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Abstract
A theoretical study of the autoionization resonances in the spectra of lanthanide atoms
(ytterbium) was carried out within the relativistic many-body perturbation theory and the
generalized relativistic energy approach (the Gell-Mann and Low S-matrix formalism). The
accurate results on the autoionization resonance energies and widths in ytterbium are
presented with correctly accounting for the exchange correlation and relativistic corrections
and are compared with the other available theoretical and experimental data.

PACS numbers: 32.30.−r, 31.10.+z, 32.80.Zb

1. Introduction

The investigation of spectra (optical and spectral), radiative
and autoionization characteristics of heavy elements atoms
and multicharged ions has traditionally been of great interest
for the further development of quantum atomic optics and
atomic spectroscopy and their different applications in plasma
chemistry, astrophysics, laser physics, etc (see [1–14]).
Different atomic spectroscopy methods have been used to
study the radiative and autoionization characteristics of
atomic systems. The well-known classical multi-configuration
Hartree–Fock method (as a rule, the relativistic effects
are taken into account in the Pauli approximation or
Breit Hamiltonian, etc.) allowed to obtain a great deal
of useful spectral information about light and non-heavy
atomic systems, but in fact it provides only a qualitative
description of spectra of heavy atoms and ions. The
multi-configuration Dirac–Fock method is the most reliable
version of calculation for multielectron systems with a large
nuclear charge. In these calculations, one- and two-particle
relativistic effects are taken into account practically precisely.
In this sense, special attention should be given to the
two very general and important computer systems for
relativistic and QED calculations of atomic and molecular
properties that were developed in the Oxford group and are
known as GRASP (‘GRASP’, ‘Dirac’; ‘BERTHA’, ‘QED’)
(see [1–8] and references therein). In particular, the BERTHA
program embodies a new formulation of relativistic electron
structure theory within the framework of relativistic QED.
This leads to a simple and transparent formulation of

the Dirac–Hartree–Fock–Breit (DHFB) self-consistent field
equations along with algorithms for molecular properties,
electron correlation and higher order QED effects. The DHFB
equations are solved by a direct method based on a relativistic
generalization of the McMurchie–Davidson algorithm for
the electron integrals that economize memory requirements
and is not significantly more expensive computationally than
comparable nonrelativistic calculations [1–3].

Studying spectra, radiative and autoionization
characteristics of heavy atoms and ions is quite a complicated
task because of the need for correctly accounting for the
exchange correlation and relativistic corrections (and also
radiative and nuclear effects in the case of superheavy atomic
systems). In this paper, we report our theoretical study
of the autoionization resonances in spectra of lanthanide
atoms (the ytterbium atom), which was carried out within
the relativistic many-body perturbation theory (PT) and the
generalized relativistic energy approach (the Gell-Mann and
Low S-matrix formalism) [4, 9–19]. Accurate results on the
autoionization resonance energies and widths in the ytterbium
are presented with correctly accounting for the exchange
correlation and relativistic corrections and compared with the
other available theoretical and experimental data.

2. The relativistic energy approach and optimized
many-body perturbation theory (PT)

A generalized gauge-invariant relativistic energy approach
in the case of the multielectron atomic systems has
been developed by Glushkov–Ivanov–Ivanova (see [9–12]).
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The approach is based on the Gell-Mann and Low S-matrix
formalism and the relativistic many-body PT using the
optimized one-quasiparticle (QP) representation and an
accurate account of the relativistic and exchange-correlation
effects. In the relativistic case, the Gell-Mann and Low
formula expressed an energy shift 1E through the QED
scattering matrix including the interaction with a photon
vacuum field as the laser field [9–16]. The wave function
zeroth basis is found from the Dirac equation with a
potential, which includes the ab initio optimized model
(Ivanov–Ivanova-type [20]) potential or density functional
(DF) potentials, the electric potential of a nucleus (the
Gaussian form of the charge distribution in a nucleus
is usually used by us) [5]. The PT second and higher
order corrections are taken into account by using the
polarization and screening density functionals and potentials
(from [11–14]). Generally speaking, the majority of complex
atomic systems possess a dense energy spectrum of
interacting states with essentially relativistic properties. In
the theory of the non-relativistic atom a convenient field
procedure is known for calculating the energy shifts 1E
of degenerate states. The procedure is connected with the
secular matrix M diagonalization [8]. In constructing M,
the Gell-Mann and Low adiabatic formula for 1E is
used. In contrast to the non-relativistic case, the secular
matrix elements are already complex in the second order
of the electrodynamical PT (first order of the interelectron
interaction). Their imaginary part of 1E is connected with
the radiation decay (radiation) possibility. In this approach,
the entire calculation of the energies and decay probabilities
of a non-degenerate excited state is reduced to the calculation
and diagonalization of the complex matrix M. In papers
of different authors, the Re 1E calculation procedure has
been generalized for the case of nearly degenerate states,
whose levels form a more or less compact group. One of
these variants has been introduced previously [9–12, 17–22]:
for a system with a dense energy spectrum, a group of
nearly degenerate states is extracted and their matrix M is
calculated and diagonalized. If the states are well separated in
energy, the matrix M reduces to one term, equal to 1E . The
non-relativistic secular matrix elements are expanded in a PT
series for the interelectron interaction. The complex secular
matrix M is represented in the form [9–11, 17–19]

