] gives the number of electrons, the derivative of 

the matrix over time, we find the matrix of the current operator, which will trace 

current. Using (1.10) and (1.12), for the current operator of the matrix (1.71), we 

have 

 

        
2

n n n n in A R in

op
HG G H G G G G

I
i 

                  
 .          (1.73) 

 

Considering that trace of the product matrix is independent of the order of 

the factors for the rate of change of the number of electrons in the channel have 

 

  n n in A R indN i
Tr G G G G

dt h


              , (1.74)  

 

and including further (1.14) and (1.15) we finally obtain 

 

 
1 in ndN

Tr A G
dt h

     . (1.75)  

 

Next you need to consider the following. In equation (1.73), both sides are 

equal to zero, because it is a current in the system (Fig. 1.6) in a state of 

dynamic equilibrium. Both parts of the equation (1.73) are broken down into 

terms related to terminals 1 and 2. The amount of zero in accordance with 

Kirchhoff's law for electric circuits in a state of dynamic equilibrium. 

Generalizing to an arbitrary number of contact m, we obtain the already 

mentioned equation (1.16) for the current 

 

 
in n

m m m

q
I Tr A G

h
     . (1.76)  

 

Classical and quantum models are compared in Fig. 1.7, where the factor D 

in the classical model takes into account the multilevel classical task. 
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Figure 1.7 - Updating and empty conduction channel in the classical and 

quantum models of electron transport 

 

The function of the conduction for coherent transport. Transform 

equation (1.76) as follows. We take into account (1.13) and (1.14), and  

 

  , ,in in in

n n n n n

n n

f E         . (1.77)  

Then have 

     m mn m n

n

q
I T f E f E

h
  ,  (1.78) 

 

where transmission coefficient between the contacts m and n  

 

 
R A

mn m nT Tr G G     .  (1.79) 

using permutation matrix under the trace, easily proved useful feature of the 

transmission coefficient 

 

 mn nm m

n n

T T Tr A      . (1.80)  

 

rewrite the expression for the current (1.78) using (1.79) for two-terminal device 
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       1 2 1 2

R Aq
I E Tr G G f E f E

h
      (1.81)  

 

and comparing it to the current expression to the same expression for the current 

in the elastic resistor (32) in [1], we obtain the quantum analogue of the 

conductivity 

 

  
2 2

1 2 12

R Aq q
G E Tr G G T

h h
     . (1.82)  

 

To interpret the experimental data obtained in multi-terminal devices 

Buttiker [22] proposed an elegant formula relating the current Im on contact m 

electrochemical potentials on the remaining contacts 

 

    ,1/m m n m n

n

I q G    , (1.83)  

 

where Gm,n has a conductivity determined transmission coefficient between the 

contacts m and n. 

In the linear response use our normal decomposition of the difference of 

the Fermi functions in Taylor (21) in [1] for the corresponding electrochemical 

potential difference, then the equation (1.78) will actually Buttiker equation 

(1.83) with a conductivity 

  

  
2

,

R A

m n m n

q
G E Tr G G

h
     ,  

 

which still need to be averaged for the elastic resistor in the usual way 

 

  0
, ,m n m n

f
G dE G E

E





 
  

 
 .  

 

Until now we have considered only physical contact [Σ1,2] in quantum 

coherent transport model in which the electrons move coherently from the 

source to the drain through the channel described by static Hamiltonian [H] in 
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the absence of electron interaction with the environment [Σ0] during its 

movement through the channel (Fig. 1.2a). Allowance for the interaction [Σ0] 

from a formal point of view the problem is not. All equations method NEGF 

remain the same, in the same matrices Σ, Γ and Σ
in

 will only additional members 

 

                 

       

1 2 0

1 2 0

1 1 2 2 0

,

,

.in inf E f E

   

 

    

  

          

          (1.84) 

 

However, what is of himself physically reacting Σ0? From the point of view 

of an electron moving in a solid, Wednesday is not a static electron described 

static Hamiltonian [H], but a very turbulent environment with a randomly 

varying potential UR, which fluctuates in the picosecond time scale. Even at low 

temperatures frozen phonon modes electron moves in the fluctuating potential 

produced by all other electrons (the self-consistent field approximation). Even in 

this case, there are phase fluctuations (dephasing), leading to fluctuations in 

current. Typical current measurements give us the average value in the range of 

several nanoseconds, microseconds or even milliseconds. The effect of 

averaging should be adequately model if we are to correctly interpret the 

experimental data. 

Method NEGF was originally developed to account for inelastic quantum 

transport processes in thick samples. We spoke of it in relation to the elastic 

resistors. The issues of skew and a generalization NEGF on inelastic transport 

processes would require a separate publication. Now we consider the model 

problem of quantum transport, which is not only pedagogical, but also of 

scientific interest. We begin with the quantum transport in 1D conductors not 

only in the regime of ballistic transport, but also taking into account scattering 

centers. Reasonable to neglect the effects of interference on the defects and 

assume that the electrons diffuse as classical particles? This question was put by 

Anderson in 1958 [23] and concluded that diffusion can be substantially 

suppressed or even it can be completely neglected as a result of quantum 

interference between scattering centers. We do not intend to delve into the 

theory andersonsc localization [24], we will only show how even a simplified 

model NEGF provide insight into the physics of quantum transport. For any 
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transportation problem you need to write the Hamiltonian [H] and the self-

energy matrix [Σ]. Once this is done, further calculations by the method of 

NEGF made routine. 

 

1.5 Modeling 1D conductor 

 

For our purposes it is enough one-dimensional model unbounded 

homogeneous conductor in the strong-coupling approximation taking into 

account only interaction of neighboring atoms (Fig. 1.8) in the orthogonal basis. 

This approximation is known in quantum chemistry since 1931 as a method of 

molecular orbitals of hukkala [25]. Even this simple model describes correctly 

not all, but many of the properties of polyene long –(СH=СH–)nCH= [26 – 28], 

graphene [29, 30], polyacetylenes and cumulenes =(С=)nС= [31 – 33], in the 

past, though, each atom supplies two mutually orthogonal π-electrons, which 

requires only a small modification of the model. 

 

 
Figure 1.8 – To take account of changing along the conduction channel potential 

U (x) in the translationally invariant chain of atoms with a period of a, each 

supplying one electron, and characterized by the Hückel two parameters - the 

Coulomb integral ε and resonance integral t 

 

Uniform 1D conductor described by the standard theory of one-

dimensional model crystal Kronig - Penny and obeys a parabolic dispersion 

relation with the effective mass 

 

 

2 2

2
c

k
E E

m
  . (1.85)  

 

We need to rewrite the dispersion relation (1.85) for we use the 

approximation of strong coupling with the interaction of a neighboring atoms 



32 

 

(Fig. 1.8) in an orthogonal basis. In other words, how to select the parameters, 

and ε t, to approximate dispersion relation (1.85). 

From the Schrodinger equation  

 

                                                   n nm m

m

E H                                         (1.86) 

have 

 
m

nm

m n

E H



 .  (1.87) 

 

Solutions of the Schrodinger equation (1.86) is a flat wave (Bloch theorem) 

 

  expn ik na  , (1.88) 

 

so that (1.87) implies 

 

     expnm

m

E k H ik m n a  . (1.89)  

 

The matrix [H] is as follows: on the main diagonal Coulomb integrals ε, on 

the adjacent upper and lower diagonals are resonance integrals t, the other 

elements are equal to zero, 

 

 

0

0

t

H t t

t e





 
 
 
 
 
 
  

,  

 

So for any row n of the matrix [N] according to the Schrödinger equation 

(1.86) we have 

  

                                              1 1n n n nE t t         (1.90) 
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else 

 
1 1n n

n n

E t t
 


 

    , (1.91)  

 

and taking into account (1.88) and regrouping 

 

      exp exp 2 cosE k t ika t ika t ka        . (1.92)  

 

At low k  

 
 

2

cos 1
2

ka
ka   .  (1.93) 

 

Comparing the dispersion relation (1.92) for a homogeneous chains in the 

Hückel approximation at small k with the correct dispersion parabolic 

approximation (1.85), we find the resonance and Coulomb integrals 

 

 2cE t  , (1.94)  

 

 

2

0 22
t t

ma
   .  (1.95) 

 

If the simulation of the electronic device is required to take into account 

changing the conductivity along the channel potential U(x), this is done by 

adding local value to the Coulomb potential U integral (Fig. 1.8). 

Now, of course, the translational invariance is violated, the dispersion 

relation will be different, but the new Hamiltonian is quite suitable for numerical 

calculations and satisfactorily describes the physics of transport for a potential 

U(x), not too fast in changing the scale of interatomic distances. 

With the obtained values of integrals ε (1.94) and t (1.95) is easily written 

out of the Hamiltonian matrix [H]. Now let's discuss the matrix contact their 

own energies. The basic idea is that an infinitely long conductors, described by 

the Hamiltonian [H], replaced by a conductor of finite length, described by the 

matrix [H + Σ1 + Σ2], with open boundary conditions at the ends, meaning by 

this "good" contacts, not creating at the ends of the reflected fluxes (Fig. 1.9). 
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Figure 1.9 – Open boundary conditions correspond to "good" contacts, 

do not create at the ends of the reflected streams 

 

Let us illustrate this idea into a one-dimensional lattice. Let conductor of 

limited length is n atoms, numbered from 1 to n. Then the left track 1 begins to 

atom chain with the number 1, and the right track 2 - after the atom chain 

number n (Fig. 1.10). Contacts do not have the incoming streams only care. 

 

  
Figure 1.10 – For the compilation of the contact matrices 1D conductor 

of n atoms 

 

In the n-th row (1.90) of the Schrodinger equation (1.86) the term tψn + 1 

already own terminal 2, which, according to equation (1.91), contributes to the 

energy equal to tψn+1 /ψn.  This energy is the energy of the private contact 2. 

subject to 

 

 1

ika

n ne     (1.96) 
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instead of (1.90) we have 

 

  1

ika

n n nE t te      , (1.97)  

 

wherein the additive Coulomb integral to the n-th row (1.97) is a self-energy 

contacts 2 and placed it as an element of (n, n) corresponding to the contact 

matrix 

 

 2

0 0 0

0 0 0

0 0 ikate

 
 
  
 
 
 

.  (1.98) 

 

The same self-energy has a pin 1, and the corresponding contact matrix 

placed it as an element (1, 1) 

 

 1

0 0

0 0 0

0 0 0

ikate 
 
  
 
 
 

. (1.99)  

 

The remaining elements of the matrix Σ1 и  Σ2 zero. 

 

Ballistic 1D conductor. The energy matrix Н, Σ1 и Σ2 drawn, calculate the 

retarded Green's function G
R
 (1.6), anticipatory function G

A
 (1.7), matrix Γ1 and 

Γ2 (1.53) and, lastly, the completion rate of Т12 and conductivity G(Е) (1.82). 

The calculation of the conductivity of 1D ballistic conductor is good check that 

the contact matrix defined properly. Conductivity should be equal to the 

quantum of conductance q
2
/h, multiplied by the number of modes M(E) 1D 

conductor equal to one (back not included). According to (1.82) this means that 

in the considered example, the transmission coefficient should be equal to unity 

in the energies 0<E–Ec<4t0,  
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Covered by the dispersion relation 

 

  02 cos 2 1 coscE t ka E t ka     , (1.100)  

 

and zero outside this region (Fig. 1.11, U = 0).  

 

  
Figure 1.11 – Transmission coefficient in 1D ballistic conductor without 

scattering (U = 0) and with one point scattering center (U = 2t0) 

 

The density of States of 1D conductor. First calculate the D (E) 1D 

conductor from elementary considerations. According to (1.82) [1], the number 

of states of 1D conductor of length L with the values of the pulse smaller than 

the predetermined value p, 

 

  
2

/

L
N p

h p
 .  (1.101) 

 

the density of states 

  
2dN L dp L

D E
dE h dE  

   , (1.102)  

 

which takes into account the fact that for an isotropic dispersion law E (p) speed 

v = dE/dp [1, (1.80)]. 
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We obtain the same expression for the density of states by NEGF. For 

isotropic 1D conductor is sufficient to consider only one atom in the chain (Fig. 

1.12). In this case, the role of conductor length L plays the lattice constant a. For 

delayed 

 

  
 

Figure 1.12 – For the calculation of the density of states D (E)=A/2π of the 

spectral function A (1.14) 

 

Green's functions have 

 

 
1

2R ikaG E te


     .  (1.103) 

 

Introducing exponential through the sine and cosine, and using (1.100), we 

obtain 

 

 / 2 sinRG i t ka .  (1.104) 

 

have  

 

 2 sin
dE

at ka
dk

    ,  (1.105) 

 

where the first equality follows from the isotropic 1D conductor, and the second 

- from (100). With regard to (105) to G
R
  finally have 
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2 sin /

R

i i
G

t ka a


  ,                           (1.106) 

 

and advanced Green functions 

 

 
A ia

G


 .  (1.107) 

 

the spectral function  

  

                                                  
2R A a

A i G G


     ,  (1.108)  

  

and the density of states  

 

  
2

A a
D E

  
    (1.109) 

 

coincides with (1.102), the previously obtained from elementary considerations.  

 

1D conductor with a scattering center. In the Hamiltonian model the 

scattering center by adding to the Coulomb integral of a continuous chain of 

atoms building U 

 

 

0

0

t

H t U t

t







 
 
 
  
 
 
  

. (1.110)  

 

In this formulation of the problem transmittance can be calculated 

analytically (Fig. 1.13). Contact 1x1 matrix defined by him figured Γ1 and Γ2 by  
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Figure 1.13 – Calculation of the transmission coefficient in the 1D conductor 

with a scattering center by NEGF 

 

(1.53), Green's function with (1.100) 

 

  
 

1 1

2 2 sin

R

ika
G E

E U te U i t ka
 

    
,  (1.111) 

 

from her complex conjugation take anticipatory function G
A
 and immediately 

obtain the transmittance 

 

 
 

 

2

1 2 22

2 sin

2 sin

R A t ka
G G

U t ka
  


 (1.112) 

 

or taking into account the (1.105) final 

 

  
 

 

 

 

2 2

2 22 2

2 sin /

2 sin /

t ka a
T E

U t ka U a




 

 
. (1.113) 
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The calculation results in the absence of scattering center (U = 0), and 

taking it into account U = 2t0 shown in Fig. 1.11. 

The expression for the transmission coefficient (1.113) withdraw as useful 

from elementary considerations (Fig. 1.14).  

Figure 1.14 – For the calculation of transmission coefficient from the condition 

of continuity of the wave function 

  

For convenience, renumber atoms of the conductor so that the defect was in 

the atom number 0. Incident on the wave scattering center exp(+ikz) reflected 

ρ·exp(–ikz) reflection coefficient ρ and extends further τ·exp(+ikz) with 

transmission coefficient η. From the Schrödinger equation in the Hückel 

approximation we have 

 

 Eψ0 = (ε + U) ψ0 + tψ–1 + tψ+.  (1.114) 

 

From the law of conservation and continuity conditions for the wave 

function of the defect (z = 0), we have 

 

 01      . (1.115)  

 

Substituting into (1.114) of wave functions at neighboring defective atoms 

and with (1.115) gives 

 

     1ika ika ikaE U t e e t e         ,  (1.116) 
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after simple transformations and rearrangements taking into account the (1.100) 

and (1.105) for the transmission coefficient η get 

 

 
/

/

i a

U i a






 

, (1.117) 

 

after multiplication by its complex conjugate obtain previously been derived by 

NEGF expression for the transmission coefficient (1.113). 

 

1.6 Modeling 2D conductor 

 

Among the fundamental experiments 80s that led to the birth of 

mesophysics were monitoring the conductivity of 2D ballistic conductors, which 

turned integrally proportional to the quantum of conductance 2q
2
/h. To 

understand the physics and the interpretation of such experiments is necessary as 

much as possible simple model 2D conductor. 

For our purposes, similar to 1D conductors, rather two-dimensional model 

of unlimited uniform conductors in the strong coupling approximation taking 

into account the only the interaction of neighboring atoms (Fig. 1.15) in an 

orthogonal basis, the so-called Hückel model.  The model parameters ε and t is 

chosen so, 

 

  

Figure 1.15 – Translationally invariant lattice of atoms with a period of a, each 

supplying one electron, and the Hückel characterized by two parameters - the 

Coulomb integral ε and resonance integral t  
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to satisfy a standard dispersion relation with the effective mass 

 

  
 2 2 2

,
2

x y

x y C

k k
E k k E

m


  .   (1.118) 

 

The solution of the Schrodinger equation (1.86) is chosen in the form 

 

  expn nik r   , (1.119)  

 

where the wave vector is determined by its projections kx and ky in the selected 

coordinate system, and position vector indicating the position of the n atom in 

the lattice. Substituting this solution into the equation (1.87), we obtain the 

dispersion relation   

 

     expnm m n

m

E k H ik r r   , (1.120)  

 

Hückel is for lattice model provides 

 

         

   

exp exp exp exp

2 cos 2 cos .

x x y y

x y

E k t ik a t ik a t ik a t ik a

t k a t k a





         

  
 (1.121) 

 

Using the same reasons as for the one-dimensional chain, for resonance and 

Coulomb integrals as we get the model parameters  

 

 
2 2/ 2t ma  ,  (1.122) 

 

 4cE t     (1.123) 

 

or a little differently 

 

 Ec = ε + 4t , (1.124) 
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2

0 22
t t

ma
   .  (1.125) 

 

Drawing Hückel Hamiltonian H (Fig. 1.16) is not difficult, but it is 

necessary to discuss the construction of the contact matrices for 2D conductor. 

