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Abstract. Results of analysis and modelling the air pollutant (dioxide of nitrogen) 

concentration temporal dynamics in atmosphere of the industrial city Odessa are presented for 

the first time and based on computing by nonlinear methods of the chaos and dynamical 

systems theories. A chaotic behaviour is discovered and investigated. To reconstruct the 

corresponding strange chaotic attractor, the time delay and embedding dimension are 

computed. The former is determined by the methods of autocorrelation function and average 

mutual information, and the latter is calculated by means of correlation dimension method and 

algorithm of false nearest neighbours. It is shown that low-dimensional chaos exists in the 

nitrogen dioxide concentration time series under investigation. Further, the Lyapunov’s 

exponents spectrum, Kaplan-Yorke dimension and Kolmogorov entropy are computed.  

1.  Introduction 

The problem of quantitative treating air pollution temporal and spatial dynamics in atmosphere of the 

industrial cities is remained by one of the most actual and important problem of the modern applied 

ecology, the environmental protection [1-6]. As a rule, the deterministic models or simplified ones, 

based on a simple statistical regressions, are usually used to estimate air pollution [1-3]. The problem 

of any prediction of air pollutants temporal or spatial dynamics is remained practically unsolved 

hitherto. In the last years a new approach to air pollution problem is provided by using methods of 

advanced non-linear analysis, chaos, dynamical systems theories (see [5-21] and Refs. therein). The 

studies concerning non-linear behaviour in the time series of atmospheric constituent concentrations 

are sparse, and their outcomes are ambiguous.  

In ref. [5] there is an analysis of the NO2, CO, O3 concentrations time series. Also, it was shown that 

O3 concentrations in Cincinnati (Ohio) and Istanbul are evidently chaotic, and non-linear approach 

provides satisfactory results [4]. In Ref. [6] it has been fulfilled the detailed analysis of the NO2, CO, 

CO2 concentration time series in the Gdansk region (Polland) and it has been definitely obtained the 

evidence of a chaos. Moreover it has been given a short-range forecast of atmospheric pollutants time 

evolution using non-linear prediction method. These studies show that a chaos and dynamical system 

theories methodology can be applied and the short-range forecast by the non-linear prediction method 

can be satisfactory.   

http://creativecommons.org/licenses/by/3.0
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In this paper for the first time we present the results of analysis and numerical modelling the air 

pollution (dioxide of nitrogen) concentration temporal dynamics in atmosphere of the industrial city 

Odessa. A chaotic behaviour has been discovered and in details investigated by using nonlinear 

methods of the chaos and dynamical systems theories [7-22]. To reconstruct the corresponding strange 

chaotic attractor, the time delay and embedding dimension are computed. The former is determined by 

the methods of autocorrelation function and average mutual information, and the latter is calculated by 

means of correlation dimension method and algorithm of false nearest neighbours. All calculations are 

performed with using “Geomath” and “Quantum Chaos” computational codes [21-35]. 

2. Data and method of analysis and modelling 

In our study, we use the nitrogen dioxide (NO2) concentration data observed in the atmosphere of the 

Odessa city from 1976 till 2000 years [2]. The multi-year hourly concentrations (one year total of 

20x8760 data points, 1990) are analyzed. The typical temporal series of concentration (in mg/m
3
) of 

the NO2 (cite 1) is presented in figure 1.   

 

Figure 1. The temporal series of concentrations (in mg/m3) of the of the NO2  (see text). 

In Refs. [7-20] it has been developed computational code for studying chaotic features of the complex 

non-linear  systems and in details described a procedure of testing of the  chaos elements in the 

corresponding time series. Here we are limited only by the key aspects. As usually, we consider scalar 

measurements  s(n)=s(t0+ nt) = s(n), where t0 is a start time, t is time step, and n is number of the 

measurements. In a general case, s(n) is any time series, but here s(n) corresponds to an atmospheric 

pollutant concentration. The first fundamental step of modelling is in reconstruction of the 

corresponding phase space using as well as possible information contained in s(n). From the 

mathematical viewpoint, this procedure results in set of d-dimensional vectors y(n) replacing scalar 

measurements. One should further to operate with lagged variables s(n+), where  is some integer to 

be defined, results in a coordinate system where a structure of orbits in phase space can be captured. 