M = M (0) + M (1) + M (2) + M (3), (1)

where M (0) is the contribution of the vacuum diagrams of all
orders of PT, and M (1), M (2), M (3) those of the one-, two-
and three-QP diagrams, respectively. M (0) is a real matrix,
proportional to the unit matrix. It determines only the general
level shift. We have assumed that M (0) = 0. The diagonal
matrix M (1) can be presented as a sum of the independent
one-QP contributions. For simple systems (such as alkali
atoms and ions), the one-QP energies can be taken from the
experiment. Substituting these quantities into (1), one could
have summarized all the contributions of the one-QP diagrams
of all orders of the formally exact QED PT. However, the
necessary experimental quantities are very often not available.
The first two order corrections to ReM (2) have been analyzed
previously [19] using Feynman diagrams. The contributions
of the first-order diagrams have been completely calculated.

In the second order, there are two kinds of diagrams:
polarization and ladder ones. The polarization diagrams take
into account the QP interaction through the polarizable core,
and the ladder diagrams account for the immediate QP
interaction. Some of the ladder diagram contributions as well
as some of the three-QP diagram contributions in all PT orders
have the same angular symmetry as the two-QP diagram
contributions of the first order. These contributions have
been summarized by a modification of the central potential,
which must now include the screening (anti-screening) of the
core potential of each particle by two others. The additional
potential modifies the one-QP orbitals and energies. Then the
secular matrix is as follows:

M → M̃ (1) + M̃ (2), (2)

where M̃ (1) is the modified one-QP matrix (diagonal),
and M̃ (2) the modified two-QP one. M̃ (1) is calculated by
substituting the modified one-QP energies, and M̃ (2) by means
of the first PT order formulae for M (2), putting the modified
radial functions of the one-QP states in the radial integrals.

Let us recall that in the QED theory, the photon
propagator D(12) plays the role of this interaction. Naturally,
the analytical form of D(12) depends on the gauge, in which
the electrodynamical potentials are written. The inter-QP
interaction operator with accounting for the Breit interaction
has been taken as follows [9–11]:

V
(
rir j

)
= exp(iωri j )

(
1 − αiα j

)
ri j

+ V w
ee , (3)

where, as usual, αi are the Dirac matrices. In general, the
results of all approximate calculations depended on the gauge.
Naturally, the correct result must be gauge-invariant. The
gauge dependence of the amplitudes of the photo-processes
in the approximate calculations is a well-known fact and
was investigated in detail by Grant, Armstrong, Aymar and
Luc–Koenig, Glushkov and Ivanov, and others (see [1–4,
9–11, 21–25]). Grant has investigated the gauge connection
with the limiting non-relativistic form of the transition
operator and has formulated the conditions for approximate
functions of the states, in which the amplitudes of the
photo-processes are gauge invariant. These results remain true
in the energy approach because the final formulae for the
probabilities coincide in both approaches. Glushkov–Ivanov
have developed a new relativistic gauge-conserved version of
the energy approach [11]. Here we have applied this approach
(relativistic energy approach, REA) to generate the optimized
relativistic orbitals basis in the zeroth approximation of the
optimized many-body PT (REA-OMBPT).