However,  

 

 
Figure 1.16 – The isolation of the two-dimensional lattice of the conductor and 

the field itself contacts for NEGF method and the results of calculating the 

transmission coefficient method NEGF when the number of atoms across the 

width of the conductor, equal to 25  

 

first try to understand the causes of steps, depending on the energy transmission 

coefficient. A simple explanation of the experimentally observed fact may be as 

follows [1, formula (1.105)]. For ballistic conductor transmission coefficient is 

simply the number of modes M(E) equal to half the number of de-Broglie 

wavelengths fit into the cross-section W, 
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2 2

2
/

W W
M Int Int mE

h p h

   
    

  
, (1.126)  

 

where under the icon Int (x) means the greatest integer less than the value of х, 

and the right side (1.126) is written for a parabolic dispersion E’ = E – Ec = 

p
2
/2m. Experimentally at low temperatures [34, 35] measured the number of 

modes М (Е = μ0), which is being physical nature integral feature shows jumps 

when the energy Е = μ0 and cross-section of 2D conductor. 

Correct behavior calculated transmission coefficient with increasing energy 

(Fig. 1.16), as evidenced by not only the presence of stairs, but their fixed-width, 

confirmed by experimental data [34, 35], shows the correct setting of the energy 

matrix in the calculation method NEGF. We show how the steps appear (Fig. 

1.16) and construct the Hamiltonian and contact matrix for 2D lattice. 

Let the conductor has p number of atoms across the width of the conductor 

and q atoms along the length of the conductor, ie, the conductor has the shape of 

a matrix (p x q). Such 2D conductor can be roughly thought of as p 1D 

conductors in parallel, each with a length q. Matrix (p x q) have lowercase 

matrix length q, elements of which are column vectors of length p. Fig. 1.17 

shows a single column conductor forms (p x 1). Each of the q Column describes 

its Hückel   

  

  

Figure 1.17 – Conductor shape (р х 1)    
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matrix α of order р. For example, when p = 3 it has the form 

 

 

0

0

t

t t

t



 



 
 


 
  

. (1.127)  

 

The columns are connected to each other resonance integrals t follows. 

Consider the relationship between the columns adjacent to the numbers n and 

n+1. This relationship is described by a scalar matrix β = t·I of order р, where I 

– the identity matrix. In our model of course, β = β
+
. For example, when р = 3    

 

 

0 0

0 0

0 0

t

t

t



 
 


 
  

.  (1.128) 

 

The Hamiltonian H has a block structure. On its main diagonal identical 

matrix α of order р, and next to it diagonally from above and below are filled 

with matrices β also order р, the other elements are zero. If the length of the 

conductor is, for example, q = 10 atoms, and the width of the conductor is p = 5 

atoms, the order of the matrix H is equal to p x q = 50. 

Solution of the problem on the eigenvalues of the Hamiltonian H is reduced 

to the diagonalization of the matrix [α]  

  

       V V 


 , (1.129)  

 

where the columns of the matrix [V] есть is the eigenvector matrix [α] , so that 

 

 

1

2

3

0 0

0 0

0 0



 



 
 


 
  

.  (1.130) 

 

It is always possible inverse of their own, or modal basis in the original 

lattice basis 
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      V V 


 . (1.131)  

 

Matrix β is not affected by the transformation of the base, since it is already 

diagonal. Diagonalization of the matrix α form (р х р) leads to the vanishing of 

the resonance integrals t, connecting lines of the original matrix of the 

Hamiltonian, ie, to conversion a 2D conductor in p of parallel-connected 

contacts 1D conductors, each of length q atoms (Fig. 1.18) with energy  

ε1, ε2, ε3, …, εр, equal to the eigenvalues of the matrix α  

 

 02 cosn nt k a    (1.132) 

with 

 
1

n

n
k a

p





. (1.133)  

 

  
 

Figure 1.18 – 2D guide to the Hückel after diagonalization of the Hamiltonian H 

 

For each of р parallel 1D conductors transmittance is equal to unity in the 

energy (t0 ≡ |t|) 

 

εn – 2t0 < E < εn + 2t0, 
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as shown in Fig. 1.19. Folding transmission coefficients for all p mod conductor  

obtain the transmission coefficient dependence on energy in the form of rising 

steps at the bottom of the graph (Fig. 1.16) and descending stairs to the upper 

part of the graph.   

Figure 1.19 – To the formation of steps (Fig. 1.16) depending on the energy 

transmission coefficient  

 

In the simulation, the n-type conductors are usually calculated the lower 

part of the zone (Fig. 1.16), and we see only going up the stairs with energies εn 

– 2t0.  

  

Figure 1.20 – Comparison of the numerical results of calculation 

of transmission coefficient method NEGF with the analytical approximation  

of (1.134) with p = 25 
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Using (1.132) (1.133) and (1.124), we find the position of the steps 

 

 0 02 2 1 cos
1

n c

n
t E t

p




 
    

 
. (1.134)  

 

Fig. 1.20 the calculation results of the transmission coefficient at NEGF 

method including atoms conductor width p = 25 (Fig. 1.16) are shown together 

with the envelope of steps calculated from (134) at the same conductor width p 

= 25. 

Presentation of 2D / 3D conductor in parallel 1D conductors seems to us 

not only physically correct but also very useful approach when interpreting 

experimental data. Each of these 1D conductors called fashion or subzone with 

the dispersion relation 

 

   02 cosn x n xE k t k a  ,  (1.135) 

 

as shown in Fig. 1.21. 

  
Figure 1.21 – The lower eight subzones Hückel model 2D conductor 

 

Dispersion relations for subzones are obtained from the general expression 

(1.121) with the requirement that ky took quantized values 
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1

y

n
k a

p





,  (1.136) 

 

where each value of n gives rise to a corresponding sub-band (Fig. 1.21).  

The horizontal line drawn at a certain energy E, the number of crosses 

subzones equal to twice the value of the events at this energy, because each 

mode generates two intersections, one for states with positive velocity, and the 

other - with a negative.   

 

1.7 Contact its own energy for 2D conductor 

 

Ideally, the contacts must be such that the electrons are free to leave the 

vehicle and did not return as a result of reflection from the boundary contacts. 

We consider the simplest model of such contacts, which boils down to the fact 

that the contact is a natural extension of the conductor.  

2D conductor width p is equivalent to p parallel 1D conductors as a result 

of conversion basis 

 

     X V X V


    ,  (1.137) 

 

where the matrix X in the lattice basis is transformed into a matrix X  WITH a 

TILDE in the modal basis or vice versa 

 

      X V X V


    ,  (1.138) 

 

as demonstrated above for the Hamiltonian H. As a result, for each of the p 

independent 1D conductors easily discharged its contact array, and then they all 

gather in the full matrix Σ.  

The Hückel model 2D conductor each p 1D conductors characterized own 

energy contact t·exp(ika) with the corresponding value ka for a particular 1D 

conductor at a given energy E. For a number mode n   

 

 02 cosn nE t k a  , (1.139) 
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so that the contact matrix in the modal basis  

 

 

1

2

3
1

0 0

0 0

0 0

ik a

ik a

ik a

te

te

te

 
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,  (1.140) 

 

 

  

Figure 1.22 – Construction of the contact matrices in modal basis with the 

opposite conversion to the lattice basis  

 

and after conversion into lattice basis (Fig. 1.22) 

 

      1 1V V


     . (1.141)  

 

The above method of constructing a contact matrix for uniform gratings, 

but is not suitable in the general case, since not always manage the same basis 

transform matrix and diagonalized simultaneously matrix α and matrix β. And in 

the case we are considering all the scalar matrix β ie it has diagonalized. An 

example of this kind can serve as a lattice of graphene. 
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Graphene. In the discussion of homogeneous lattice (Fig. 1.15), each atom 

is in the same environment. The regular hexagonal graphene lattice (Fig. 1.23) 

there are two kinds of atoms. Atoms grades A and B are in different 

environments. Atom type A left one atom and two on the right, and the atom in 

the opposite sort. Translational invariance of the graphene lattice provide two 

atoms forming the unit cell of a regular diamond.  

 

  
Figure 1.23 – The unit cell of the graphene and the translation vector Bravais 

lattices A and B 

 

Given the presence of two non-equivalent atoms in the unit cell, the 

Schrodinger equation (1.86) in the form 

 

      
n mnm

m

E H  ,  (1.142) 

 

where {ψ}n is a column vector form (2 x 1), the components which correspond 

to the two atoms of type A and B, forming a unit cell with number n. The 

Hamiltonian of the form (2 x 2) establishes a link between the atoms of type A 

and B cell number n, and the atoms of type A and B cell number m.  

The solution can be written as 

 

      0
exp nn

ik r   ,  (1.143) 

after substituting into (1.142), we have 

 

      
0 0

E h k  
  , (1.144)  
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where the Hamiltonian taking into account the phase factor 

 

       exp m nnm
m

h k H ik r r    
    (1.145)  

 

also it has the shape of (2 x 2). We calculate it using the notch of the columns 

containing the cell surrounded by its four nearest cells (Fig. 1.24).  

 

  
 

Figure 1.24 – The unit cell of the graphene with the number 0 is surrounded by 

four nearest cells with numbers 1, 2, 3, 4 

  

It would also be two vectors 

 

 
1

2

ˆ ˆ

ˆ ˆ

a ax by

a ax by

 

 
, (1.146) 

 

associated with the geometric parameters of the graphene network 

 

 0 03 and 3 / 2a a b a  ,  (1.147) 

 

where a0  – CC bond length in graphene is usually taken as 1.42 Ǻ.  

Deposits in the Hamiltonian (1.145) of five cells taking into account the 

vectors (1.146) (Fig. 1.24) 
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 (1.148) 

 

to be summed together with the corresponding phase factor. At the center of the 

cell phase factor is absent, as it contributed to the diagonal Hamiltonian 

(n=m=0). The interaction of cells with n = 0 and m = 1 in the Hückel model is 

reduced to only one resonance integral t between the atoms in the center of the 

cell and atom A cell m = 1. Similarly, for the interaction of the central cell to the 

cell m = 2. They differ only phase factors:  shift the first cell relative to the 

central vector is determined 1a , and the second cell - vector 2a  (Fig. 1.24). 

Similarly receives input from cells 3 and 4.  

Summation five matrices (1.148) gives the Hamiltonian (1.145)  

 

  
*

0

0

h
h k

h





 
     

 
, (1.149)  

 

Where 

 

 
1 2

0

ik a ik a
h t te te

   
    (1.150)  

 

or taking into account the (1.146) 

 

     0 1 2cos expy xh t k b ik a   . (1.151) 

 

Diagonalization (1.144) with (1.149) gives the dispersion relation 
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    0E k h k  , (1.152)  

 

which lead to the usual sight for grapheme 

 

 Е = ± v0p,  (1.153) 

 

where v0 – Fermi velocity is about 1/300 the speed of light, it is possible by 

linearization h0 near the Dirac points at which      

                             

  0 0h k  , (1.154) 

so that 

  E k  . (1.155) 

 

At these points, the equilibrium the electrochemical potential is located at ε 

for neutral systems in which exactly half the energy levels filled (valence band) 

and the other half - empty (conduction band). Dirac points - three pairs (Fig. 

1.25). Choose a pair of corresponding kx = 0. Then the Hamiltonian (1.151) 

 

 

  

Figure 1.25 – The band structure of graphene 

Enlarged view of the line spectrum of the current carriers in the vicinity of the 

Dirac kxa = 0 and kyb = +2π/3 (Fig. 1.26)  

 

turns to zero when kyb = ± 2π/3. Decomposition of the Hamiltonian (1.151) in a 

Taylor series 
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Figure 1.26 – Cross-section of the band structure of graphene at the Dirac point, 

the region near where blackened  

 

close to the pair of points give 

 

    0 x yh k ita k i  , (1.156) 

Where 

 

 2 / 3y yk b  .  (1.157) 

 

After not complicated transformations we finally obtain the dispersion 

relation in the vicinity of the Dirac points  

 

 
2 2

x yE at k k   , (1.158)  

 

that when ε = 0 is equivalent to the standard record (1.153). Next, consider the 

construction of the contact matrices for graphene. 
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1.8 A general method for the construction of the contact matrices 

 

Any 2D conductor with the same along the entire length of the guide 

section across its width may be broken into fragments that mimic each other 

over the entire length of the conductor. For example, in the case of such 

graphene fragment can be cut, repeated throughout the length of the conductor 

and the graphene shown in a single copy in Fig. 1.27. A fragment described by 

the matrix of the Hamiltonian    [Н] ≡ α of order n by the number of employed 

 

  
Figure 1.27 – Construction of the contact matrices for graphene 

 

basic functions. For example, for a fragment in Fig. 1.27 n = 12 Hückel. Matrix 

fragments α are interconnected matrices β.  

Consider the right border of the conductor to the contact (Fig. 1.28).  

 

 

  
Figure 1.28 – The right border of the conductor to the contact 

 

Contact the block matrix is zero everywhere except the last diagonal element 

number n  
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  2

2

2 1

0 0

0

n n n

E

g  

 

 
 

 
 
  

 (1.159) 

 

This non-zero block g2 called the Green's surface function for the contact 2 and 

it iteratively calculated from equation 

 

    
1

2 2g E iO I g  
      , (1.160) 

  

where О
+
 – infinitesimal positive number, which controls the selection of the 

convergence of the iteration process, while the term iО
+
I provides a negative 

imaginary part and non-Hermitian matrices g and Σ.  

Consider the output of equation (1.160) in a more general case (see Fig. 

1.29) when  

 

  
Figure 1.29 – The right border of the conductor with a contact in the general 

case 

 

the last piece of the conductor associated with unlimited contact, described by 

the Hamiltonian Нс  

 

 
c

B

B H




 
 
 

, (1.161)  

 

where 

  

    0 0B  . (1.162) 
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The resulting retarded Green's function is calculated from equation 

 

 

1 R

c

A B G

B A





   
   

   
, (1.163)  

 

Where 

  0A E i I    , (1.164)  

 

  0c c cA E i I H   . (1.165) 

 

For calculation G
R
 from (1.163) Referring to the obvious equality for block 

matrices  

 

 

1
0

0

A B p q I

C D r s I



     
      

     
, (1.166)  

 

multiplying that after simple transformations we obtain 

 

  
1

1p A BD C


  . (1.167)  

 

Using the matrix equation (1.167), for G
R
 from (1.163) we have 

 

 
1

1R

cG A BA B


     , (1.168) 

 

so that the contact matrix 

 

 
1

cBA B   . (1.169)  

 

Because the matrix B (162) is the only non-zero element β, have 

 

 g    , (1.170)  
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where  g is represents the upper unit matrix [Ac] 
–1 

 

 

 

1
0 0

0

0

A g

A

A



 

 







   
   
 
   
    
   
   

. (1.171)  

 

Required the equation (1.160) is obtained by the equation (1.168) applied 

to the matrix N x N (1.171), regarding the first block A as a conductor, and the 

rest (N - 1) x (N - 1) as a contact. Then 

 

 
1

1N Ng A g 





    ,  (1.172) 

 

where gN complies g to the right side of the equation (1.171), if the matrix of the 

left side has dimensions N x N. The equation (1.172) is solved iteratively, 

starting with the known g1, further g2 and more so on until gN does not coincide 

with gN-1 with preassigned precision, giving a solution of (1.160)  

 

 
1

g A g 


    .  (1.173) 

 

It is useful to get the already known value Σ for a homogeneous 1D 

conductor, using a common method of building contact matrix Σ by the equation 

(1.170). First, we find g according to equation (1.173), wherein A = EI – α. For 

homogeneous conductor α = ε, β = t, I = 1, so that  

 

 
1 2g E t g     

or 

 2 2 1 0t g E g    , 

whose solution is  

 

   
 

2 2

2

2

4 1
cos cos 1

2

ikaE E t e
g ka ka

t t t

     
     , (1.174)  
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where we have used the dispersion relation for a homogeneous 1D conductor 

(1.92). Substituting (1.174) into (1.170) we obtain the already known expression 

for the homogeneous conductor t·exp(ika), where the exponent "+" sign is 

selected for physical reasons.   

 

1.9 Ballistic conductance of grapheme 

 

As an illustrative example, we present the results of calculating the 

transmission coefficient and the density of states of graphene ribbons Hückel 

model for its two configurations boundaries (Fig. 1.30) - zigzag (Zigzag 

Graphene Nano Ribon / ZGNR) and armchair (Armchair Graphene Nano Ribon 

/ AGNR) [36]. The calculations were performed for the tape width W = 53 nm 

resonance integral  t0 = 2.7 eV. 

Because these ideal graphene ribbons are ballistic conductors, the 

transmission coefficients are equal to the number of modes 

 

 
0

2 2

/

W W E
M Int Int

h p h 

  
    

   
,  (1.175) 

 

  
Figure 1.30 – Choice of repeating units (shown by rectangles that extend beyond 

the width of the tape W) two configurations boundaries - zigzag (a)   

 and armchair (b) 
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where we use the dispersion relation for the graph (1.153). Fermi velocity v0 

assumed to be 10
6
 m/s, commonly used in the literature [37]. 

The calculation results of the transmission coefficient and the density of 

states by NEGF shown in Fig. 1.31. Attention is drawn to the high density of 

states at E = 0 for the zigzag configuration of the graphene ribbons. It's so  

 

    
 

Figure 1.31 – The transmission coefficient and the density of states for the two 

configurations borders - zigzag ZGNR (left) and armchair AGNR (right) 

   

called edge localized states near the Fermi level, absent in armchair 

configuration [38, 39]. Our task is not to analyze the results of the calculation, 

the more that the role of the configuration and width boundaries of graphene 

ribbons studied in detail [38 - 42]. We only high plausibility of the results 

obtained, even within such a simple graph model as an approximation of strong 

coupling in orthogonal basis, taking into account the interaction with parametric 

only neighboring atoms.  
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Chapter 2  

HALL EFFECT MEASURING ELECTROCHEMICAL POTENTIALS 

 

2.1 Introduction 

 

Edwin Hall in 1879 discovered the occurrence of transverse potential 

difference by placing a thin gold plate with a constant current in a magnetic field 

[1]. In the simplest embodiment, the Hall effect is manifested as follows. We 

place 2D conductor with an electric current in a weak magnetic field B , 

perpendicular to the surface of the conductor - along the axis y in Fig. 2.1. The 

magnetic field is the Lorentz force 

 

    
dp

F q B
dt

 (2.1)  

 

deflects the electrons moving at speeds v  from source S to the drain D, from 

their path along or against the velocity vector of the lateral edges of the 

conductor (Fig. 2.1). The criterion of smallness of the magnetic field is usually a 

condition that electrons do not begin to move along a cycloid.     