Using a set of the time lags to create a vector in d dimensions, y(n)=[s(n), s(n + ), 

s(n + 2),..,s(n +(d1))], the required coordinates are provided. The dimension d is defined as an 

embedding dimension, dE.  

In Refs. [6-8,14,15] a few approaches to the choice of proper time lag are presented. This point is    

important for the subsequent reconstruction of phase space. The first approach is to compute the linear 

autocorrelation function CL() and to look for that time lag where CL() first passes through 0. The 

alternative approach is based on using method of an average mutual information [9]. Let us remind 

that the mutual information I of two measurements ai and bk is symmetric and non-negative, and 

equals to 0 if only the systems are independent. The average mutual information between any value ai 

from system A and bk from B is the average over all possible measurements of IAB(ai, bk). In Ref. [4] it 

is suggested, as a prescription, that it is necessary to choose that  where the first minimum of I() 

occurs. The fundamental goal of the dE calculation is in the further reconstruction of the Euclidean 

space R
d
 large enough so that the set of points dA can be unfolded without ambiguity. The embedding 

dimension, dE, must be greater, or at least equal, than a dimension of the corresponding chaotic 

attractor, dA, i.e. dE > dA. The correlation integral analysis is one of the widely used techniques to 
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investigate the signatures of chaos in a time series. This method is based on using the correlation 

integral, C(r). According to Ref. [10], the correlation integral is defined as:   
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where H is the Heaviside step function with H(u) = 1 for u > 0 and H(u) = 0 for u  0, r is the radius of 

sphere centered on yi or yj, and N is the number of data measurements. As usually, if the 

corresponding time series is characterized by an attractor, then the correlation dimension d is defined 

by a limit of relation of the log C(r) to log of the corresponding radius (look details in Ref. [10]. In a 

case of the chaotic system the correlation exponent attains saturation with an increase in the 

embedding dimension. The saturation value of this exponent is defined as the correlation dimension 

(d2) of the attractor. The technique of application the correlation integral method (say, the 

Grassberger-Procaccia algorithm [10]) is presented in Refs. [14,15].  

Another method for determining dE comes from asking the basic question addressed in the embedding 

theorem: when has one eliminated false crossing of the orbit with itself which arose by virtue of 

having projected the attractor into a too low dimensional space? This method is called as the method 

of false nearest neighbours. As a rule, the simultaneous application of two methods provides more 

exact determination dE.  It is noteworthy that the nearest integer above the saturation value provides 

the minimum or optimum embedding dimension for reconstructing the phase-space or the number of 

variables necessary to model the dynamics of the system. This concept can be applied, since the 

embedding dimension determined by both the correlation dimension method and the algorithm of false 

nearest neighbours are identical. The further important step in studying the chaotic time series of the 

dynamical system is determination of predictability, which can be estimated by the Kolmogorov 

entropy. The Kolmogorov entropy is proportional to a sum of the positive Lyapunov’s exponents.  Let 

us remind that the Lyapunov’s exponents spectrum is one of the fundamental dynamical invariants for 

non-linear system with chaotic behaviour. According to definition, the Lyapunov’s exponents are 

related to the eigenvalues of the linearized dynamics across the attractor. These parameters indicate the 

complexity of dynamics of the studied system. As usually, the positive values the Lyapunov’s 

exponents show local unstable behaviour of the system, and respectively, their negative values show 

stable behaviour. The largest positive value of the  Lyapunov’s exponents determines some average 

prediction limit. Since the Lyapunov’s exponents are defined as asymptotic average rates, they are 

independent of the initial conditions, and hence the choice of trajectory, and they do comprise an 

invariant measure of the attractor. An estimate of this measure is a sum of the positive Lyapunov’s 

exponents. The estimate of the attractor dimension is provided by the conjecture dL and the 

Lyapunov’s exponents are taken in descending order. The dimension dL gives values close to the 

dimension estimates discussed earlier and is preferable when estimating high dimensions. To compute 

Lyapunov’s exponents, we use a method with linear fitted map (version [14], although the maps with 

higher order polynomials can be used too. 