Below we will be interested in studying the spectra of
the autoionization resonances in the ytterbium atom and in
calculating their energies and widths. The excited states of the
ytterbium atom can be treated as the states with the two-QP
(also three-QP) above the electron core [Xe]4f14. Within
the energy approach [8–11] the radiative and autoionization
widths are determined by the square of an electron interaction
matrix element having the form

V ω
1234 = [( j1) ( j2) ( j3) ( j4)]

1/2
∑
λµ

(−1)µ
(

j1 j3 λ

m1 − m3 µ

)
× Qλ (1234) . (4)
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The real part of the electron interaction matrix element is
determined using expansion in terms of Bessel functions
[17–19, 26]:

cos |ω| r12

r12
=

π

2
√

r1r2

∑
λ=0

(λ) Jλ+1/2 (|ω| r<) J−λ−1/2 (|ω| r>)

Pλ (cos r1r2) . (5)

The Coulomb part QQul
λ is expressed in terms of radial

integrals Rλ, angular coefficients Sλ :

QQul
λ =

1

Z
{Rl(1243)Sλ(1243) + Rλ(1̃243̃)Sλ(1̃243̃)

+Rλ(12̃4̃3)Sλ(12̃4̃3) + Rλ(1̃2̃4̃3̃)Sλ(1̃2̃4̃3̃)}.

(6)

As a result, the autoionization decay probability is expressed
in terms of Qλ(1243) matrix elements. Below is given the
example

Re Rλ (1243) =

∫∫
dr1r2

1 r2
2 f1 (r1) f3 (r1) f2 (r2) f4 (r2)

Z (1)
λ (r<) Z (1)

λ (r>) , (7)

where f is the large component of the radial part of the single
electron state Dirac function and the function Z is connected
with the Bessel functions. The angular coefficient is defined
by a standard method as above [13]. The Breit part of Q is
defined in a similar way as above, but the contribution that is
of our interest is a real part. The Breit interaction is known
to change considerably the Auger decay dynamics in some
cases (see, e.g., [9]). Determination of the radiation decay
probabilities (oscillator strengths) results in calculating the
imaginary matrix elements of the interaction (3). According
to the Ivanov et al [13] method, calculation of the integrals
Re Rλ(1243) is reduced to solving a system of differential
equations:

y′

1 = f1 f3 Z (1)
λ (α |ω| r) r2+λ,

y′

2 = f2 f4 Z (1)
λ (α |ω| r) r2+λ,

y′

3 = [y1 f2 f4 + y2 f1 f3] Z (2)
λ (α |ω| r) r1−λ.

 (8)

In addition, it is easy to show that

y3(∞) = Re Rλ(1243), y1(∞) = Xλ(13). (9)

The system of differential equations includes equations for the
functions f/r |æ|−1, g/r |æ|−1, Z (1)

λ , Z (2)
λ . The formulae for the

autoionization (Auger) decay probability include the radial
integrals Rα(αkγβ), where one of the functions describes
an electron in the continuum state. When calculating this
integral, the correct normalization of the function Ψk is a
problem. The correctly normalized function should have the
following asymptotic at r → 0:

f

g

}
→ (λω)−1/2

{[
ω + (αZ)−2

]−1/2
sin (kr + δ) ,[

ω − (αZ)−2
]−1/2

cos (kr + δ) .
(10)

When integrating the master system, the function is calculated
simultaneously:

N (r) =
{
πωk

[
f 2
k

[
ωk + (αZ)−2

]
+ g2

k

[
ωk +

(
αZ−2

)]]}−1/2
.

(11)
It can be shown that at r → ∞, N (r) → Nk , where Nk

is the normalization of functions fk, gk of the continuous
spectrum satisfying the condition (10). It is important to also
note that the calculation is carried out in the jj-coupling
scheme representation. The transition to the intermediate
coupling scheme has been realized by diagonalization of the
secular matrix. Indeed, only Re M should be diagonalized.
The imaginary part is converted by means of the matrix of
eigenvectors {Cmk}, obtained by diagonalization of Re M :

Im Mmk =

∑
i j

C∗

mi Mi j C jk . (12)

Mi j are the matrix elements in the jj-coupling scheme,
and Mmk are those in the intermediate coupling scheme
representation. This procedure is correct to terms of the order
of Im M/Re M [8]. More details can be found in [9–14,
17–19, 23–29].