 

 
 

Figure 2.1 – The magnetic field perpendicular to the current-carrying conductor 

deflects the electrons to the edges of the conductor    

 

Since more electrons move from source to drain, is created Hall voltage VH 

in a transverse direction х (Fig. 2.2).   
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Figure 2.2 – Hall voltage generated in the transverse direction 

 

The Hall effect has always aroused considerable interest. It is particularly 

increased in 1980, when Karl von Klitzing discovered that the Hall resistance   

 

  H
H

V
R

I    (2.2) 

 

takes discrete values [2, 3], which can be calculated using the following simple 

formula 

 

 
25812.80

, 1,2,3,...HR k
k

     (2.3) 

 

The observed phenomenon is called integer quantum Hall effect. The 

accuracy of measuring the resistance is so great that the National Bureau of 

Standards was chosen to calibrate the Hall effect resistance [4]. 

  K. von Klitzing demonstrated [2, 3] that the Hall resistance actually 

measures the ratio of two fundamental physical constants - the Planck constant 

and the square of the electron charge 

 

 2

1
, 1,2,3,...H

h
R k

kq
   ,   (2.4) 

 

and by the speed of light c due to the fine structure constant  

 

 

2 1

137.0359895

q

c
   ,   (2.5) 
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it is essential for metrology of the fundamental constants of physics.  

Already in 1982, has been experimentally observed fractional quantum 

Hall effect [5, 6]. In ferromagnets in the Hall resistance observed contribution 

depends directly on the magnetization of the material, and this contribution can 

be much larger than normal Hall resistance. This phenomenon is called 

anomalous Hall effect [7]. There are other, no less interesting manifestation of 

the Hall effect - spin Hall effect Dyakonov - Perel [8, 9], the quantum spin Hall 

effect in graphene [10], as well as other manifestations of the magnetic field on 

the electrical circuit, such as the non-reciprocity circuits, are difficult to interpret 

in terms of the effective resistance of ordinary [11], which is even more 

interesting because there is a new class of materials - topological insulators, 

which seemed to have nonreciprocity even in the absence of magnetic fields 

[12]. These and other related questions will we consider, with varying degrees of 

completeness in this and the following publications from the standpoint of the 

concept of "bottom - up" of modern nanoelectronics [13]. 

Let us consider the usual classical Hall effect at low magnetic fields. One 

of the reasons for the increased interest in the Hall effect was the fact that the 

Hall resistance has a different sign for n- and p-conductors, which opens up the 

possibility of experimentally determine the difference between them. The same 

purpose can be achieved by measuring the current flow through a conductor 

between the terminals located at different temperatures [14]. In this and in 

another case, usually use the term "hole" as a positive charge carriers in p- 

conductors. This interpretation can not be considered satisfactory, as in  n-  and 

in  p-conductors carriers are only electrons.  

n the case of thermoelectric measurements is determined by the direction of 

the current slope of the density of states D(E), or whether this function is 

increasing with increasing energy (n-conductor), or falling (p-conductor) [14]. 

The sign of the Hall effect is determined by the sign of the effective mass is 

determined by (75) in [15] as the ratio of the pulse p of the speed dE/dp. As a 

result, although the Lorentz force (2.1) is the same for the n- and p-conductors, 

giving the same value of dp/dt, resulting dv/dt has different signs for the n- and 

p-conductors, electrons spinning in the past in the opposite direction, which 

leads to a change in the sign of the Hall of the potential difference.  
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Referring to the elementary theory of the Hall effect, as it usually is 

contained in textbooks on solid state physics, for example. [16] The current is 

given by 

  / dI q N L  , (2.6)  

 

where N/L is the linear density of electrons and their drift velocity is equal to the 

product of the mobility of electrons in the electric field along the length of the 

conductor  

 

  /d V L  . (2.7)   

        

In equilibrium, the transverse field compensates the Lorentz force 

 

 /H dV W B ,  (2.8)    

                      

so that using (2.6) and (2.7) for the Hall resistance have 

 

  /

H
H

V B
R

I q N LW
  .  (2.9)     

 

This equation is widely used to determine the electron density N / LW the slope 

of the dependence of the Hall resistance on the magnetic field.  

This elementary theory of the Hall effect is presented with certain minor 

nuances in all textbooks. Everywhere electric field appears in both the 

longitudinal and transverse direction as causes of electrical current. I agree with 

this can not be [15]. According to (2.9), the Hall resistance depends on the 

electron density on the entire range of energies, which, of course, wrong. Like 

any other transport coefficients [14], the Hall resistance - a property of the Fermi 

surface, and it depends only on the electron energies in the range of about 

several kT around the value E = μ0 [15].  

We show that the Hall resistance to single-mode elastic resistor is given by 
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      


2
( )H

BLW
R E

qD E E p E
,  (2.10)    

 

which still need to be averaged over the energy range around a few kT around 

the value E = μ0, using standard thermal broadening function FT [15], namely: 

 

  
01 1

H H

f
dE

R E R E





 
  

 
 .  (2.11)    

 

We note that, in general, be averaged conductivity of 1/RH(E), and not the 

resistance RH(E), since all the mode of conduction channels "work" in parallel 

and are at the same potential difference. 

Equations (2.10) - (2.11) reduces to the standard expression (2.9) using the 

fundamental relationship [15]  

 

        D E E p E N E d     (2.12)   

 

For 2D conductor (d = 2) and averaging N(E), as has been shown in [15]. If 

the dispersion relation for the studied Explorer is not known, it can only use the 

equations (2.10) - (2.11).  

In any case, the equation (2.11) indicates that the Hall effect does not affect 

all electrons at energies of all possible. There is, however, a phenomenon that 

affects all of the electrons at all energy - is the existence of equilibrium currents 

in a conductor placed in a magnetic field (Fig. 2.3).  

 

 
 

Figure 2.3 – The equilibrium currents exist in any conductor in a magnetic field 
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Yet, non-vanishing currents that exist even in the hydrogen atom in a 

magnetic field, are irrelevant to the transport coefficients. Transport models 

should be built in such a way that the no Fermi currents were eliminated from 

the outset. A similar problem with respect to the spin currents occur even 

without the external magnetic field [17].  

Next, we consider the calculation of non-equilibrium electrochemical 

potentials inside the conductor, and the conductor fourterminal simulation 

environment using a equation [18, 19]. However, first consider the overall 

dynamics concisely electrons in a magnetic field. 

 

Why differ n- and p-conductors? Why the Hall resistance has opposite 

signs for the n- and p-conductors? The main reason is that in the n-conductors 

and pulse rate have the samedirection, and in the p-conductors – antidirected; 

and as v = dE/dp, and p-conductors energy decreases with increasing pulse (Fig. 

2.4) [15].  

 

 
 

Figure 2.4 – Hall resistance has different signs for the n-conductors (left) and the 

p-conductors (right) and inversely proportional to N(E) at E = μ0  
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To see the role played by the difference in the sign of the velocity and 

momentum, we turn to the Lorentz force (2.1). For any isotropic dispersion 

relation velocity and momentum are collinear (parallel or antiparallel) and let 

are, for example, at an angle    to the longitudinal axis z of the conductor (Fig. 

2.5).  

 

 
Figure 2.5 – To decompose the momentum and velocity of the electron on the 

projection length and breadth of 2D conductor (Fig. 2.1)  

 

Then 

 

 
 

    

 

 

ˆ ˆcos sin

ˆ ˆcos sin

p p z p x

z x ,  (2.13)   

 

and after substituting in (2.1) we obtain  

 

 
d q B

dt p

 
 .  (2.14)   

 

In other words, the angle θ varies linearly with time, and velocity vectors 

and pulse spin at a constant angular speed ωC. However, the n- and p-conductors 

rotation is in opposite directions, since the ratio p/v they have different signs. 

This ratio is defined as the mass (equation (75) in [15]) and is a constant for a 

parabolic dispersion (equation (78) in [15]), so that the cyclotron frequency 

 

 







 

00

C

EE

q B qB

p m .  (2.15) 
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   For the linear dispersion (equation (79) in [15]), the mass increases with 

energy, so that the cyclotron frequency (2.15) decreases with increasing density 

of charge carriers, which is observed in graphene [20]. 

The magnetic field of the rotating electrons on a circular path with a 

frequency ωC. If ωC·τ << 1, where τ – the average time of free rotation, the 

rotation is never ending, which corresponds to the observation of the Hall 

resistance (2.9) - (2.11) in a weak magnetic field. In the strong magnetic field 

ωC·τ >> 1 observed the quantum Hall effect.  

 

2.2 The spatial profile of the electrochemical potential 

 

Here are arguments in favor of the formula (2.10) - (2.11) for the Hall 

resistance, based on the general theory of ballistic transport, as set out in Annex 

1 [21].  

The model of an elastic resistor drift velocity is determined by the potential 

difference 

 

        (2.16)  

   

between conditions associated with the drain, and conditions associated with the 

source, so that instead of the equation for the current (2.6) we write equation 

(A1.39) in [21], namely: 

 

     0fq
I E M E

h E


 
  

 
,  (2.17)    

 

where the number of modes to use the formula (67) in [15] 

  

 
     M E D E E

h L




 .  (2.18) 

    

From equation (A1.15) and (A1.23) [21] instead of equation (2.7) we have 

the potential difference associated with the voltage applied to the ends of the 

conductor,  
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qV V

q
L L


 


 


.  (2.19) 

    

Just as in (2.6) and (2.7) Drude formula for conductivity 

  

 
I W

G
V L

  ,  (2.20) 

 

where the specific conductivity 

  

 
q N

WL


  ,  (2.21) 

 

and (2.17) and (2.18) follows a more general expression for the conductivity 

obtained in [15].  

Now we will show that instead of the standard Hall-effect equation (2.8) 

we have the equation 

 

 
2HV B

W p




   (2.22)    

 

which together with (2.17) and (2.18) gives the above expression (2.10) - (2.11) 

for the Hall resistance singlemode elastic resistor.  

 

Earlier, in [21] obtained an equation (A1.12)  

  

 
0

z
z

 





 

 ,  (2.23)    

 

whose decisions determine the electrochemical potentials μ
+
 and μ

–
 (Fig. 2.6).  
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Figure 2.6 – The spatial profile of potential μ
+
 and μ

–
 along the length 

of the conductor 

 

We show that these solutions can be written in the form 

 

        


 
2

, cosz z .  (2.24) 

 

Since this is an elastic resistor, in which the electrons are moving at a fixed 

energy and therefore have a constant pulse is convenient to use cylindrical 

coordinates р, θ (Fig. 2.7) instead of Cartesian рx, py. 

  

 

 

Figure  2.7 – On the orientation of cylindrical coordinates р, θ with respect to 

the conduction channel 
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Let us consider electrons moving at a fixed angle θ. Then in view of (2.19) 

we obtain 

 

     cos
qV

z z
L

     , (2.25) 

 

keeping in mind that in this simple case, the mean free path 

 

 2 2 cosz    .  (2.26) 

 

Comparing (2.25) and (2.24) and performing averaging over angles for the 

2D conductor (formula (58) in [15]), to obtain a potential difference 

 

 
2

qV

L


  ,  (2.27) 

 

and finally combining (2.25) and (2.27), we obtain the desired expression (2.24). 

Now the question is how to change the decision (2.24) of (2.23) with 

allowance for the Lorentz force generated by the magnetic field. To do this we 

need to transport the Boltzmann equation in the relaxation time approximation 

[22] 

 

 
0

x z x z

x z

F F
x z p p

    
 



   
    

   
, (2.28)  

 

where the left saved all the x- and z-component, because it is a 2D conductor in 

the plane xz (Fig. 2.1). This equation is compared with its special case (2.23) 

comprises three new terms. Two of them are connected with the Lorentz force, 

and can be rewritten as  

 

 x z r

F
F F F F

x z p r




   



   
    

   
,  (2.29) 
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where the radial component of the Lorentz force (2.1) is missing, and the 

angular  

component 

 

                                    0,rF F q B    .  (2.30) 

 

Now the equation (2.28) takes the form 

 

 
0

x z

q B

x z p

    
 

 

  
   

  
.  (2.31) 

 

Given the fact that the solution of equation (2.23) is the equation (2.24), is 

not difficult to make sure that the solution of equation (2.31) will 

 

    
2 2

, , cosz x z qBx
p


    

 
   ,  (2.32) 

 

whence  

 

    
2

0HqV x W x qBW
p


 


         (2.33) 

 

and accordingly the desired equation (2.22). 

 

Before proceeding to the measurement of potential interest to us in the Hall 

conductor four-terminal model look more closely at the general issues of 

measurement of electrochemical potentials.   

 

2.3 Measurement of electrochemical potential. Formula Landauer 

and Buttiker 

 

Classical Fermi distribution (equation (10) in [15]) with a high accuracy is 

suitable for massive contacts which are always substantially in equilibrium, but 

this is not necessarily true for small wires, even with small applied potential 

difference. Annex 1 [21] shows how important it is to introduce two separate 
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electrochemical potential μ
+
 and μ

–
 for the understanding of the physical 

meaning of the boundary resistance as the basis of a new formulation of Ohm's 

law. Non-equilibrium electrochemical potentials of this type are very useful and 

are widely used in practical engineering nanoelectronics, though still expressed 

doubts as to their conceptual values and even measurability.  

The following simple example we consider the features of non-

equilibriumpotentials and problems of their measurability, which will link them 

to the concepts and formulas of Landauer and Buttiker [18, 23 - 27], which are 

central to the theory of transport processes of modern mesophysics.  

Following Landauer [23 - 27], we consider a ballistic channel with 

localized defect transmissive T share falling on the defect electrons and reflects 

the share of 1 - T back (Fig. 2.8). We could follow the logic of the arguments in 

Annex 1 [21] and would get the spatial profiles of potential μ
+
 and μ

–
 Channel 

defective as qualitatively shown in Fig. 2.8, and thus give to the resistance 

offered by the defect, as it did Landauer in 1957.       

 

 

 
 

Figure 2.8 – Profile of non-equilibrium potentials in the channel with one defect  

 

Overcome expressed doubts about the feasibility of non-equilibrium 

potential could four-terminal experiments (Fig. 2.9) with two additional 

contacts, conducting small amount of current in order to measure the voltage 

drop across the defect.  
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Figure 2.9 – Four-terminal experiment to measure the conductivity of 1D 

channel with one defect with transmittance T 

 

We show that in the case of identical and weakly bound probe contacts 

four-terminal conductivity   

 

  

2

4 * *
1 2

1/
t

I q T
G M

h Tq 
 


, (2.34) 

 

where M - the number of modes of the conductor, and two-terminal conductivity 

is of lesser importance 

 

  

2

2

1 2 /
t

I q
G M T

hq 
 


,  (2.35) 

 

so that the difference between them is the boundary resistance (Fig. 2.10)  

 

 2
2 4

1 1

t t

h

G G q M
  . (2.36) 

 



76 

 

 

 

Figure 2.10 – Two-terminal resistance can be regarded as a resistance at a defect 

which is connected in series with a resistance boundary  

 

Although the boundary resistance was predicted and found by 

Yu.V.Sharvin in metallic conductors in 1965 [28, 29], it is recognized as a 

ubiquitous role is still not widely today. In the first half of the 80s was a 

discussion about the meaning and difference between the two conduction 

formulas (2.34) and (2.35), when, finally, in 1986 Imrie not identify the 

difference between them (2.36) as a boundary resistance [30, 31]. In the 

evolution of mesophysics equation (2.35) was widely known and was known as 

the Landauer formula, whereas the original did Landauer formula (2.34) was 

almost forgotten. The voltage drop at a defect, contact resistance, and both 

formulas Landauer discussed in detail in the review Treefolk and Sadowski [32].  

One of the problems in the formative years of mesophysics was that 

contacts were strongly associated with the main conductor and behaved as 

"additional defects" to eliminate that was not so easy. Buttiker [18, 27] to 

interpret the measurements suggested four-terminal elegant formula  

 

    ,
1

m m n m n
n

I G
q

   ,  (2.37) 

 

connecting current to the contact number m with electrochemical potentials in 

other contacts where Gm,n is conductivity is determined by the transmission 
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coefficient Tm,n contacts between m and n. For the two-terminal circuit 

measurements Buttiker formula simplifies to 

 

    1 1,2 1 2 2
1I G I
q

       (2.38) 

 

and coincides with the two-terminal Landauer formula (2.35), if the conductivity 

G1,2 identified as (q
2
/h)M.  

If we knew all the chemical potentials μm, You could benefit formula 

Buttiker (2.37) and calculated to all currents Im. But the four-terminal 

measurements (Fig. 2.9) we do not know the electric potentials at the terminals 

1* and 2*, so that we do not know chemical potentials μ1* and μ2*. However, we 

know the currents I1* and I2* and they should be equal to zero (Fig. 2.9). If we 

know each contact or μm, or Im,  Buttiker formula allows to calculate the value of 

all the missing.  

Consider Landauer voltage drop across the defect (Fig. 2.8) and show that 

weakly bound contact Buttiker formula gives the same results as the non-

equilibrium potentials μ
+
 and μ

–
 inside the conductor.  

