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Abstract
The combined relativistic energy approach and relativistic many-body perturbation theory with
an optimized zeroth one-particle approximation are used for the calculation of the Li-like ions
(Z = 11–42, 69, 70) and thallium atom spectral parameters of radiative transitions from the
ground state to the excited state. A key feature of the presented approach is an implementation
of the optimized relativistic model potential method in the framework of the energy approach
for further studying the spectral and collisional characteristics of the multi-electron atoms. In
addition, the method combined with the spectral line kinetic theory is used to study the
hyperfine structure collision shift for the Tl atom in an atmosphere of inert gases.

PACS numbers: 32.30.−r, 32.70.Cs, 34.50.Fa

1. Introduction

Theoretical radiative–collisional spectroscopy of heavy
neutral and ionized atoms is of fundamental importance in
many fields of atomic physics (spectroscopy, spectral lines
theory), astrophysics, plasma physics, laser physics and so
on. It should be mentioned that correct data about radiative
decay widths, probabilities and oscillator strengths of atomic
transitions are needed in astrophysics and the laboratory, in
thermonuclear plasma diagnostics and in fusion research. In
light of this, there is special interest in the study of the spectral
characteristics of heavy atoms such as thallium, lanthanides
and actinides atoms, and corresponding high-Z multicharged
ions such as He-, Li-like ions, etc (see, e.g., [1–34]).
Martin and Wiese [1, 2] have performed a critical evaluation
and compilation of the spectral parameters for Li-like ions
(Z = 3–28). The results of high-precision non-relativistic
calculations of the energies and oscillator strengths of
1s22s–1s22p for Li-like systems up to Z = 50 are presented
in [9–14]. The Hylleraas-type variational method and the 1/Z
expansion method have been used. Chen Chao and Wang
Zhi-Wen [14] have listed the non-relativistic dipole-length,
-velocity and -acceleration absorption oscillator strengths

for the 1s22s–1s22p transitions of the LiI isoelectronic
sequence on the basis of calculation within a full core plus
correlation method using multiconfiguration interaction wave
functions. Fully variational non-relativistic Hartree–Fock
(RHF) wave functions have been used by Bièmont [16] in
the calculation of the 1s2n2L (n < 8 = s, p, d or f; 3<
Z < 22) states of the LiI isoelectronic sequence. There have
been reports of calculations and compilation of energies
and transition probabilities for thallium (see, e.g., [30–34]).
Known methods such as the RHF and Dirac–Fock (DF)
methods, time-dependent relativistic perturbation theory (PT)
with the Hartree–Fock (HF) zeroth approximation (TDRHF),
relativistic many-body PT (RMBPT) with the DF zeroth
approximation, etc have been used. Nevertheless, the great
interest in studying the spectral and radiative characteristics
of heavy atoms stimulates further development of the theory
and obtainment of new spectroscopic data for heavy atoms,
including the thallium atom and others. It should be noted
that the Tl atom is a very interesting system from the point
of view of studying the electroweak e–N interaction and the
parity violation effect.

Another topic of our paper is the study of the collisional
shifts and broadening of the hyperfine structure lines for
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heavy elements (alkali, alkali-earth, lanthanides, actinides and
others) in an atmosphere of inert gases which is of great
importance to modern quantum chemistry, optics and atomic,
molecular spectroscopy, plasma physics, etc [35–45]. The
calculation of the hyperfine structure line shift and broadening
allows one to check the quality of wave functions and to
study the contribution of relativistic effects in two-center
(multi-center) atomic systems. From the applied science point
of view, the mentioned physical effects form the basis for
creating an atomic quantum measure of frequency [42]. For
a long time, the corresponding phenomenon for the thallium
atom attracted special attention because of the possibility to
create the thallium quantum frequency measure. Alexandrov
et al [42] have realized the optical pumping of the thallium
atoms on the line of 21 GHz, which corresponds to a transition
between the components of hyperfine structure for the ground
state, and have measured the collisional shift of this line
due to a buffer (bath) gas. The inert buffer gases (He, Ar,
etc) are usually used. The detailed non-relativistic theory
of the collisional shift and broadening of the hyperfine
structure lines for simple elements (light alkali elements,
etc) has been developed by many authors (see discussions
in [35–44]). However, consideration of heavy elements faces
serious difficulties related to accounting for the relativistic and
correlation corrections.

In this paper, the combined relativistic energy
approach [23–26] and RMBPT with the optimized
zeroth-order one-particle representation and accounting
for the exchange-correlation effects as the RMBPT second
and higher orders corrections [21, 22, 27–29] are used for
the calculation of the high-Z Li-like ions and the thallium
atom energies and radiative transition characteristics from
the ground state to the excited state. In addition, the method
combined with the kinetic theory of spectral lines [37–40]
is applied to calculate the hyperfine structure collision shift
for the thallium atom in an atmosphere of inert gases. A
comparison with the available data for the collisional shifts of
the Tl atom is made.