3. Results

In table 1 we present the experimental (compilation) [34]
(www.nist.gov/physlab/data/asd.cfm) and theoretical data for
energies (accounted for from the ground state: 4f146s21S0)
of some YbI singly excited states: MCHF-BP—the data [35]
obtained on the basis of the multiconfiguration Hartree–Fock
(MCHF) method within the framework of Breit–Pauli (BP)
relativistic corrections developed by Fischer [36] (A, B+D,
D different sets of configurations considered in MCHF-BP
calculation [35]); HFR—the data [35] obtained on the basis
of Cowan’s relativistic Hartree–Fock method; EA-MMBPT
(E1)—the data [18, 30, 31] obtained by Ivanov et al
on the basis of the model many-body PT and energy
approach (EA-MMBPT); ‘[37]’—the data of the analysis by
Wyart–Camus and this work (REA-OMBPT method, E2).

In table 2 we present the experimental (Letokhov
et al) and theoretical data [18, 30, 31, 34] for energies
and widths of the excited (autoionization) states of the 7s6p
configuration in the spectrum of YbI (accounted for from
the ground state: 4f146s21S0Yb): E1, 01—the EA-MMBPT
method data of Ivanov et al [18, 30, 31]; E2, 02—this work
(REA-OMBPT method); E3—the MCHF-BP data of [35] (the
classification in [35] differs from the classification in [18]
and our classifications). A scheme of YbI energy levels and
experimentally studied transitions is presented in figure 1.

An analysis reveals quite physically reasonable
agreement between the values of energies E1, E2, Eexp;
however, the values of the widths Γ1, Γexp significantly differ.
In our opinion, this fact is explained by insufficiently exact
estimates of the radial integrals, using the non-optimized
bases and some other additional calculation approximations.
This is true in the case of the analysis of the MCHF and HFR
data. In our calculations, the optimized bases of the orbitals
and more accurately accounting for important multi-body
exchange-correlation effects is performed. In table 3 the

3
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Table 1. Energies E (cm−1) of the YbI singly excited states.

Configuration J MCHF+BP(A) MCHF+BP(C) MCHF+BP(BD) HFR EA-MMBPT This work [38] [34, 35]

6s2
1/2

∗ 0 0 0 0 0 0 0 0 0
6s1/26p1/2 0 18 087 17 262 18 730 17 320 17 400 17 310 17 312 17 288
6s1/26p1/2 1 18 174 17 568 18 813 17 954 18 100 18 008 17 962 17 992
6s1/26p3/2 1 24 614 26 667 25 257 25 069 25 500 25 094 25 075 25 068
6s1/26p3/2 2 18 357 18 249 18 999 19 710 19 800 19 715 19 716 19 710
6s1/25d3/2 1 24 094 28 871 23 740 24 489 23 900 24 410 24 489 24 489
6s1/25d3/2 2 24 505 28 973 24 172 24 484 24 600 24 824 24 751 24 752
6s1/25d5/2 2 26 984 29 633 26 841 27 677 26 100 26 970 27 654 27 678
6s1/25d5/2 3 25 860 29 374 25 500 25 271 24 900 25 098 25 270 25 271

∗ Note: E = −148 710 cm−1; E1 = −148 700 cm−1; E2 = −148 695 cm−1 [34].

Table 2. Energies E(cm−1) and widths Γ (cm−1) of the YbI 7s6p configuration states.

Term Theory E3 Theory E1 Theory Γ1 Theory E2 Theory Γ2 Expt Eexp Expt Γexp

3P0
0 61 233 59 800 0.7 59 450 1.25 59 130.5 1.1

3P0
1 62 085 60 000 3.0 60 315 1.10 60 428.7 0.95

3P0
2 62 423 62 600 0.7 62 587 1.51 62 529.1 1.6

1P0
1 64 216 63 600 1.8 63 613 2.48 63 655.8 2.6

Figure 1. Scheme of the YbI energy levels and experimentally
studied transitions.

energies (accounted for from the Yb 4f14 core energy)
of the YbI excited states with a doubly excited valence
shell are listed: E1—the EA-MMBPT data (from [18, 31,
34]); E2—the REA-OMBPT present data. In table 4 the
same data are listed for other similar states. The presented
EA-MMBPT and REA-OMBPT data on the energies are
in physically reasonable agreement with the experimental
data. However, a comparison of the corresponding results for
widths demonstrates again a sufficiently large discrepancy.