The potential measured by a test contact (Fig. 2.9), there is a certain mean 

value of the potentials μ
+
 and μ

–
 (Fig. 2.11), the correct structure is determined 

by averaging the contacts. We model the this measurement by comparing the 

conductivities g
+
 and g

–  
two streams of electrons I

+
 and I

–
 (Fig. 2.11). Assuming 

current at zero contact trial, we have 

 

              0зонд зондg g ,  (2.39) 

 

so that 

   
 

 

   
 

 
зонд

g g

g g g g
,  (2.40) 

 

where the weighting coefficients 

 

 , 1
g g

g g g g
 

 

   
  

 
.  (2.41) 
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Figure 2.11 – For the calculation of the chemical potential on the test contact 

 

Assuming that non-invasive measurements of test contacts of atomic size, it 

can be expected that the conductivity will be almost identical, so that the 

weighting coefficient α ~ 50% and the test measures the contact arithmetic mean 

 

       / 2зонд .  (2.42) 

 

If the contact is small enough and angers different flows I
+
 and I

–
, 

weighting factor α is different from 50%. If, moreover, the two test contact 1* 

and 2* at a measuring circuit (Fig. 2.9) different weights, the measured 

resistance of the defect will be different compared to Landauer value (2.34).  

 

Landauer Formulas. We now return to the problem of finding equilibrium 

potential profile in the channel with the defect (Fig. 2.8). First, balance the 

outgoing and incoming currents (Fig. 2.12): 

 

  1R L RI TI T I     , (2.43а)  

 

  1L L RI T I TI     . (2.43b) 

 

 

Figure 2.12 – Distribution of current on the left and right of the defect 
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Then, following formulas (A1.35) and (A1.36) of Annex 1 of [21], from 

the current move to the distribution functions 

 

  1R L Rf Tf T f     ,  (2.44а) 

 

  1L L Rf T f Tf     ,  (2.44b) 

 

and then to potentials 

 

               1 21 1R L RT T T T ,  (2.45а) 

 

               1 21 1L L RT T T T .  (2.45b) 

 

We simplify the calculations by the potential at one contact, zero and the 

other equal to unity (Fig. 2.13).  

  

 

Figure 2.13 – Profiles of potential μ
+
 and μ

– 
on the defect, normalized to the total 

potential difference is equal to one 

The necessary potential difference can be always taken into account by 

multiplication by μ1 – μ2 = qV. Then equation (2.45) simplifies to 

 

  1 2T         (2.46) 

 

and together with an expression for the current 
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  
q

I M
h

      (2.47) 

 

provide a standard formula Landauer (2.35). 

 

For the first Landauer formula (2.34) we jump on defect of a potential μ
+
, or μ

– 
: 

 

           1 21L R T ,  (2.48а) 

 

           1 21L R T ,  (2.48b) 

 

and then divide this current difference, and obtain (2.34). 

Do not forget that we are interested in measuring electrochemical potentials 

inside the conductor. How does this relate to the measurement of the voltage 

non-invasive probe of a scanning tunneling microscope (STM)? Assuming that 

such a STM probe measures the average electrochemical potential μ
+
 and μ

–
, we 

obtain the graph in Fig. 2.14, the comparison of which with Fig. 2.13 and 

suggests that non-invasive probe STM actually measures the average value of 

the electrochemical potential (μ
+
 + μ

–
)/2. 

 

 

 

Figure 2.14 – Scanning tunneling microscope measures the average value of the 

electrochemical potential (μ
+
 + μ

–
)/2 
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What if the STM probe measures the weighted average of μ
+
 and μ

–
 with 

the weight coefficient α (2.40) different from 50%? Until weighting factor α 

remains the same for both potentials μ
+
 and μ

–
, jump on the defect (2.48) 

remains the same 

 

          1 21зонд зонд
L R T ,  (2.49) 

 

which leads to the same first Landauer formula (2.34). If the weighting 

coefficients are different for μ
+
 and  μ

–
, then (2.34) would be invalid. In the 

limiting case where the weighting factor α is equal to zero on the left and one on 

the right (Fig. 2.11), 

 

          1 21 2зонд зонд
L R T ,  (2.50) 

 

which leads to a negative resistance at Т > 0.5.  

The concept of non-equilibrium potential μ
+
 and μ

–
 It leads to the 

intuitively correct results and is now being widely used, but its use requires 

caution. This defect causes the potential jump, not ballistic transport (Fig. 2.14), 

meaning that the resistance (2.34) is determined by the defect. We must 

remember that we are still considering the elastic resistors. Yes, the surge still is 

IR and Joule heat dissipation I
2
R the conductor is absent and only occurs at the 

contacts.  

 

2.4 Buttiker’s formula 

 

His formula (2.37) contains the measured values directly, leaving outside 

any issues relating to mute the internal variables. I would like to emphasize the 

general applicability of the Buttiker’s formula, regardless of the conductor is 

resilient or is not. Indeed, as we shall see, for the derivation of (2.37) only need 

quite a bit over the usual linear theory of electrical circuits.  

We define the conductivity to start multiterminal 

 

  , ,
/

m
m n

n

I
G m n

q


  

   (2.51а) 
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  


 


,

/
m

mm

m

I
G

q ,  (2.51b) 

 

where natural to wonder why, when m ≠ n is a negative sign, unlike the case 

when m = n.  Selecting the sign can be illustrated by the four-terminal 

measurement channel one defect (Fig. 2.15). 

 

 
Figure 2.15 – Thought experiment with a four-terminal measurement channel 

with one defect as shown in Fig. 2.8 

The increase in chemical potential μ1 increases the current entering the pin 

1 (positive current) and an outflow from all other contacts (negative currents). 

Sign in (2.51) are chosen so that the coefficients of conductivity Gm,n always be 

positive, as required intuitive meaning of conductivity. 

 Now the current (2.37) can be rewritten in terms of coefficients of 

conductivity 

 

 , ,
m

m mm m n
n m

I G G
q





   ,  (2.52) 

 

The coefficients must satisfy the following two rules summability. 

Firstly, if all the chemical potentials of the same (equilibrium state), all 

currents through (2.52) must be zero, which entails generally amounts 

 

 


 , ,mm mn
n m

G G .  (2.53а) 
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Secondly, for arbitrary values of the chemical potential sum of all currents 

should be zero, which leads to the second rule amounts  

 

 , ,mm nm
n m

G G


  ,  (2.53b) 

 

proof of which is not so obvious, as was the case with the first sum rule, and it 

can be obtained based on the equation (2.52). First sum up all the currents (2.52) 

 

 , ,0 m n
m mm m n

m m m n m

I G G
q q

 



      ,  (2.54) 

 

then use the summation rules (2.53) and interchange the indices in the double 

sum 

 

 , ,0 m m
mm n m

m m n m

G G
q q

 



    ,  (2.55) 

 

that for arbitrary values of the chemical potential is only valid if it satisfies the 

second sum rule (2.53b). Finally,  

 

 , , ,mm mn nm
n m n m

G G G
 

   .  (2.56) 

 

Using sum rules (2.56), we rewrite the first term in (2.52) as a sum and as a 

result we obtain the famous Buttiker’s formula (2.37). We note that in the 

formula need not ’s summation limit for n ≠ m, because the summand for n = m 

is always zero. 

Sometimes Buttiker’s formula (2.37) is more convenient to record through 

the so-called response factors [33] 

 

 ,
n

m m n
n

I g
q


  ,  (2.57) 
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are defined as follows: 

 

 
, ,

, ,

,m n m n

m m m m

g G m n

g G

  

   (2.58) 

 

 

with the rules of summation 

 

 , , 0mn nm
n n

g g   .  (2.59) 

 

Apply Buttiker’s approach to the situation in Fig. 2.14, where it is stated 

that the two non-invasive probes placed before and after the defect with the 

transmittance T respectively generate potentials 1 – T/2 and T/2 (Fig. 2.16). Will 

we get the same results by Buttiker method? 

 

 
Figure 2.16 – To the probe before and after a defect with a transmittance of T 

potentials generated 1 – T/2 and T/2, accordingly 

 

Bearing in mind that this measurement it is about four to four potentials 

and currents at the terminals 1, 2, 1* and 2*, write equation (2.57) in matrix 

form 

 

 

1 1

2 2

1* 1*

2* 2*

I

I A BMq

I h C D

I









   
   

    
    

    
   
   

,  (2.60) 
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where the matrices have the form of  A, B, C and D have the form of (2 х 2).  

Because 

 

 
1*

2*

0

0

I

I

   
   
  

,  (2.61) 

 

then we can conductor 

 

 
1* 11

2* 2

D C
 

 

   
    

   
  (2.62) 

 

with the matrices С and D in the form of 

 

 
1 2

2 1

0

0

t t r
C D

t t r

  
         

,  (2.63) 

where the elements of the matrix C are interpreted as the probability intercontact 

transport 1 on 1*, 2 on 1*, 2 on 2* and 1 on 2* (Fig. 2.17), it being assumed that 

the contacts 1* and 2* loosely coupled and transport between them can be 

neglected.  

 

 
 

Figure 2.17 – Probabilities intercontact transport in the four-terminal 

measurement of the conductivity of a channel 

with a defective transmission factor Т 

 

The sum rules (2.59) give 

 

1 2

1 2

r t t

r t t

 

    .  (2.64) 
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From the equations (2.62) - (2.64) we have 

 

 
1 2

1* 1 2

1 2 1 2

t t

t t t t
   

  ,  (2.65а) 

 

 
2 1

2* 1 2

1 2 1 2

t t

t t t t
  

 
 

    
.  (2.65b) 

 

Note also that the probability t1 (Fig. 2.17) can be represented as the sum of 

the probability η of the forward transfer 1 → 1* and probability (1 – Т)·η 

reflected from the defect, and then reach the contact 1*: 

 

  1 1t T    .  (2.66а) 

 

Analogous considerations for a probability t2 to give 

 2t T ,  (2.66b) 

 

because the path of the electron with the contact 2 will first need to overcome 

the defect (the probability of T), and then get on contact 1* (probability η). For 

the same reasons, t1 = t1' and t2 = t2' (Fig. 2.17). 

Using equations (2.66) and setting μ1 = 1 and μ2 = 0, from equations (2.65) 

yields the expected value for the potentials at probes equations (2.66) and setting 

1* and 2*: 

 

 
 



 



1*

2*

1 / 2

/ 2

T

T
,  (2.67) 

 

in what could and no doubt, as in the Buttiker’s formula featured only the 

characteristics of contacts and actually rolled all the details related to the non-

equilibrium electrochemical potentials. 

 

Do not trivial Buttiker’s equation? Finally, any complex circuitry can 

always be represented by an equivalent circuit effective transistors, such as in 



87 

 

Fig. 2.18 to three terminals. Will it give us a standard theory of electrical 

circuits, the same result as Buttiker’s equation (2.37)?  

 

 

 

Figure 2.18 – Buttiker equation equivalent resistor network effective only if all 

reversible conduction (Gm,n = Gn,m) 

The answer is certainly yes, but only for normal mutual electrical circuits in 

which conduction between all terminals are completely reversible  

 

 m n n mG G  ,  (2.68) 

 

in other words, the electrons are transported equally easily in both directions for 

each pair of terminals (m, n).  

The range of applicability Buttiker equation (2.37) is much broader than 

the normal mutual electrical circuits, for example, it is applicable for conductors 

in a magnetic field, when there is a one-conductivity: 

 

 m n n mG G    (2.69) 

 

For such situations to justify the applicability of the Buttiker equation 

(2.37) is not so easy. If Buttiker equation (2.37) conductance Gm,n change to 

Gn,m, then we just get an erroneous formula, applying that to the multi-terminal 

nonreciprocal circuits get erroneous results that do not conform to the Buttiker 

formula (2.37).  
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Measuring Hall potential. Referring finally to the calculation of the Hall 

voltage using Buttiker formula (2.37) with the four-terminal experiment, 

differing from that discussed above (Fig. 2.17) Accommodation test probes 1* 

and 2* across the conductor (Fig. 2.19).   

 

 
 

Figure 2.19 – Probabilities intercontact transport in the four-terminal 

measurement of the Hall voltage  

In the absence of a magnetic field probe potential difference of zero. When 

the magnetic field is perpendicular to the surface of the conductor (plane of the 

drawing) electrons moving from left to right, are deflected along or against the 

direction of movement of the side edges of the guide (Fig. 2.1), creating a 

distinction between the probe potentials μ1* and μ2* , which we want to calculate, 

depending on the voltage, a current in the conductor.  

The equations for the probe potentials remain the same (2.65), if the 

probability of a contact to make sense of transport, as shown in Fig. 2.19. The 

calculation of these probabilities either numerically or in the semiclassical 

approximation leads to Hall voltage VH 

 

 1* 2*HqV       (2.70) 

 

in accordance with the already previously obtained by equation (2.22).  

Equation (2.22) was obtained based on the Boltzmann equation for 

transport, but it can also be obtained from (2.65) if we rewrite them in relation to 

the width of a thin wire somewhere in the middle of a long conductor less than 

the mean free path, with electrons moving to the left where the potential μ
+
, and 
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on the right, where the potential μ
–
, for potentials at the middle of the conductor 

on its side at the points simulating probes 1* and 2* (Fig. 2.20),   

 

 

 

Figure 2.20 – Derivation of equation (2.22) of the probabilities intercontact 

transport in the four-terminal measurement of the Hall voltage 

 

 

namely: 

       
 

1 2

1 2 1 2

t t
x dx

t t t t ,  (2.71а) 

 
  2 1

1 2 1 2

t t
x

t t t t
   

 
 

    
.  (2.71b) 

 

To calculate the probabilities in (2.71), we note that in the absence of a 

magnetic field, the electrons with velocities lying within an angle θ (Fig. 2.5)  

 

0 < θ , 

 

move upwards and lie within the 

 

– θ < 0, 

 

move down (Fig. 2.21).  
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Figure 2.21 – For the calculation of the angle of the turn-up of the electron 

Lorentz force 

 

The magnetic field of the electron spins upward trajectory at an angle equal 

to the product of the angular velocity (14) at a time dx/v, takes to cover the 

distance  dx   

 
q B dx qBdx

p p




 .  (2.72) 

 

Then the probability intercontact transport will be proportional to the 

corners 

 1 1
2

qB
t t dx

p

  ,  (2.73а)    

 

 2 2
2

qB
t t dx

p

    (2.73b)  

 

and substituting them into equation (2.71) gives 

 

      
2qBdx

x dx x
p

   


     ,  (2.74) 

so that  

 
2d qB

dx p





   (2.75) 
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в in accordance with equation (2.32) and, consequently and with (2.22). 

 

2.5 Quantum Hall effect, Landau levels and edge states in grapheme 

 

One of the most spectacular applications Buttiker approach is the 

interpretation of the quantum Hall effect, when the magnetic field is so large that 

the electrons moving from the source, do not reach the probe 2*, and electrons 

moving from the runoff does not reach probe 1* (Fig. 2.19) . As a result,   

 

  
1 2

1 2 1 2

1
/

HV t t

q t t 


 

 
,  (2.76) 

 

Because t2 = t2’ = 0, so that the Hall voltage is equal to the potential 

difference across the ends of the conductor and the Hall resistance equal to the 

normal two-terminal resistance. 

Interestingly, in this mode the resistance given by the expression (2.4) with 

the highest degree of accuracy [4]. It is possible to imagine as if we would have 

the perfect ballistic conductor with only the boundary resistance. The length of 

conductors in experiments often reaches several hundred micrometers, such 

ballistic nature is amazing, and it was noted that the Nobel Prize in 1985 (Klaus 

von Klitzing).  

Referring to graphene. In a previous publication [19] formulated the 

method of non-equilibriumGreen's functions (NEGF) in the matrix formulation 

as applied to the modeling of transport problems of nanoelectronics, particularly 

for graphene ribbons have been the results of the calculation method NEGF 

transmission coefficient and the density of states for the two configurations tape 

borders - and zigzag armchair in the strong-coupling approximation in an 

orthogonal basis with a view of the parametric interaction of neighboring atoms 

only through the Coulomb ε and resonantt0 integrals (Hückel) in full agreement 

with the results of calculations with more accurate model Hamiltonians. Now we 

consider the external magnetic field to the graphene ribbons in the same 

approximation and the results of the calculation of the transmission coefficient 
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and the density of states in a magnetic field, as well as the quantum Hall effect 

and conductivity of graphene ribbons in a magnetic field [34].  

We studied the system is a long 2D conductor wire with two trial probes on 

both sides of the guide (Fig. 2.22) to measure the cross of the Hall voltage 

produced in the presence of a magnetic field applied perpendicular to the surface 

of 2D conductor.  

   

 
Figure 2.22 – For the measurement of the Hall voltage through the chemical 

potential difference generated between the transverse probes when the conductor 

perpendicular to the magnetic field   

 

First, take into account the magnetic field in the Hamiltonian of the 

conductor H and contact matrices Σ1 and Σ2 method NEGF. 

The energy of a particle of charge -q in the vector potential A  given by 

 

  
   

 ,
2

p qA p qA
E r p U r

m

  
  .  (2.77) 

 

To find the settings Hückel Hamiltonian with the magnetic field, consider a 

uniform lattice of atoms with a constant value Ec and a constant vector potential. 

First, consider the 1D conductor extending along an axis x 

 

  
  

2

x x x x

x c

p qA p qA
E p E

m

 
  ,  (2.78) 

 

so that the dispersion relation has the form 
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  
  

2

x x x x

x c

k qA k qA
E k E

m

 
    (2.79) 

 

and it can be approximated by a cosine function 

 

   2 cos x
x x

qA a
E k t k a

 
   

 
  (2.80) 

 

with Hückel parameters ε and t [19] 

 

 2 2
0

2

/ 2

cE t

t ma t

  

   
,  (2.81) 

 

where a – is lattice constant. Unlike uniform lattice without the vector potential 

field [19] is only the appearance of a phase factor exp (± iqAxa/ħ) have 

resonance integrals (Fig. 2.23). 