3. The results and conclusions 

Table 1 summarizes the results for the time lag, which is computed for first ~10
3
 values of time series. 

The autocorrelation function crosses 0 only for the NO2 time series, whereas this statistic for other 

time series remains positive. The values, where the autocorrelation function first crosses 0.1, can be 

chosen as , but earlier it had been  showed that an attractor cannot be adequately reconstructed for 

very large values of . So, before making up final decision we calculate the dimension of attractor for 

all values in Table 1. If time lags determined by average mutual information are used, then algorithm 

of false nearest neighbours provides dE = 6 for all air pollutants. Table 2 shows the results of 

computing a set of the dynamical and topological invariants, namely:  correlation dimension (d2), 

embedding dimension (dE), two Lyapunov exponents 1,2),  Kaplan-York dimension (dL) and average 
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Table 1. Time lags (hours) subject to different values of  CL and first 

minima of average mutual information (Imin1) for the time series of 

NO2, SO2 concentrations for two sites of the Odessa city (see text) 

 NO2 (cite 1) NO2 (cite 2) 

CL = 0 - - 

CL = 0.1 142 156 

CL = 0.5 7 9 

Imin1 10 13 

limit of predictability (Prmax, hours) for two the NO2 concentration time series for the Odessa during 

the period: Jan.-Dec., 1990. From the data it can be noted that the Kaplan-Yorke dimensions (which 

are also the attractor dimensions) are smaller than the dimensions obtained by the algorithm of false 

nearest neighbours. It is very important to pay the attention on the presence of the two (from six) 

positive Lyapunov’s exponents i (i=1,2). One could conclude that the system broadens in the line of 

two axes and converges along four axes that in the six-dimensional space. Other values of the 

Lyapunov’s exponents i are negative. 

Table 2. The correlation dimension (d2), embedding dimension (dE), 

first two Lyapunov exponents, (1,2),  Kaplan-Yorke dimension (dL), 

and the Kolmogorov entropy, average limit of predictability (Prmax, 

hours) for the time series of the NO2 and SO2 concentrations (Odessa 

city, 1990) 

 Site 1 

(Odessa) 

NO2 

Site 2 

(Odessa) NO2 

1 0.0187 0.0191 

2 0.0059 0.0049 

d2 5.28 5.26 

dE 6 6 

dL 4.09 3.92 

Kentr  0.025 0.024 

Prmax 41 42 

To conclude, for the first time we have presented  the results of analysis and modelling the air 

pollutant (NO2) concentration temporal dynamics in the Odessa’s atmosphere. We have applied a 

number of nonlinear methods of a modern chaos and dynamical systems, such as an autocorrelation 

function method and the mutual information approach, a correlation integral analysis and the false 

nearest neighbours algorithm, the Lyapunov exponent’s analysis and surrogate data method etc. To 

reconstruct the corresponding strange chaotic attractor, the time delay and embedding dimension are 

computed. The former is determined by the methods of autocorrelation function and average mutual 

information, and the latter is calculated by means of correlation dimension method and algorithm of 

false nearest neighbours. Further, the Lyapunov’s exponents spectrum, Kaplan-Yorke dimension and 

Kolmogorov entropy are computed. A chaotic behaviour in the time series of NO2 concentrations for 

two sites of the Odessa city was discovered and investigated. It has been shown that the low-

dimensional chaos exists in the nitrogen dioxide  concentration time series under investigation.  The 

Lyapunov exponent’s analysis has supported this conclusion. 
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