2. The theoretical method

As the relativistic energy approach and RMBPT with an
optimized model potential or DF zeroth approximation are
described in detail in [4, 5, 21–29], we are limited only by
the key aspects. Within the energy approach the imaginary
part of the electron energy shift of a multielectron atom
is directly connected with a radiation decay possibility
(transition probability), which is determined in the PT lowest
order as follows [4]:

Im1E(B)= −
e2

4π

∑
α>n> f
[α<n6 f ]

V |ωαn |
αnαn , (1)

where
∑

α>n> f for the electron and
∑

α<n6 f for the vacancy
(in the atomic core). The matrix element is determined as
follows:

V |ω|

i jkl = ∫ ∫ dr1 dr2ψ
∗

i (r1)ψ
∗

j (r2)
sin |ω|r12

r12

× (1 −α1α2)ψ
∗

k (r2)ψ
∗

l (r1). (2)

The separated terms of the sum in (2) represent the
contributions of different channels and a probability of dipole
transition is

0αn =
1

4π
V |ωαn |

αnαn
. (3)

In order to take into account the correlation effects
(polarization of the atomic core or screening corrections,
etc), one should add the effective polarization (correlation)
functional to the potential in the matrix element (3). There
are a set of effective exchange-polarization potentials. Below,
we use the relativistic polarization potential from [29], which
has the following form:

V d
pol(r1r2)= X

(∫
dr ′ρ(0)1/3c (r ′)θ(r ′)/

∣∣r1 − r ′
∣∣ ∣∣r ′

− r2

∣∣
−

(∫
dr ′ρ(0)1/3c (r ′)θ(r ′)/

∣∣r1 − r ′
∣∣ ∫ dr ′′ρ(0)1/3c (r ′′)θ(r ′′)/

×
∣∣r ′′

− r2

∣∣) / ∫
drρ(0)1/3c (r)θ(r)

)
, (4)

θ(r)= {1 + [3π2ρ(0)c (r)]2/3/c2
}

1/2,

where X is the numerical coefficient, c is the speed of light and
ρ(0)c is the electron core density.

Under calculating the matrix elements (3) one should
use the angle symmetry of the task and write the expansion
for potential sin|ω|r12/r12 on the spherical functions as
follows [4]:

sin |ω|r12

r12
=

π

2
√

r1r2

∞∑
λ=0

(λ)Jλ+1/2(|ω|r1)

× Jλ+1/2(|ω|r2)Pλ(cos r1r2), (5)

where Jλ+1/2 is the Bessel function of first kind and (λ)=

2λ+ 1. This expansion corresponds to the usual multipole
expansion for the probability of radiative decay. Substitution
of the expansion (5) into the matrix element of interaction
gives

V ω
1234 = [( j1)( j2)( j3)( j4)]

1/2
∑
λµ

(−1)µ
(

j1 j3 λ

m1 − m3 µ

)
× ImQλ(1234), Qλ = QQul

λ + QBr
λ , (6)

where ji is the total single-electron momentum, mi are the
projections, QQul

λ is the Coulomb part of the interaction
and QBr

λ is the Breit part. Both the parts of the QQul
λ ,

QBr
λ are expressed in terms of radial integrals Rλ and angular

coefficients Sλ. A detailed description of the corresponding
integrals and coefficients is given in [4, 5, 21–25].

The thallium atom can be strictly treated as the
three-quasiparticle system, i.e. the system with three valence
electrons (6nl j , n > 6) above the relatively rigid core.
The relativistic quasiparticle wave functions are calculated
by solution of the Dirac equation with the potential,
which includes the ‘outer electron-ionic core’ potential and
polarization and screening potentials [4, 5, 23, 29]. In order to
describe the interaction of the outer electron with the core,
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Table 1. Oscillator strengths of the 2s1/2–2p1/2,3/2 transitions in Li-like ions.

Method DF [6] DF [6] [2] [2] This work This work

Ion 2s1/2–2p1/2 2s1/2–2p3/2 2s1/2–2p1/2 2s1/2–2p3/2 2s1/2–2p1/2 2s1/2–2p3/2

Ca17+ 0.0234 0.0542 0.024 0.054 0.0236 0.0541
Fe23+ 0.0177 0.0482 0.018 0.048 0.0179 0.0481
Zn27+ 0.0153 0.0477 – – 0.0156 0.0475
Mo39+ – – 0.011 0.056 0.0107 0.0556
Sn47+ 0.0092 0.0686 – – 0.0095 0.0684
Tm66+ – – – – 0.0071 01140
Yb67+ 0.0067 0.1170 – – 0.0069 0.1167

Table 2. Oscillator strengths of the 2s1/2–np1/2 transitions in the
Ca17+ ion.