 

 
 

Figure 2.23 – Uniform 1D conductor in the field of the vector potential 

 

For a homogeneous lattice 2D conductor phase factors with the phases  

  

 ,
yx

x y

qA aqA a
     (2.82) 

 

appear in the resonance integrals in both directions of the conductor plane (Fig. 

2.24).  
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Figure 2.24 – Consideration of a magnetic field directed along the axis z, 

reduced to take into account the phase factors in the resonance integrals Hückel 

lattice  

 

Magnetic field  

 B A  ,  (2.83) 

 

so we are interested in a magnetic field perpendicular to the plane of the 2D 

conductor,  

 
y x

z

A A
B

x y

 
 

 
.  (84) 

 

Hall resistance given by the ratio of the Hall voltage to the current through 

the conductor (2.9). Hall voltage can be calculated in two ways. Using four-

terminal measuring circuit and the Buttiker’s equation, calculate the difference 

between the chemical potentials generated at the two transverse probe (Fig. 

2.22). On the other, in the framework of NEGF [19] Next non-equilibrium 

Green’s function G
n 

 

 2 nN Tr G  
    (2.85) 

 

proportional to the number of electrons, and the spectral function A 
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  2 D E A    (2.86) 

 

is proportional to the density of conditions, so that the fullness of condition j is 

the ratio of the corresponding diagonal elements of the Green's function and the 

spectral function 

 

  
 
 

,

,

nG j j
f j

A j j
 .  (2.87) 

 

In the linear response of the population is proportional to the chemical 

potential [15]. If one contact put in f = 0, and the other f = 1, so that the 

difference between them is qV, fullness f(j), calculated from (2.87) by being 

multiplied by qV, give the value of the chemical potential 

 

    j qVf j    (2.88) 

 

Fig. 2.25 shows the results of calculation of the Hall resistance, normalized 

to the quantum resistance h/q
2
, as a function of magnetic field. 

 

 

Figure 2.25 – Norm Hall resistance depends on the magnetic field to the 

graphene ribbon width W =26 =65 nm 

in the Hückel approximation for energy E = t0 [19] 
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A remarkable result - it is the appearance of stairs in strong magnetic fields, 

known as the quantum Hall effect. First, however, let us turn to weak magnetic 

fields, where the Hall resistance, according to the standard semi-empirical 

theory of the Hall effect depends linearly on the magnetic field (2.9) 

 

 /HR B qn ,  (2.89) 

 

as shown in Fig. 2.25 by the dotted line, calculated for 

 

2

4

N k
n

LW 
    (2.90) 

 

at E = t0 = 2.7 eV and ka = /3 с a = 2.5 nm [19].    

 

As the magnetic field occurs gradually speed dependence of the Hall 

resistance of the field, obliged quantum effects in the form of the Landau levels 

(Fig. 2.26). In this screen shot postponed the diagonal elements of the spectral 

function A(j,j;E) depending on the energy E calculated by NEGF, and is a local 

width j of the graphene ribbons density of states for the three Landau levels.  

 

 
Figure 2.26 – Local by the width of the graphene ribbons density of states in the 

energy dependence of the Landau levels at В = 20 Т 
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The energy of the Landau levels 

 

 
1

2
n cE n 

 
  
 

,  (2.91) 

 

where n – is integer, ωc – is cyclotron frequency (15). Equidistant Landau levels 

are arranged relative to each other with an increment 

 

2

0

2
c

qB qBa
t

m
   , (2.92) 

 

expression is obtained by using (2.15) and (2.81). When used in calculating the 

values of  В = 20 Т and а = 2.5 nm the growth rate is found to be ħωc ≈ 0.37t0 in 

good agreement with the results of the calculation method NEGF (Fig. 2.26).  

The energy of the Landau levels (2.91) is the result of a purely quantum 

analytical solutions of the Schrödinger equation with the vector potential, which 

is also the basis of a numerical solution method NEGF specific geometry of the 

graphene ribbons. This result can be understood qualitatively, if we turn to the 

semi-classical model, in which the electrons move in circular orbits, making one 

revolution in time 

 

 
2 2

c

c

p
t

q B

 

 
  ,  (2.93) 

 

so that the length of the orbit circle of radius rc  

 

 
2

2 c c

p
r t

qB


   .  (2.94) 

 

If we now consider the quantum limit by which the circumference of the 

orbit must be such that it fit on the integer К de-Broglie wave length h/p, we 

obtain 

 


 
2

/
p

K h p
qB   (2.95) 



98 

 

Semiclassical electron can have any energy E = p
2
/2m, however, the  

 

quantum limit in the form of equality of the circumference of an integer K to the 

wave length leads to  

 

  2p K hqB ,  (2.96) 

so that the allowed values of energy 

 

 
2 2

cqB
E K K

m


  ,  (2.97) 

 

which is not quite the same thing as the correct result (2.91), but the quality is 

quite acceptable.  

 

If the number of edge states to identify as Kes, the resulting current 

 

  
2

H es

q
I V K

h
,  (2.98) 

 

since the Hall voltage VH is simply equal to the voltage V, applied to the ends of 

the conductor, since one end of the conductor is in equilibrium with the source, 

and the other - to the drain.  

 

This leads to a quantization of the Hall resistance 

 

 2

1
H

es

h
R

Kq
 , (2.99)  

 

generating at normalized Hall resistance plateau at ¼, ⅓, ½ and 1 (Fig. 2.25) as 

the magnetic field generates Landau levels, changing the number of boundary 

conditions Kes at energy E = t0 from 4 to 3, to 2, and to 1 (Fig. 2.26).  

 

As for the distribution of electric current in a 2D conductor in a mode of 

observation of the quantum Hall effect, it is often used [35, 36] the semiclassical 
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model of electron motion along the so-called [37] open skipping orbits (Fig. 

2.27). As a result, formed the boundary currents, providing exceptionally high 

ballistic conductivity.    

 

 

Figure 2.27 – It is believed that the electrons in the 2D conductor in a strong 

magnetic field move along open orbits, creating a compact track boundary 

currents, like localized in a quantum waveguide [37] 

 

We have already cited the results of the calculation method NEGF 

transmission coefficient and the density of states of graphene ribbons for the two 

configurations tape borders - zigzag ZGNR / Zigzag Graphene NanoRibbon and 

armchair AGNR / Armchair GNR in the absence of a magnetic field [19]. The 

impact of a strong magnetic field is shown in Fig. 2.28.  

 

 

Figure 2.28 – The effect of a strong magnetic field В = 20 Т on the transmission 

coefficient T(E) and the density of states D(E) of the graphene ribbons of width 

W = 53 nm for the two configurations of the borders – ZGNR and АGNR [34] 
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Landau levels (LL) in strong magnetic fields are formed in such 2D 

conductors, the width of which is sufficient for the formation of cyclotron orbits. 

The larger width of the conductor, the magnetic field requires minimal for 

generating a first LL. The energy levels of graphene Landau  

 

 0 2LL
nE q nB  ,  (2.100) 

 

where the Fermi velocity assumed to be equal v0 = 10
6
 m/s [38]. According to 

(2.100), first and second Landau levels at В = 20 Т occur when Е1
LL

 = 0.15 eV 

and Е2
LL

 = 0.23 eV. There is also a level of Landau Е = 0, This zero Landau Е0
LL

 

[39 – 41]. The results of the calculation method NEGF (Fig. 2.28) are fully 

consistent with the above estimates.  

 

Outside of this work was the spin quantum Hall effect, which would be 

devoted to the following message.  
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Chapter 3 

TRAFFIC SPIN MODEL NEGF AND QUANTUM SPIN HALL EFFECT  

 

3.1 Introduction 

 

The use of magnetic contacts for generating spin current in the nonmagnetic 

channel conductivity even beyond the current flow using the test magnetic 

contact 2 with the polarization 2P  (Fig. 3.1) was considered in [1] based on the 

concept of chemical potential μ of the charge and spin potential s . 

 

 

Figure 3.1 – The recording track 2 as the analyzer spin current 

 

        The relationship between the charge and spin potentials given by the simple 

expression  

 

 
2

2
2

sP 
 


  ,  (3.1) 

 

in which the polarization vector coincides with the direction of the recording pin 

2 relative to the direction of the current and potential spin vector coincides with 

the direction of the spin polarization of the conduction channel, which has the 

agreement of the magnetization direction of the injection contact. Generally 

considered the parallel and antiparallel orientation of the magnetization of the 

contacts are special cases of the general expression (3.1). We have no reliable 

information whether to perform is actually similar experiments, i.e., injected 

back contact with a fixed magnetization direction, and the potential difference 

was measured by a rotating magnetic contact. Repeatedly, however, experiental 
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actually measured a similar situation, when both the magnetic contact were fixed 

relative to each other, and the spin of electrons in a conductor rotated by an 

external magnetic field.  

All these effects are extremely interesting and important in themselves. We 

are, however, in this report We turn that show how these spin effects into 

account in the method of non-equilibriumGreen's functions (NEGF) [2] in 

relation to the model of the transport problem of nanoelectronics, in particular, 

to consider the quantum spin Hall effect in graphene. It also shows how NEGF 

method leads to results corresponding to equation (3.1). Accounting for a spin in 

the method NEGF require the introduction of a matrix potential forms (2 x 2), 

which, as it turns out, can be expressed in terms of charge and spin potentials 

appearing in (3.1). 

        The spin polarization of electrons and photons are very similar, except that 

the notion of orthogonality for them has a different meaning. For photons 

orthogonal polarization is realized at 90▫, and electrons - when 180▫, which 

manifests itself in the non-local spin fluctuation building depending on the angle 

between the magnetic recording and injecting contacts (Fig. 3.2) [1].  

 

 
Figure 3.2 – Fluctuations nonlocal spin potential, depending on the angle 

between the magnetic recording and injecting contacts (Fig. 3.1) 

 

       Mathematically, an adequate description of the electron spins of 

orthogonality requires a spinor calculus, vector and not as in the case of the 

polarization of the photons. Vector is described by three real components along 

the axes x, y, z Cartesian coordinate system, and is described by two spinor 

complex components in the directions up (up) and down (dn): 
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,

x
up

y

dn

z

n

n

n





 
    

   
    

 

, 

 

where here and below, as before, [2] column vectors will be taking in braces, 

and square matrices - in rectangular. 

Nevertheless, spinor should be seen as an object that has a definite 

direction as the vector. How consistent is the visual perception of a two-

component spinor with its structure? 

Spinor oriented along the direction of the unit vector n̂  with the projections 

on the axis of x, y, z 

 

 

sin cos

ˆ sin sin

cos

n

 

 



 
 

  
 
 

 (3.2)  

 

described by two complex components c and s:  

 

 

/2

/2

cos
2

sin
2

i

i

e c

e s













 
  

 
 
  

.  (3.3)  

 

It is not obvious, but later we will show that the vector (3.2) and spin (3.3) 

presentation of the same abstract rotating object are identical, more isomorphic. 

Yet we perceive the equivalence (3.2) and (3.3) as something given. 

When the spin formalism NEGF corresponding equations, of course, 

remain the same, but the order of the matrix - the Hamiltonian [H], contact [Σ], 

the non-equilibrium Green's function [G
n
], the spectral function [A] [2] is 

doubled by the fact that the electrons in the same quantum state coordinate, but 

with different spins are now described various basic functions. If earlier, when 

you do not take into account differences between the spins of the two electrons 

in the same quantum state, the number of basis functions is equal to N, but now 

the number of basis functions is 2N. In quantum chemistry, this approach is 
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known as unlimited (in the back) Hartree - Fock (Unrestricted Hartee - Fock) [3, 

4] or another method of different orbitals for different spins (Different Orbitals 

for Different Spins) [5] or split orbitals [6]. 

The simplest description of the conduction channel without loss of 

"physics", to which we always strive in Hückel approximation, better known in 

the physics literature as a method of strong coupling in orthogonal basis, taking 

into account only the interaction of neighboring atoms, the channel conductivity 

is considered not susceptible to back other words, the same interacts with 

electrons in different spin states. Hamiltonian [H] of conductor in Hückel 

approximation is now written in the same way as in [2], only the Coulomb ε and 

resonance t integrals are now written in a 2 x 2 matrix [α] and [β] (Fig. 3.3), and 

namely:   

 

 

,

,x y

I

t I

 

 

      

         
  (3.4) 

 

where [I] - the identity matrix of 2 x 2. In fact, there are two decoupled 

Hamiltonians, which does not carry any new "physics". 

  

 
Figure 3.3 – Smooth 2D lattice with the lattice parameter a, 

in which each atom is described by Coulomb [α] and resonance [β] integrals in 

the form of a 2 x 2 matrix 

 

Similarly written matrix self-energy [Σ] contacts that this approach is 

equally react to different backs, multiplying their regular expressions [2] on the 

identity matrix [I2]. This approach is expected to result in a trivial sense that we 
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seem to take into account only the back of the class, and only at the end of all 

the results of calculations just doubled. 

All spin effects considered, for example, in [1], or arise as a result of 

accounting trivial contacts sensitive to the back and describe the corresponding 

contact matrices [Σ], or the channel conductance is sensitive to the back and is 

described by the Hamiltonian corresponding [Н] or occur both circumstances. 

Now it is a look at some model transport problems by taking into account 

NEGF back and start with a simple one-level model of a spin valve. From the 

computational point of view, the only question is how to write the Hamiltonian 

and contact matrix, and then calculating the standard stroke [2].  

 

3.2 One-level spin valve 

 

It is known [1], reveals a different spin valve conductance GP or GAP, 

depending on the magnetization of the two parallel rows of contacts or 

antiparallel to AP. Magnetoresistance 

 

   /p AP APMR G G G    (3.5) 

 

expressed in terms of the polarization P magnetic contacts 

 

 

2

21

P
MR

P



,  (3.6) 

 

which in turn is determined by the boundary resistance of the valve 

 

 
R r

P
R r





 (3.7) 

 

subject to the vanishing of the resistance of the channel conductivity. 

In the magnetic tunnel junction (MTJ) in the expression for 

magnetoresistance dielectric conductor there is an additional deuce [1]: 

 

2

2

2

1

P
MR

P



, (3.8) 
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the appearance of which can be seen from the tunnel conductors physics, 

according to which the resulting resistance of the two series-connected 

conductors in proportion to their product, rather than the amount. 

 

Now we get the same result, including multiplier deuce by applying the 

method to the one-level NEGF valve on the assumption that the equilibrium the 

electrochemical potential μ0 is much kT lower than the energy ε dielectric guide 

(Fig. 3.4). 

 

 
 Figure 3.4 – Model equilibrium dielectric single layer conductor 

 

According to the quantum model of single layer homogeneous 1D resistor 

without spin [2] and the contact Hamiltonian matrix is simply the numbers 

(Fig.3.5). 

 

 

 

Figure 3.5 – A homogeneous single-level 1D conductor without spin 

Own energy contacts 

 

 1 1,   (3.9a) 
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 2 2    (3.9b) 

 

proportional to the speed with which the electrons leave the vehicle in the 

direction of contacts [2]. 

When taking into account the number of basis functions of spin doubles 

instead of numbers appear matrix of order 2: Hamiltonian, however, is simply a 

diagonal matrix, but the contact matrix for different spins "up" u and spin 

"down" d (Fig. 3.6). 

 
Figure 3.6 – A homogeneous single-level 1D conductor 

with the spin (spin valve)  

 

For spin valve immediately get retarded Green function [2] 

 

 

 

 

1

1 2

1 2

0
2

0
2

u u
R

d d

i
E

G
i

E

  

  


 

   
     

   
  

  (3.10) 

    

and then the transmission coefficient 

 

 
   

   

   
 

     
 

    
      

   

1 2 1 2
1 2 2 2

2 21 2 1 2

2 2

R A u u d d

u u d d

T Tr G G

E E

. (3.11)    

 We must remember that we are now considering "not sensitive to the back" of 

the conduction channel. 



108 

 

For parallel magnetization configuration of contacts P both contacts can be 

considered the same, so that (α>β) 

 

 1 2u u    ,  (3.12a) 

 1 2d d    ,  (3.12b) 

 

whereas antiparallel configuration AP second contact overturns spin compared 

to the parallel configuration P, namely 

 

 1 2u d    ,  (3.13a) 

 1 2d u    . (3.13b)  

 

Substituting (3.12a, 3.12b) to (3.8), we obtain P-passing coefficient 

 

    

2 2

2 22 2pT
E E

 

   
 

   
,  (3.14a) 

 

and (3.13a, 3.13b) gives coefficient AP-passing 

 

 
 

2
2

2

2

APT

E



 



 

   
 

.  (3.14b) 

 

The measured conductivity is determined by the average value of the 

transmission coefficient at energies of a few kT around the value μ0. We are now 

considering a dielectric conductor (Fig. 3.4). Assuming 

 

  0 , , ,kT      (3.15) 

 

we get 

  
     

2 2 2 2

0 2 2 22 2
0 0 0

p pG T E
   


       


   

    
  (3.16a) 
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and 

  
 

0 2

0

2
AP APG T E




 
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
,  (3.16b) 

 

and to obtain the desired magnetoresistance formula (3.8) 

 

 

2 2 2

2

2
1 1

2 1

p

AP

G P
MR

G P

 




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
  (3.17) 

 

with polarization 

 

 P
 

 





.  (3.18) 

 

Similarly, you can obtain a formula for the magnetoresistance (3.6) non-

magnetic metallic conductor, if we assume that the chemical potential μ0 is near 

the level of energy ε, and kT >> α, β. 