In table 5 we list the widths (cm−1) of the YbI
autoionization states with a doubly excited valence shell.
Analysis shows that the state 5d3/25d5/2 (J = 1) is really
autoionizative (hitherto this question has remained opened).
Its anormal smallness can be explained by the fact that its
decay is forbidden in the nonrelativistic limit.

In conclusion, it should be noted that the autoionization
resonances studied (Rydberg states are more preferable) in
the lanthanides atoms can be very useful, for example, in
the new optimal laser photo-ionization schemes of separating
heavy isotopes and nuclear isomers [30–33, 13]. For example,

Table 3. Energies (in 102 cm−1) of some YbI excited states with a
doubly excited valence shell.

Configuration J Theory Expt Eexp

. E1 E2

6p2
1/2 0 −1067 −1064 −1062, 7

6p2
3/2 2 −987 −1004 −1008.9

6p1/26p3/2 1 −1054 −1050 −1049

6p1/26p3/2 2 −1032 −1036 −1039.5

5d2
3/2 2 −1034 −1032 −1010.76

5d3/25d5/2 2 −994 –995 −994.63

5d3/25d5/2 3 −1030 −1032 −1032.47

Table 4. Theoretical energies (in 102 cm−1) of the YbI excited states
with a doubly excited valence shell.

Configuration J E1 E2 Configuration J E1 E2

6p2
1/2 0 −1067 −1064 6p3/25d5/2 3 −963 –962

6p2
3/2 0 −920 –918 6p3/25d5/2 4 −1062 −1061

6p2
3/2 2 −987 −1004 5d2

3/2 0 −981 –982

6p1/26p3/2 1 −1054 −1050 5d2
3/2 2 −1034 −1032

6p1/26p3/2 2 −1032 −1036 5d2
5/2 0 −961 –963

6p1/25d3/2 1 −1077 −1072 5d2
5/2 2 −970 –968

6p1/25d3/2 2 −1075 −1069 5d2
5/2 4 −861 –859

6p1/25d5/2 2 −1007 −1004 5d3/25d5/2 1 −980 –982

6p1/25d5/2 3 −1119 −1115 5d3/25d5/2 2 −994 –995

6p3/25d3/2 0 −1020 −1017 5d3/25d5/2 3 −1030 −1032

6p3/25d3/2 1 −1014 −1012 5d3/25d5/2 4 −1024 −1026

6p3/25d3/2 2 −914 –913 7s1/26p1/2 0 −889 −886.4

6p3/25d3/2 3 −1039 −1035 7s1/26p1/2 1 −887 −886

6p3/25d5/2 1 −949 –948 7s1/26p3/2 1 −851 –849

6p3/25d5/2 2 −1118 −1116 7s1/26p3/2 2 −861 −860

the laser photo-ionization scheme with autoionization of the
excited ytterbium atoms (with an optimal set of energetic
and radiative parameters: pulse form, duration, energetic for

4
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Table 5. The widths (cm−1) of the YbI autoionization states with a
doubly excited valence shell.

Configuration J Term Γ1 Γ2

6p2
3/2 0 1S0 5.4 5.69

6p3/25d5/2 1 1P0
1 5.7 5.95

6p3/25d5/2 3 1F0
3 1.60 1.98

5d2
3/2 0 3P0 0.01 0.05

6p3/25d3/2 2 1D0
2 0.20 0.52

5d3/25d5/2 1 3P1 1(−4) 8(−4)

5d2
5/2 0 1S0 3.30 3.63

5d2
5/2 2 3P2 0.40 0.73

5d2
5/2 4 1G4 0.90 1.74

Note: 0.0008 = 8(−4).

laser and electric field pulses, etc) could provide significantly
higher yield and effectiveness of the entire process of
isotope separation in comparison with the standard two- or
three-stepped schemes with direct excitation and ionization
by two laser pulses [13, 31, 38, 39].
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