 

The rotation of the magnetic contacts. The spin valve mode AP second 

contact overturns back compared with the valve in the P mode, so that 

 

 1 2

0 0
,

0 0

 

 

   
      

   
.  (3.19) 

 

How to write the matrix Γ contact oriented in any direction of the unit 

vector n̂  by its projection (3.2) along the axes x, y, z? Final formula is  

 

 2 2

z x y

x y z

n n in
I

n in n

      
      

   
,  (3.20) 

 

where I - identity matrix of order 2. The formula is not immediately obvious, but 

we soon got it. In the meantime, make sure that the formula contains special 

cases of parallel and antiparallel orientation of the magnetizations of contacts, 

respectively: 
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0

1, 0 :
0

z x yn n n




 
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 
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Verify the validity of the general formula (3.20) can be achieved by the 

following observation. Matrix 

 
0

0





 
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 
  (3.22) 

 

describes a magnetic contact is oriented along an arbitrary direction of the unit 

vector n̂ , if the direction of the reference axis to select the + n̂   and - n̂   instead 

of the standard Cartesian semiaxes + n̂  and - n̂ . Go back to the standard basis ± n̂  

possible by a unitary transformation matrix  = V 
V  (3.22): 

 

  







 

     
    

          

* * *

*

ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ0

ˆ ˆ ˆ0

n n z zn n

z c s n n c s

z n ns c s c

V V

,  (3.23) 

 

where speakers unitary transformation matrix [V] are the components of the 

spinor c and s (3.3) in the directions ± n̂ . The first column of the matrix V 

corresponds to the direction + n̂ , and the second column corresponds to the 

direction - n̂  with the components of the spinor -s* and c*, which are obtained 

from (3.3) by converting the angles   

 

         and   (3.24) 

 

and removal of both components of the overall phase factor. 

Multiply the three matrices in (3.23) gives 
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 

 

     

      

           
            

                 

* * ** ** * * *

* * ** *

0

0

cc ss csc s c sc s c s

s c s c sc ss ccs c s c
 (3.25) 

 

Using the definition of the components of the spinor c and s (3.3) and 

trigonometric equations 

 

2 2 22cos 1 cos , 2sin 1 cos и 2sin cos sin
2 2 2 2

   
       ,  (3.26) 

 

rewrite (3.25) in the form 

 

 
     

     

cos sin1

2 sin cos

i

i

e

e





       

       





    
   

     
,  (3.27) 

 

resulting in the desired formula (3.20), to use the expression (3.2) for the 

components of the unit vector n̂  along the axes x, y, z. 

If the polarization vector 

 

 ˆ ˆP Pn n
 

 


 


 (3.28) 

 

to determine its value (3.18) and a unit vector n̂ , then the equation (3.20) can be 

rewritten as 

 

 
2

z x y

x y z

P P iP
I

P iP P

    
            

 (3.29)  

 

or even otherwise 

 

 
 

  

        
          

         

1 0 0 1 0 1 0

/ 2 0 1 1 0 0 0 1
x y z

i
P P P

i
 (3.30) 

through widely used in quantum theory of Pauli spin matrices 
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   
     

       
      

0 1 0 1 0
, ,

1 0 0 0 1
x y z

i

i
. (3.31) 

 

Finally, equation (3.29) can be compactly rewritten as 

 

    
2 2

x x y y z zI P P P I P
   

   
 

                            .  (3.32) 

 

Similarly, it is possible to rewrite the delivery matrix compactly own 

energy. Suppose, for example, in the basis ± n̂  

 

 
0

2 0

i 



 
    

 
,  (3.33) 

 

then in the basis ± ẑ  we have:  

 

  ˆ
4 4 4

i I i n i I P
     

 
  

                       .  (3.34) 

 

The spin Hamiltonians. Let us now discuss the spin-dependent 

Hamiltonians and consider keeping the classical spin-orbit and Zeeman splitting 

and Hamiltonian Rashba [7, 8]. 

 

Hamiltonian with Zeeman splitting. Let the direction of the magnetic 

field B is determined by the unit vector n̂ . The Hamiltonian in the basis ± n̂  has 

the form 

 

 
0

0
el

B

B


 
 

 
, (3.35) 

 

where μel - magnetic moment of the electron. The level of positive spin moves 

up the value of μel B, but with a negative spin shifted down by the same amount 

(Zeeman splitting). 

The basis ± ẑ  have: 
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 B elH B   .  (3.36) 

 

More need add to spin-independent part of the Hamiltonian. In the case of a 

parabolic dispersion have 

 

  
2

2 2

2
x y elH k k I B

m
       ,  (3.37) 

 

and for a homogeneous 2D lattice in Hückel approximation with resonant and 

Coulomb integrals [2]    

 

 
2 2/ 2t ma  ,  (3.38) 

 4cE t     (3.39) 

 

Hamiltonian has the form: 

 

  2 cos 2 cosx y elH t k a t k a I B         ,  (3.40) 

 

where a - lattice parameter. For such a lattice (Fig. 3.3) the resonant and 

Coulomb matrix have the form:  

 

 
,

el

x y

I B

t I t I

   

 

    

       
.  (3.41) 

 

Compared with the spin-independent Hamiltonian (3.4) changes only the 

Coulomb matrix. 

 

3.3 Rashba Hamiltonian 

 

A more complete account of the spin-orbit interaction gives the 

Hamiltonian 

    ˆ
R x y y xH z k k k         ,  (3.42) 
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where η - Rashba parameter [7 - 9]. This Hamiltonian relativistic origin has 

caused them effects commonly observed experimentally and reliably interpreted. 

[9] We also are now only interested in one thing - how to take into account the 

interaction Rashba for our homogeneous 2D lattice Hückel approximation. To 

that end, approximate (3.42), sinuses 

 

  sin sinR x y y xH k a k a
a


     (3.43) 

 

and write for the sake of convenience in terms of exponentials 

 

    
 

 
   

   
2 2

y y x x
ik a ik a ik a ik a

R x yH e e e e
ia ia

,  (3.44) 

 

the factors to which the 

 

,
2 2

,
2 2

x y x y

y x y x

i i

a a

i i

a a

 
   

 
   





  

  
  (3.45) 

 

ensure proper dispersion relation (3.37). 

 

We take into account the spin-independent part of the Hamiltonian 2D 

lattice (3.4), and a constant magnetic field (3.41) through the Zeeman splitting. 

Finally Coulomb and resonance homogeneous matrix 2D lattice with the 

Zeeman spin-orbit interaction and Rashba interaction have the form: 

 

   

 
   

 
   





  

   

   

,

, ,
2 2

, .
2 2

el

x y x y

y x y x

I B

i i
tI tI

a a

i i
tI tI

a a

    (3.46) 
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We note that the Rashba interaction is taken into account using the 

parameter Rashba and the Pauli matrices in resonance matrices 2D lattice, and 

the Zeeman interaction - in the Coulomb matrices.  

 

Spinors and vectors. We usually visually imagine the spin as a rotating 

object-oriented in a particular direction. He described two complex components 

spinor (3.3), and the vector in the same direction defined by the three actual 

projections (3.2) on the axis of a Cartesian coordinate system. To feel the 

connection between the two views of the same direction of the object - vector 

and spinor is useful to consider the spin precession in a magnetic field in both 

views. 

Consider the single-level resistor with ε = 0 in a magnetic field directed along 

the axis z. Two-component Schrödinger equation 

 

 
 

 

    
    

    

1 0

0 1

u uel z

d d

Bd

dt i ,  (3.47) 

 

where the right is the spin matrix ζz, actually has two differential equations with 

obvious solutions 

 

 

   

   





 

 









/2

/2

0

0

i t
u u

i t
d d

t e

t e
,  (3.48) 

 

where the frequency of precession  

 

 
2 el zB

  .  (3.49) 

 

Let the spin of the electron in the initial time t = 0 is directed along the unit 

vector n̂  angles θ and θ with respect to the selected reference frame (Fig. 3.7). 
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Figure 3.7 – To spin precession directed along a single vector, the angle θ 

 

During this initial time it wavefunctions 

  

 

 

 

/2

/2

0 cos
2

0 sin
2

i
u

i
d

e

e















 
  

 
 
  

,  (3.50) 

 

and at subsequent times 

 

 

 

 

 

 







 

 

 
  

 
 
  

/2 /2

/2 /2

cos
2

sin
2

i i t
u

i i t
d

t e e

t e e
,  (3.51) 

 

which corresponds to the spin rotation around the axis z at a fixed angle to it θ, 

while the angle θ increases linearly over time: 

 

    0t t    .  (3.52) 

 

According to (3.2), for the projection of the unit vector, we have: 

 

 

 

 

 

 









sin cos ,

sin sin ,

cos ,

x

y

z

n t

n t

n
 (3.53) 
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where with (3.52) we obtain 

 

     ,
yx

y x

dndn
n n

dt dt
  (3.54) 

 

or in matrix form for all three components of the unit vector 

 

 

    
    

     
        

0 1 0

1 0 0

0 0 0

x x

y y

z z

n n
d
n n

dt
n n

,  (3.55) 

 

where a square matrix, usually denoted by Rz, is the matrix of rotation around 

the axis of the unit vector z. 

 

Compare the equation (3.55) with the Schrodinger equation (3.47) in the 

spinor representation, rewritten through the precession frequency (3.49) 

 

 
 

 

    
    

    

1 0

2 0 1

u u

d d

d

dt i ,  (3.56) 

 

which featured Pauli matrix ζz. 

Suppose we wish to describe the precession of the electron spin in a 

magnetic field directed along x. To do this in the equation (3.55) need only 

perform a cyclic permutation of variables: x → y, y → z, z → x and we obtain 

the equation with a rotation matrix Rx: 

 

 

    
    

     
        

0 0 0

0 0 1

0 1 0

x x

y y

z z

n n
d
n n

dt
n n

;  (3.57) 

 

in the equation (3.55) -1 was at the intersection of row x and column y, in (3.57), 

it will be at the intersection of row y and column z. 

Not immediately apparent how the same purpose to modify the equation 

(3.56). The correct answer is: 
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 

 

    
    

    

0 1

2 1 0

u u

d d

d

dt i ,  (3.58) 

 

which featured Pauli matrix ζx. 

Equations (3.55) and (3.56) as equations (3.57) and (3.58) describe the 

same physical process, namely, the rotation of the spin of an electron in a 

magnetic field directed along the axis z, respectively along the axis x, in the first 

case - three real components, and in the second - two complex. Circular 

permutation in the opposite direction will give us a rotation matrix Ry, and the 

corresponding spin matrix ζy shown in the summary (3.31). 

What makes the rotation matrix and spin matrices isomorphic, allowing 

them to describe the same physical process? The answer is that these matrices 

same commutation relations. 

It is easy to make sure that the rotation matrix 

 

 

0 0 0 0 0 1 0 1 0

0 0 1 , 0 0 0 , 1 0 0

0 1 0 1 0 0 0 0 0

x y zR R R

      
     

         
           

 (3.59)  

 

subject to the following commutation relations: 

 

 

,

,

,

x y x y y x z

y z y z z y x

z x z x x z y

R R R R R R R

R R R R R R R

R R R R R R R

     

     

    

  (3.60) 

 

where on the left there are the standard notation corresponding switches. 

Pauli spin matrices obey the same commutation relations if R is formally 

replaced by ζ/2i: 

      

, 2

, 2

, 2

x y x y y x z

y z y z z y x

z x z x x z y

i

i

i

      

      

      

     

     

    

.  (3.61) 
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Note that in the standard textbooks of quantum mechanics, the Pauli spin 

matrices are usually introduced hypothetically. 

What should be the spinor components have directed along the axis z? 

Since the spinor does not change during the rotation around the axis z, then its 

components must be eigenvectors spin matrix ζz in summary (3.31): 

 

 
   
   
   

1 0
or

0 1
,  (3.62) 

 

representing really spin "up" or spin "down" along the axis z. 

If we want to learn the components of the spinor, directed along the axis of 

x, then you need to find your own spin vectors of a matrix ζx, which are the 

vectors 

 

 
    
   
    

1 1
2 or 2

1 1
,  (3.63) 

 

representing the direction of the spin "up" along the positive half or spin "down" 

along the negative semiaxis of axis x. 

In general, if we want to find the components of the spinor directed along 

arbitrarily oriented unit vector n̂  (3.2) must be sought eigenvectors 

 

        
cos sin

ˆ sin cos sin sin cos
sin cos

i

x y z i

e
n

e





 
        

 





 
      

  
,  (3.64) 

 

designated earlier as 

 
    

   
    

*

*
and

c s

s c
,  

 

the first of which corresponds to the orientation of the spin vector n̂  along the 

positive direction and are given explicitly in (3.3).  
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3.4 The spin precession 

 

We already know how to make the Hamiltonian H and the contact matrix 

Σ, including taking into account the nontrivial spin effects, and are ready to 

calculate the numerical models by calculating the electron density through non-

equilibrium Green's function G
n
, the density of states of the spectral function of 

A and the current [2]. 

 

 

Figure 3.8 – For the measurement and calculation method NEGF spin-building 

within four-terminal model homogeneous 1D conductor with two magnetic 

probes, described the contact matrices Σ1 and Σ2 

 

First, calculate the potential at the second probe, described the contact 

matrix Σ2, homogeneous 1D conductor (Fig. 3.8) with a simple method NEGF 

Hamiltonian without spin effects depending on the angle θ of the magnetic 

probe 2 with respect to the linear conductor (floating contact). The calculated 

results for different values of the polarization (3.7) P2 2nd probe relative 1st 

shown in Fig. 3.9. 
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Figure 3.9 – Change in building 2nd probe relative to the 1st according to the 

angle of inclination, normalized to 180▫, for different values of mutual 

polarization probes [10] 

 

Fully supported by NEGF calculation formula (3.1): measured potential 

oscillates depending on the angle of inclination of the magnetic contact relative 

to another. At zero polarization measured contact potential remains constant. 

As mentioned at the outset, there is no evidence that similar experiments with a 

floating magnetic contact is really carried out. Were, however, experiments with 

the rotation of the spin of electrons in the conduction channel with a fixed 

geometry relative arrangement of the magnetic contacts. 

One of the most common methods is the application of an external 

magnetic field that causes the precession of spin to the direction of the magnetic 

field with the angular frequency ω (3.49). This means that the potential spin μ2 

at a point where the test probe 2, turn on the corner ωη, where η is the time of 

passage of the electron-injecting contact way to test probe 2. Writing η = L/v, the 

equations (3.1) and (3.49) we have: 

 

 2 2

2
cos el

s z

L
P B


  


  .  (3.65) 
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You can expect to see an oscillating potential of the probe 2, depending on 

the magnitude of the applied magnetic field. However, it is usually not observed 

ballistic transport, and there is a large scatter in the values of the time η, resulting 

in a potential averaged over all the times η vanishes. Typical experiments instead 

of the oscillating signal, depending on the magnetic field, show a decrease in the 

value of building P2μs down to zero (the effect Hanley [11, 12]). Nevertheless, 

the effect of oscillations in Hanley observe managed by reducing the time 

variation τ so that the spread was much less than the average time η [13]. 

Another approach to the rotation of the electron spin can serve Rashba 

effect in conductors with a strong spin-orbit interaction. It is now well 

established as an example of many semiconductors, the electric field along the 

axis z (Fig. 3.8) leads to an effective magnetic field, which depends on the 

momentum of the electron. This can be seen by comparing the Hamiltonian with 

the magnetic field (3.36) with Rashba Hamiltonian (3.42), which, for 

convenience, be rewritten as 

 

    ˆ ˆ
RH z k k z        , (3.66) 

 

where for the effective magnetic field, obliged Rashba interaction, we get 

 

 ˆ
el effB z k   ,  (3.67) 

 

so that according to (3.65) can be expected oscillatory potential species 

 

 2 2

2
coss

kL
P


  


    (3.68) 

 

with period  

 

 


  


    022
2 or else sin

atkL
ka

kL
.  (3.69) 
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This conclusion is in good agreement with the numerical results obtained 

by NEGF for energy corresponding to ka =  / 3 when the distance between the 

injector and the detector L = 40a (Fig. 3.10). 

 

 

Figure 3.10 – In conductors with a large value of the coefficient η Rashba 

potential probe 2 oscillates if the magnetization of both probes are directed 

along the conductor (axis x); oscillations disappear when the magnetization 

perpendicular to the conductor (axis z) [10] 

 

In this model, electrons moving along the axis x in its positive direction, are 

influenced by the effective magnetic field along the axis y. As the injected 

electrons have spin potential directed along the magnetization probes 1 and 2 

(axis x), the spin potential s  should rotate. Oscillations of the building 

disappear if the magnetization of both probes are directed along the axis y. This 

effect was confirmed experimentally [14, 15]. 

 

3.5 The quantum spin Hall effect 

 

Transport polarized spins in non-magnetic materials such as copper, 

studied adequately and physical foundations generally clear. This is not the 

diffusion of spins in materials with strong spin-orbit interaction. 
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In the last decade, attention has been paid to the quantum spin Hall effect 

(COAG). In the conventional classic Hall effect electrons moving from the 

source to the drain along the axis x, by the magnetic field directed perpendicular 

to the surface of the 2D conductor, along the axis z, are twisted, so that a 

potential difference is created along a transverse axis y (Fig. 3.11) [24].  

 

Figure 3.11 – By the choice of coordinate system when discussing the effect 

of the QSH 

 

QSH effect can be understood in terms of the model, according to which 

the effective magnetic field spins spins polarized along semiaxes +z and -z, in 

opposite directions, whereas in the classical Hall effect, both varieties of spin to 

spin in the same direction. 

Since the electrons in a conductor with a strong spin-orbit interaction are 

acted effective magnetic field is natural to ask whether it is possible to observe 

the Hall effect in the absence of an external magnetic field, but only under the 

influence of the internal effective magnetic field. 

The answer is positive, but a similar phenomenon with a twist spin 

polarized along the +z and -z, in opposite directions is very delicate 

phenomenon as the charges are not accumulated in the transverse direction and 

the Hall voltage vanishes. However, the spin potential can be measured by 

magnetic contacts. 

In the first experiments the accumulation of spins opposite polarization in 

the transverse direction (QSH) found in the bulk semiconductor optical probe 

[25], and recently QSH this type probes to measure the magnetic 

nanoconductors [15].  

The transport model based on the method NEGF [2] adequately describes 

QSH, as evidenced by the results of the calculation of a homogeneous 2D 

conductor (Fig. 3.10) by Rashba factor η = 1•10
-11

 eV•m with the energy E = 
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0.05t0 and variable width W (Fig. 3.12). For isolating the z-component of the 

spin density of the Green's function G
n
 used equation (3.65). 

 

 
 

Figure 3.12 – The quantum spin Hall effect. Numerical results obtained by 

NEGF, show accumulation of +z-spins and –z-spins S(z) (in arbitrary units) on 

opposite sides of the 2D conductor with the change in direction of the current 

along the conductor to the opposite treatment leads to accumulated spins [10] 

 

   In the past few years significantly increased interest in transport spins in 

materials with strong spin-orbit interaction, especially in topological insulators 

[1] which exhibit very amazing manifestation of QSH [25]. 

 

3.6 Method NEGF and diffusive transport 

 

Finally, we discuss the method of communication with the diffusion NEGF 

approach to ballistic transport, developed in [1]. We already know that the 

numerical results obtained by the above method NEGF, qualitatively correctly 

described by equation (3.1) set forth in [1] from heuristic considerations. 

However, the reason for this agreement is not obvious, the more so in a method 

for modeling transport NEGF spins initially used two-component spinors are 

complex, and the potential spin s  describes a three valid vector. 

We have already emphasized the connection between the unit vector n̂  

along which the spin and the spin wave functions ψup and ψdn. To establish a 

connection between the equation (3.1) and method of transport for NEGF spins, 

you need to consider such as the value of the Green's function G
n
 ~ ψψ

+
, and not 

just the wave function ψ, because the method NEGF originally formulated 
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through G
n
. Not to mention that it is the Green's function G

n
, instead of the wave 

function is the observed value, suitable for communication with the 

experimental results. 

 

The electron density in the matrix representation. We have already used 

the electron density in the matrix notation [G
n
], the diagonal elements that give 

us the number of electrons at a given point of the conductor. [2] Taking into 

account the spin matrix [G
n
] at this point is a matrix (2 x 2), and it gives us the 

number of electrons or the total spin S . You can verify this by considering an 

electron with spin along an arbitrary direction n̂  (Fig. 3.7) and is described by a 

wave function in the spinor representation (3.50), so that the corresponding 

electron density matrix [G
n
] form (2 x 2) is given by   

 

  
* *

* *

* *

c cc cs
c s

s sc ss
 

  
    
    

  (3.70) 

 

anyway, using (3.2) and (3.26) 

 

 

11 1
ˆ

2 1 2

z x y

x y z

n n in
I n

n in n
 

  
       

   
.  (3.71) 

 

Summing up the contributions in ψψ
+
 from all N electrons, for the matrix 

Green function we finally get 

 

  
1 1

2 2 2

n
z x y

x y z

N S S iSG
N I S

S iS N S




  
       

   
.  (3.72) 

 

Calculating the matrix [G
n
], the total number of electrons and the total spin 

can be found from 

 
1 1

,
2 2

n nN Tr G S Tr G
 

    
    ,  (3.73) 

 

which follows from the vanishing trace Pauli spin matrices (3.31) and the 

following properties of spin matrices derived from (3.31) and (3.61), namely:  
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  

    

    

    

  

  

  

  

2 2 2
x y z

x y y x z

y z z y x

z x x z y

I

i

i

i

.  (3.74) 

 

As a result, the information contained in the Hermitian matrix [G
n
], can be 

represented by four actual values at the point of the conductor - the total number 

of electrons N and three real components of the vector of the total spin S , which 

can be derived from (3.73).  

 

Measurement of spin potential. We came to communication between the 

equation (3.1) and method of transport for NEGF spins. Scalar version of 

equation (3.1) (equation (53) in [1]) we have received within the semiclassical 

model of calculating currents on the detection probe through its boundary 

conductivity spins the opposite direction (Fig. 12 in [1]), assuming current probe 

zero. Now we get the complete equation (3.1) in a vector form, based on the 

method NEGF (Fig. 3.13). 

    

 

Figure 3.13 – Simulation of the detection probe in the semiclassical model and 

method NEGF 

 

To have the current fourth equation formalism NEGF (equation (16) in [2]) 

 

    det
      

nI Tr f A G ,  (3.75) 
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so that zero current on the detection probe (Fig. 3.13)  

 

 
 

  det

nTr G
f

Tr A

   



.  (3.76) 

 

Substituting Green function G
n 

(3.72), the spectral function of A expressed 

in terms of the spin-independent density of states D 

 

  
2 2


A D

I   (3.77) 

 

describing the connection of the detection probe to the channel conductivity 

according to (3.32) 

 

       I P ,  (3.78) 

 

and considering zero trace all Pauli matrices, we finally obtain: 

 

 det

N S
f Tr I P I

D D
 

 
       

 
.  (3.79) 

 

Given the identity of two arbitrary vectors P  and /B S D   

  

                     P B P B I i P B ,  (3.80) 

 

we have 

  

                          I P bI B b P B I P B iP B ,  (3.81) 

 

and finally, using a zero trace the Pauli matrices, instead of (3.79) we have: 

 

 det
2

sfN S
f P f P

D D
      ,  (3.82) 
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where the population of the charge f and spin fs determined in such a way that 

their maximum values are not exceeded unity. To go from populations to the 

chemical potential and get the desired equation (3.1), we use the linear 

dependence between the linear response mode (equation (21) in [26]).   

 

Four component transport. We emphasize once again that the quantum 

approach naturally leads to a complex matrix [G
n
] form (2 x 2) at every point of 

the conductor, and at the same time Green's matrix can always be rewritten in 

four physically real and understandable numbers such as (N, S ), or (μ, s ).  

We have seen in [1] how many different spin transport phenomena can be 

described by the equation Valais - Firth (equation (23) in [1]) with the model of 

spin-dependent boundary resistance. However, this approach [1] has been 

limited to problems of transport using spin in only one direction (axis z). Now, 

with the full version of the method NEGF, transport can be considered spin 

oriented in any arbitrary direction, although such calculations and require large 

computational resources. 

Broadcasting matrix [G
n
] in a four-format (N, S ) the spin-dependent 

conductivity boundary [1] may be replaced by a matrix of conductivity G shaped 

(4 x 4), which will connect the four components of the potential four 

components of the current: 

    

 4 4









   
   

    
    

    
      

sx sx

sy sy

sz sz

I

I G

I

I

.  (3.83) 

  

Similarly, a two-component equation Vale – Firth for (μ, μs) can be 

converted into four-component diffusion equation for (μ, s ).  

As mentioned above, the accounting differences between the two spin 

states doubles order of all templates in the method NEGF. For example, if 1D 

conductor, are three of the atom, the block matrix [G
n
] is the 6th order: 
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1
,

1

2
,

2

3
,

3

 
 

 
 

 
 

up dn up dn up dn

up

dn

up

dn

up

dn

N S

N S

N S

,  (3.84)     

 

wherein the diagonal blocks (2 x 2) correspond to the quaternary transport 

format description. 

What is missing in the Green's matrix (3.84), so it's off-diagonal elements 

linking the neighboring and more distant from each other atoms of the 

conductor. As will be shown below, these elements of the Green matrix generate 

quantum interference effects. For some transportation problems is not essential, 

since these effects are often leveled dephasing processes, it will be devoted to 

the following message. 
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Chapter 4  

QUANTUM INTERFERENCE AND DEPHASING IN METHOD NON-

EQUILIBRIUMGREEN'S FUNCTIONS 

 

4.1 Introduction 

 

So far we have considered only physical contact [Σ1,2] in the quantum 

model of coherent transport [1], in which the electrons move coherently from 

the source to the drain through the channel described by static Hamiltonian [H] 

in the absence of electron interaction with the environment as it moves through 

the channel described by the self-energy [Σ0] (Fig. 4.1). 

 

 
Figure 4.1 – Model of quantum transport with a simple elastic dephasing 

 

What is the physical interaction is Σ0? From the point of view of an 

electron moving through a conductor, Wednesday is not a static electron 

described static Hamiltonian [H], but a very turbulent environment with a 

randomly varying potential UR, which fluctuates in the picosecond time scale. 

Even at low temperatures frozen phonon modes electron moves in the 

fluctuating potential produced by all other electrons (the self-consistent field 

approximation). Even in this case, there are phase fluctuations (dephasing), 

leading to fluctuations in current. The effect of averaging should be adequately 

model if we are to correctly interpret the experimental data. 

The method of non-equilibriumGreen's functions (NEGF) was originally 

designed specifically for the account of inelastic processes of quantum transport 

in massive conductors. We are yet outlined its relation to elastic resistors [1]. 

Now we consider a relatively simple model of elastic dephasing. 
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What is the process of dephasing? Or in other words, the coherent process 

differs from incoherent? Coherent transport is a process of electron motion 

along the conductor in which the state of the other particles in the channel 

conductivity is not changed. Simple electron from the elastic rebound of the 

defect back to the conduction channel have a coherent process. If the electron 

transfers part of its energy, for example, lattice atom and atom began to vibrate 

with greater amplitude, such a process is incoherent. It seems to mean that the 

incoherent process must also be inelastic, originating with the exchange of 

energy. However, this is not necessarily so, and the classic example is the spin 

dephasing. 

Let us have a magnetic impurity with two spin states of the same energy 

(degenerate). And let the electron interacting with an impurity, change the spin 

direction is reversed, without changing its energy. This process - elastic. 

Nevertheless, this process is incoherent, since the state of the electron changed. 

What makes this process is incoherent? Can we consider the electron spin 

and the admixture as a single component system whose state has changed and 

therefore the process can be considered a coherent? What really makes these 

processes are incoherent, because these are external forces that inspire the return 

of an impurity spin in the unpolarized state (50% of the "up" and 50% "down"). 

This process of "erasing" is the essence of spin dephasing. In the general case, 

the dephasing is meant a process in which a quantum mechanical interference is 

destroyed.  

 

The elastic dephasing. The processes of elastic dephasing in the method 

described by the matrix NEGF own energy 

 

  0
RD G     ,  (4.1a) 

 0
in nD G        ,  (4.1b) 

    0 D A   ,  (4.1c)  

 

where the "cross"   is an exploded matrix multiplication, and describe the 

elements of the matrix D correlation between the random values of the potential 

at the nodes i and j of the conductor: 
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 ij Ri RjD U U .  (4.2)  

 

Two limit model correlations are of interest. In the first, fully correlated 

random potential at all nodes along the entire length of the conduction channel 

has the same value for each node i, so that all the elements of the matrix [D] are 

both equal to D0: 

 

 (Model A) 0ijD D .  (4.3) 

 

In the second model, there is no correlation between the nodes of the 

conductor, scalar matrix D:  

 

 (Model B)  0 ,ij ijD D    (4.4) 

 

where δij - Kronecker delta-function. Real processes are usually described 

intermediate cases. 

The origin of the formula (4.1) can be understood with reference to the 

source in the construction method NEGF in matrix form of the Schrodinger 

equation (equation (4) in [1]) 

 

       1 2 1E H S       ,  (4.5)  

 

where [Σ1] and [Σ2] - contact your own energy matrix and column matrix {s1} 

describes the influx of electrons in a conductor with a left contact 1 (Fig. 4.1)  

[1]. 

The random potential introduced into the Schrodinger equation by analogy 

with the matrix self-energy 

 

         1 2 1RE H U S           (4.6) 

 

with a corresponding current member  

 

   *
0 02in n

R RA U U D G   


  ,  (4.7)  
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written above for Model A. Several longer calculations lead to the same 

expression for the model B. As a result, we have the formula (4.1b). 

To justify the formula (4.1c), we note that this formula with (4.1b) must 

provide zero current on the "Terminal 0", which follows from the fourth 

equation formalism NEGF (equation (16) in [1]), namely: 

 

 0 0 0 0 0 0 0in n n nq q
I Tr A G D Tr G G

h h
                (4.8) 

 

and is a must, because the "terminal 0" is not a physical contact, where the 

electrons can move into a conductor or leave it. 

Indeed, at one time Buttiker proposed to account for the incoherent process 

of entering a dummy contact (Buttiker probe), the electrochemical potential is 

selected in such a way as to guarantee this zero current contact [2, 3]. The 

formalism NEGF this leads to the assertion that  

 

 0 0
in

Pf    (4.9)   

 

where the number of fp is selected such as to provide a zero current to the 

dummy terminal. This is equivalent to the arguments above, if the connection Γ0 

"terminal" with a guide to select proportional spectral function [A] as required 

under (4.1c).  

We draw attention to the fact that the equation (4.1) presuppose a self-

consistent calculation procedure as Σ, Σ
in
 depend on G

R
 and G

n
, which in turn, 

according to the equation (4.6) and equation (13) in [1], dependent on Σ and Σ
in
; 

and that the model A (4.3) involves calculating the full Green's function that, for 

sufficiently large devices leads to a very large matrix calculation order, while 

model B (4.4) does not require substantial computing resources such as 

computation subject only to the diagonal elements of the Green's matrix. 

Significant conceptual differences between the models A and B is that 

destroys phasing model A, but does not affect the pulses, while model B also 

destroys pulses [4]. Dephasing process can be thought of as "extraction" of the 

electron conductor in a state [G
n
] and then "injected" it back to a conductor in a 

state DG
n
. A model involves matrix multiplication Green [G

n
] by a constant so 

that the electron "reinjected" at exactly the same state in which it was 
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"extracted", without the loss of momentum, while model B are dropped off-

diagonal elements of the matrix D and "reinjected" change the trajectory of an 

electron to a certain arbitrary compared to the path with which it has been 

"removed." The whole situation will become clearer below with respect to 

specific examples.  

Instead of considering the elastic dephasing through the matrix self-energy 

[Σ0] could be included in the random potential UR in Hamiltonian with further 

averaging it possible random realizations UR. Both approaches though not 

exactly equivalent, but in some cases lead to the same results, as we shall see 

below as specific examples. 

The sake of completeness, we note that in the general case D is a tensor of 

the 4th rank, connecting with each other a pair of matrices, namely: 

 

  0
,

R
ijklij klk l

D G     ,  (4.10а)  

 0
,

in n
ijkl

ij klk l

D G       ,  (4.10b)  

 

and the elastic dephasing (4.1) is realized through Dijkl nonzero for i=k and j=l. 

 

4.2 1D conductor with two or more scattering centers 

 

Previously [1] considered in detail 1D conductor with a scattering center, 

characterized by the probability of passing the T. In [5] it was shown that the 

resistance of the conductor R1 can be split into two parts - the resistance of the 

scattering center and the boundary resistance (respectively, the equation (34) 

and (35) in [5]): 

 

 1 2

1
1

h T
R

Tq M

 
  

 
.  (11) 

 

The question arises, what is the conductor resistance R2 with two identical 

scattering centers, each with a probability of transmission T. This conductor can 

be considered as a series connection of two conductors, each with the same 

scattering center (Fig. 4.2). 
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Figure 4.2 – Conductor with one or two identical scattering centers 

 

We can expect that in a conductor with two centers of the contribution from 

double scattering centers: 

 

 2 2 2

1 2
2 1

h T h T
R

T Tq M q M

  
   

 
,   (4.12) 

 

so that 

  

  R2 = R1 (2 – Т).  (4.13) 

 

If the probability of scattering centers passage T is close to unity, then the 

ballistic limit conduction R2   R1: two identical conductor, each with the same 

scattering center and connected in series, carried out in the same manner as one 

of them, since all the resistance is a boundary.  

If Т =1, there is a ohmic limit R2   2R1: two such conductor connected in 

series, a dual resistance wire, because all resistance connected to the channel 

conductivity. 

But can R2 be less than R1? If electrons obey the laws of classical 

mechanics, then, of course not. Increasing the number of obstacles on the road 

highway can not increase the limit of the traffic on this highway. But at the 

quantum "highway" it is quite possibly due to the quantum (wave) interference. 

To solve the problems of this type use the model of a homogeneous 1D 

conductor in the Hückel approximation [1]. Recall the behavior of the 
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transmission coefficient in a conductor with a scattering center U = 2t0 (Fig. 4.3) 

and compare it with the same conductor, but with two identical such as 

scattering centers (Fig. 4.4).  

 

  

Figure 4.3 – The transmission coefficient in a uniform 1D conductor with one 

point scattering center (U = 2t0) and without (U = 0) [1] 

 

 

 

Figure 4.4 – The transmission coefficient in the single-1D conductor with one or 

two identical scattering centers with U = 2t0 
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If the electrochemical potential of the device to a conductor with two 

scattering centers will be at B (Fig. 4.4), the transmittance will be less than one 

center conductor; In other words, resistance R2 will be greater than R1. If it 

happens that the chemical potential would be at level A (see Fig. 4.4), then R2 

will be even smaller than R1. 

Consider a conductor with randomly distributed scattering centers. A 

quantum calculation method NEGF six such centers shows that the conductivity 

is very, very low (nearly ohmic behavior), excluding the numerous bursts of 

conductivity, rarely up to values close to unity (Fig. 4.5). 

 

 

 

Figure 4.5 – The transmission coefficient in the single 1D conductor 

with the same six randomly distributed scattering centers with U = 2t0 [6]. 

The dots shows the result of the semiclassical calculation (Fig. 4.3) 

based on the six points 

  

The figure also shows a semi-classical points result obtained initially for a 

single scattering center (Fig. 4.3), then a contribution from increased six times. 

For the resistance of the conductor have 
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 6 2 2

1 6 5
6 1

h T h T
R

q M T q M T

  
   

 
,  (4.14) 

 

where the first term in brackets is due six scattering centers, and the second term 

- the boundary resistance. 

Quantum calculations show similar behavior and multimode conductors as 

classic transmittance Mλ/L is less than one, where λ - the mean free path and L - 

length of the conductor. Such conductors say they are in the regime of strong 

localization. Curiously, even if Mλ/L is greater than one, the quantum of 

conductance is only slightly less than the classical value; of such conductors say 

they are in the regime of weak localization.  

Such localization effects usually observed experimentally only at low 

temperatures. At room temperature, it is extremely rare to meet with a deviation 

from Ohm's law. Consider, for example, copper wire with a cross section of 10 

nm x 10 nm, which contains about 1000 atoms, and hence the number of modes 

M ≈ 1000. Let the mean free path λ ≈ 40 nm. Then, this wire length of no more 

than Мλ ≈ 40 μм should detect non-ohmic behavior that is not supported by 

experimental observations. The reason is that the effects caused by the 

localization of quantum interference and are observed only when there is a phase 

coherence over the entire length of the conductor. Copper wire length L ≈ 40 

microns phase incoherent, especially at room temperature. Conceptually real 

conductor can be considered as a sequence of individual coherent conductors, 

each of length equal to the length of phase coherence LP. We see or do not see 

the effects of localization does not depend Mλ/L, but from Mλ/LP. 

The main conclusion is that the interpretation of the experiments at room 

temperature formalism NEGF, as a rule, it is necessary to some extent to 

consider dephasing processes, as described above. Until we somehow do not 

take into account the dephasing in quantum models of electron transport 

manifest interference effects, leading to strong localization or resonant 

tunneling. In support of this, we consider the potential change along the channel 

conductor with defects using NEGF [6].  
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4.3 The potential jump on defects 

 

Profile-building single-mode conductor with one defect of transparency T 

considered in [1, 5]. The conductivity of the conductor is given by (34) in [5]. 

Then, the resistance of the conductor, normalized to the quantum of resistance, 

 

 RNorm = (1 – T)/T.                             (4.15) 

 

Semiclassical expression for the transmission coefficient T is given by the 

formula (113) in [1]. Then, the normalized resistance defect equal 

 

 RNorm = (Ua/ħv)
2
.                      (4.16) 

 

Semiclassical potential profile with a jump in the boundary resistance h /q
2
, 

according to (36) in [5], and the resistance to the defect (4.16) is shown in 

Fig. 4.6 together with the results obtained by NEGF without dephasing.  

 

 
 

Figure 4.6 – (a) Schematic of single-mode conductor defective U = t0; (b) 

Quantum oscillations in the method NEGF without dephasing (D0 = 0) mode 

coherence at E = t0 jumps on a background of semi-classical building 
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Engineering of calculation population f in the method NEGF the Green's 

function and the spectral function and then the electrochemical potential is 

described in [5, formulas (87) and (88)]. 

The population in the calculation method NEGF a result of quantum 

interference oscillates so much that it becomes difficult to see the potential jump 

at the defect (Fig. 4.6). 

Experimentally, the potential profile is usually measured with a scanning 

tunneling microscope (Fig. 14 in [5]) and at room temperature quantum 

oscillations are usually not visible because of the dephasing processes inevitably 

occurring in such conditions. The above example shows again that the 

simulation and interpretation of actual traffic measurements at room temperature 

must be a greater or lesser extent into account dephasing quantum interference 

effects.  

Indeed, if the same model of the conductor (Fig. 4.6a) in the calculation 

method NEGF include dephasing considering only the phase relaxation (model 

A, equation (4.3)), we obtain the potential profile with a clearly pronounced 

jump at the defect in accordance with the semiclassical model (Fig. 4.7). 

 

 
 

Figure 4.7 – Quantum oscillations in the method NEGF dephasing when taking 

into account only the relaxation phase (model A) for E = t0 does not veil the 

potential jump on the defect 
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 Interestingly, if we consider also the relaxation pulse (model B, equation 

(4.4)), the potential throughout the conductor takes practically linearly (Fig. 

4.8), as should be expected for uniformly distributed elastic resistors over the 

entire length of the conductor (application 1 in [7]).  

 

 
 

Figure 4.8 – Accounting method in NEGF both phase and relaxation impulse 

(model B) virtually eliminates the potential jump on the defect, making a 

conductor with a defect in a sequence of elastic resistors 

 

The resistance per one unit of such a uniform conductor 1D can be obtained 

from (4.16) by replacing U
2
 on D0: 

 

 RNorm = D0 (a/ħv)
2
(L/a),                      (4.17) 

 

where L/a gives the number of sites in the conductor. 

Another useful example is already discussed above with two similar 

conductor scattering centers (Fig. 4.4). Values of electrochemical potential at 

levels A and B correspond to the constructive (R2 <R1) and destructive 

(R2>R1) quantum interference. The difference between them is evident in the 

calculation of the conductor by NEGF coherent mode of transport, without 

dephasing with D0 = 0 (Fig. 4.9). 
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Figure 4.9 – Quantum oscillations per conductor with two identical scattering 

centers with U = t0 by NEGF without dephasing (D0 = 0) mode coherence at E = 

0.6t0 evidence of destructive interference (mode B with R2 > R1), and for E = 

0.81t0 - of constructive interference (mode A with R2 < R1) 

 

At the level of potential profile it looks as if we are dealing with a large 

jump in the potential defect, and even imposed on him by two bursts (destructive 

interference). The slight increase in the electrochemical potential to E = 0.81t0 

(Level A) dramatically changes the potential profile. Now it looks like this (Fig. 

4.9), as one would expect for a ballistic conductor with jumps only at the 

boundaries of the potential contacts (constructive interference). 

In the above question "whether R2 be less than R1?" The answer is simple - "Yes, 

maybe": two defects can create less resistance than one such defect. And this 

"strange" result is bound to quantum interference. 
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One only, in both cases A and B (Fig. 4.9) to consider dephasing in a phase 

relaxation with sufficient non-zero value D0, as the potential profile once it 

becomes like a semi-classical profile of the resistor (Fig. 4.10). 

 

 
 

Figure 4.10 – Quantum oscillations in the method NEGF dephasing when taking 

into account only the relaxation phase (D0 = 0.09 t0
2
) when both values of 

electrochemical potential 0.6t0 and 0.81t0 jumps on a background of 

semiclassical building 

 

Computationally pay attention to the fact that in the method of accounting 

dephasing NEGF algorithmically not difficult, but if in a coherent approach 

(D0=0) or, subject only to the pulse relaxation (model B, equation (4.4)), it 

suffices to calculate only diagonal elements of the Green's function, in the case 

of recording a phase relaxation is necessary to calculate the total Green's 
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function, which significantly increases the computing time and requires much 

more computing resources. 

It is reasonable to also raise the question: what if, instead of taking into 

account the dephasing through the matrix Σ0 own energy potential UR included 

in the Hamiltonian H, and the then average it over all possible implementations, 

it lead to the same results?  

For short resistors, such as in Fig. 4.4, the answer is likely to be positive, 

but for long resistors, as shown in Fig. 4.5, the answer is no. In the case of a 

conductor in the strong localization (Fig. 4.5), it is difficult to imagine how the 

averaging of coherent quantum state of many possible configurations will lead 

to semi-classical results. 

Method NEGF to dephasing, without going into details, it can not be 

reduced simply to averaging over many configurations, and also includes an 

average of individual fragments of configurations, with the result that is 

achieved semiclassical description of conduction, so well established in the 

interpretation of the actual measurements at room temperature. 

Services in the four-spin format. Returning to the description of the 

quaternary spin transport [8], but now with the dephasing. He cited the example 

of the Green's matrix of a linear conductor of three atoms: 

 

 

1 1

2 2

3 3

1 1 2 2 3 3

1
,

1

2
,

2

3
,

3

up dn up dn up dn

up
N S

dn

up
N S

dn

up
N S

dn

 
  

 
  

 
  

,  (4.18)     

 

wherein the diagonal blocks (2 x 2) comprise four real number (N, S ), and the 

non-diagonal blocks, and a connecting adjacent spaced apart atoms have been 

omitted; it is the off-diagonal blocks generate quantum interference effects. In 

this regard, we note that the spin relaxation times are of the order of 

nanoseconds, and the phase relaxation time on the order of three or even more 

smaller. If so, it is important to maintain the information stored in the diagonal 
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blocks, even if you do not take into account information from the non-diagonal 

blocks. 

The formalism NEGF need to pick a suitable matrix D in equation (4.1b): 

 

in nD G         ,  

 

because the process of dephasing can be visually represented as the "extraction" 

of the electron conductor in a state [G
n
] and then "injected" it back to a 

conductor in a state DG
n
.  

Have already been introduced in two models for the matrix [D] - A and B 

models described by equations, respectively, (4.3) and (4.4). Model A is 

equivalent to multiplying the matrix [D] by a constant: in other words, the 

electron is "injected" in the same state from which it has been "removed" so that 

the electron momentum is maintained. The model in the off-diagonal elements 

vanish, leading to loss of information about the momentum of the electron, 

which is well illustrated in Fig. 4.8. 

We define a model with one in which the matrix [D] stores all the 

information about the backs and vanish momentum relaxation, namely: 

 

 

 

0

1 1 2 2 3 3

1 1 1 0 0 0 0

1 1 1 0 0 0 0

2 0 0 1 1 0 0

2 0 0 1 1 0 0

3 0 0 0 0 1 1

3 0 0 0 0 1 1

D
up dn up dn up dn

D

up

dn

up

dn

up

dn



 
 
 

 
 
 

 
 
 

,  (4.19)   

 

in other words, the model C remind the model B in against conductor lattice, and 

the model A regarding spin information.  

 

Rewrite the Green's matrix 
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n R in AG G G          (4.20) 

 

how  

  

 0

n R in A R n A

ii ij jj ji ij jj ji
G G G D G G G                              ,    (4.21) 

 

where the indices i, j enumerate the lattice atoms of the conductor and takes into 

account the fact that in the model with the matrix in the lattice basis Σ
in
 

diagonal. 

We already know that for any lattice site guide its diagonal matrix (2 x 2) 

Green's matrix (4.18) can be written in terms of the number (N, S ), so that the 

equation (4.21) by simple transformations can be written as  

 

Resonance

matrix

(4 4)

x x

jy y

ij
z zi j

N N

S S

S S

S S

   
    

    
    

           

 ,      (4.22) 

 

where "resonance" matrix (4 x 4) may be interpreted as an interaction (N, S ) at a 

node i with (N, S ) at the nodes j, located away from the i in one step on a lattice. 

A similar one-dimensional equation resembles the standard description of 

Brownian motion on the grid and led to the diffusion equation drift.  

 

4.4 The quantum nature of the classics 

 

There is nothing surprising or unexpected in the title of this section. From 

the above example we have seen that to understand the physics and for the 

interpretation of real experimental measurements are usually quite semiclassical 

consideration. Almost everything that we have discussed in this series, is a 

consequence of the transport of the Boltzmann equation. Moreover, all the 

billions of transistors in current notebook consisting of only a few hundred 

atoms are essentially classical electronics devices controlled mainly electrostatic 

rather than the laws of quantum mechanics. Recently made a thorough and 
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comprehensive measurements and calculations 2D metallic conductivity of the 

conductor cross-section (1 x 4) atoms [9] demonstrated its normal ohmic 

behavior. It is reasonable to ask Will, based on the apparent success of our 

fantastic Nanophysics and nanoelectronics, create a fundamentally different 

quantum devices that will take us beyond the current "charge" the paradigm of 

information processing. Mention only some considerations in this regard. [10] 

 

The spin coherence. The difference between quantum and classical 

physics is best observed on such a fundamental property of the electron spin. 

Consider, for example, an experiment with spin injection in the further 

conduction channel second potential measurement probe [8] 

  

 
2

2
2

sP 
 


  ,  (4.23) 

 

dependent on the cosine of the angle between the magnetic recording and 

injecting contacts (Fig. 2 in [8]). Green's matrix has the form (4.18) with 

diagonal blocks (2 x 2)  

 

 
  

 
   

z x y

x y z

N S S iS

S iS N S
,  (4.24) 

 

elements of which contain physically understandable quantities of electronic and 

spin density (N, S ). Formalism NEGF results [8] further to the equation (4.23) 

(μ, s ), broadcast in the (N, S ) according to the equation (83) in [8].   

This simple example allows to illustrate the link between the quantum and 

classical description. If you cross the components of the matrix (4.24) is 

negligible, only two numbers N and Sz is sufficient to describe the entire physics 

of transport. The remaining non-zero diagonal components can be interpreted 

N + Sz as the number of electrons with spin "up" 

N - Sz as the number of electrons with spin "down" 

and then discharged semiclassical equations for the two kinds of electrons. In 

fact, this approach is implemented in [7]. 
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When running such a model? One of the possibilities available when the 

contacts are collinear magnetization, as in [7], and the spin-orbit interaction in 

the channel conductivity is absent, so that the angle θ is an integer multiple of 

180º (Fig. 2 in [8]). Another possibility is realized when the spin dephasing so 

significant that cross the spin component in the diagonal block matrix (2 x 2) 

Green's matrix (4.24) can be neglected. Finally, if you can be neglected and the 

z-component of spin, then on account of the spin is not the issue. 

What if collinear magnetic contacts are not directed along the axis z, but 

axis x? In this case, the blocks (2 x 2) Green's matrix is diagonal (the icon → 

read "rewritten in the form"): 

 

2

n

x

x

G N S

S N

    
  

 
   

 

and semiclassical description is likely to be impossible. In this case, you need to 

choose a different coordinate system, or in general, otherwise choose the 

expansion of the basis functions. Select needed basis so that objects, such as a 

spin with the direction "up" and "down", have focused, respectively, along the 

+x and - x; then the blocks will be the Green matrix diagonal: 

 

0

02

n

up

dn

G N S

N S

    
   

. 

 

Recommendation choose another basis may seem trivial, but it is not so, as 

we shall now see. 

Pseudospins. The formalism of Pauli spin matrices [7] is remarkable in 

that it is not confined only to the electron spin, but extends to any object with a 

two-component structure in the complex plane. Recall the graph. The carbon 

atoms in graphene topologically equivalent and can be either class A or class B 

(Fig. 23 in [1]). The wave function of the unit cell of graphene is described by a 

two-component vector in the complex plane [11] 

 

  A

B






 
  
 

,  
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so that the corresponding Green's function (equation (10) in [1]) can be formally 

rewritten as follows:  

 

* *

* *2

n

z x yA A A B

x y zB A B B

G N S S iS

S iS N S

   

    

       
        

, 

 

that is irrelevant to the real back and only formally mathematically corresponds 

to (4.24). Directions pseudospins in graphene is shown in Fig. 29b in [7]. 

Consider another example of using the less familiar concept pseudospin 

pursuing primarily pedagogic purpose. Returning to the model in Fig. 4.6a. 

 

 
 

Figure 4.11 – (a) Schematic of single-mode conductor with one defect 

characterized by the transmission coefficient t and the reflection coefficient r; 

arrows indicate a pseudo spinor wave functions of the electron before and after 

the passage of the defect. (b) The behavior of the diagonal matrix elements of 

the Green's left and right of the defect 

 

Let's look at the behavior of the diagonal elements of the Green's matrix 

[G
n
] on the left and right of the defect (Fig. 4.11b). To the left of the defect to 
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"observe" the oscillations of the electron density, whereas after passing the 

defect density is constant. Note that, in the same model in Fig. 4.6 – 4.10 

oscillations take place and the right of the defect. But there it was on the 

oscillations of the populations, which is calculated from G
n
/A, and the spectral 

function of A, which is proportional to the density of states D, oscillates, both 

before and after the passage of the defect, so that to our situation, these 

oscillations to the right in Fig. 4.6 – 4.10 have no relationship. 

See how you can use the concept of pseudospin understand the behavior of 

the Green's matrix of diagonal elements in Fig. 4.11b. The following shows a 

pseudo spinor wave function of an electron and electron density on the left/L 

and right/R of the defect and the presentation of the latter with the use of the 

concept pseudospin: 

 

   ,
0

ikz ikz

ikz

L R

e re

re


 



   
    

   
; 

 

   
* 2 *

2 *

1 0
,

0 0

i kz
z x y

i kz
x y zL R

N S S iSr e tt

S iS N Sre rr
 






     
             

.   

 

Assuming the coefficients t and r valid values for E pseudodensity and 

pseudospin density on the left and right of the barrier, respectively, we obtain: 

 

 

2 2

2 2

(1 ) / 2 / 2

cos 2 0

sin 2 0

(1 ) / 2 / 2

x x

y e

z z

N r N r

S r kz S

S r kz S

S r S r

  

  

  

  

.    (4.25) 

 

In other words, on the left of barrier pseudospin rotates in a plane xy. When 

plotting G
n
 (z, z) in Fig. 11b was the sum of two components pseudospin, and 

then took her square, which is equivalent to 

 

       
1 1 1

1 1
1 1 1

Tr Tr   
    

   
   

.    (4.26) 
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In fact, we are dealing with a pseudo magnet with 

 

1 1

1 1

 
   

 
,     (4.27) 

 

which is 100% polarized along x. Thus, according to (4.23) measures the 

capacity to be proportional to what is left of the barrier to the oscillations of the 

cosine, and the right - to the absence of oscillations 

 

2 21
ˆ cos 2 ; ,

2 2
L R

r r
N x S r kz


      

 

which agrees well with the results of the calculation method NEGF (Fig. 4.11b). 

 

Beyond our study are numerous questions and unsolved problems, among 

them nanophysics informational aspects of spintronics, which would have to 

devote a separate publication. 
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