Transition QDA [6] DF [6] [2] This work

2s1/2–3p1/2 – – 0.123 0.122
2s1/2–3p3/2 – – 0.241 0.243
2s1/2–4p1/2 – – – 0.029
2s1/2–8p1/2 2.54a 2.53a – 2.55a

2s1/2–10p1/2 1.24a 1.24a – 1.25a

Note: a10−3g f .

the advanced Ivanova–Ivanov-type model potential [4, 28]
is used. Calibration of the single-model potential parameter
is performed on the basis of the special ab initio procedure
in the relativistic energy approach [24]. In [24], the lowest
order multielectron effects, in particular, the gauge-dependent
radiative contributions Im1Eninv for a certain class of
photon propagator calibration are treated. This value is
considered to be representative of the electron correlation
effects, whose minimization is a reasonable criterion in the
search for the optimal one-electron basis of the RMBPT.
The minimization of the density functional Im1Eninv leads
to the integral–differential equation that can be solved using
one of the standard numerical codes. Thus, it provides the
construction of the optimized one-particle representation.
The formalism of the RMBPT with an optimized model
DF-like zeroth approximation allows us to take into account
exchange-correlation effects as the RMBPT second and
higher orders corrections [21–24]. All calculations are
performed by using the code Superatom-ISAN (version 93).

3. Hyperfine line shift for the ‘heavy atom-inert gas’
system

To calculate the collision shift of a hyperfine structure spectral
line, one could use the following expression known from
kinetic theory of the spectral line form (see [35, 40]):

f p =
1

p
=

4πNb

p

∫
∞

0
e−U (R)/kT [1 + g (R)]δω (R) R2 dR,

(7)
where U(R) is the effective potential of the interatomic
interaction, which has a central symmetry in the case of the
systems A–B (in our case, e.g., B = He; A = Tl); T is the
temperature, p is the pressure; δω(R)= Dw(R)/w0 is the
relative local shift of the hyperfine structure lines, which
arises due to the disposition of the active atoms (say, atoms
of thallium Tl and helium He) on a distance R; w0 is a
frequency of the hyperfine structure transition in the isolated

active atom; {1 + g (R)} is a temperature factor. To calculate
an effective potential of the interatomic interaction, a method
of the exchange PT (the modified version EL-NAV) [35]
has been used. Within exactness to second-order terms on the
potential of Coulomb interaction of the valence electrons and
atomic cores, one can write

δω (R)=
S0

1 − S0
+�1 +�2 −

C6

R6

(
2

Ea
+

1

Ea + E B

)
, (8)

where C6 is the van der Waals constant for the interaction
A–V (e.g., the pair of Tl–He; look below); I, E1a,b are
the ionization potential and excitation energy for atoms A
and B correspondingly; S0 is the overlapping integral. The
values �1, �2 in the expression (2) are the non-exchange
and exchange non-perturbation sums of the first order
correspondingly, which are defined as follows:

�1 =
2

N (1 − S0) ρ0

∑
k

′
〈8′

0 (1)
∣∣H ′

CT

∣∣8′

k (1)〉Vk0

E0 − Ek
,

�2 =
2

N (1 − S0) ρ0

∑
k

′
〈8′

0 (1)
∣∣H ′

CT

∣∣8′

k (1)〉Uk0

E0 − Ek
, (9)

where H ′

CT is the operator of hyperfine interaction, N
is the total number of electrons taken into account in
calculation; Ek , 8′

k(1)= F ′

ka
(1)φkb (2 . . . N ) are the energy

and non-symmetrized wave function of state k = {ka, kb} for
isolated atoms A and B.

The non-exchange matrix element of the Coulomb
interatomic interaction is as follows:

Vk0 =
〈
8′kk (1) |V (1)|8

′0 (1)
〉
.

Correspondingly, the exchange matrix element is as follows:

Uk0 =

N∑
i=2

〈
8′

k (1) |V (i)|8
′

0 (i)
〉
.

The operator V(i) in the case of the system Tl–Ne is as
follows:

V (i)= USCF (ra3)+ USCF (ra4)− 2USCF (R)+
1

r bi
, (10)

where USCF(r) is the self-consistent field, created by the
thallium atomic core.

Usually (see [2]), the non-RHF sets of the wave functions
are used. A more sophisticated approach is based on using
the relativistic DF wave functions (the first variant) [40, 45].
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Table 3. Energies of levels (in cm−1) for the thallium atom Tl: the experimental data [34] and theoretical results obtained by different
theoretical methods (see the text).

State RHF TDRHF RMBPT–DF This work Experiment [34]

7s1/2 −21 100 −22 952 −22 818 −22 799 −22 786
6p1/2 −43 909 −50 654 −49 266 −49 295 −49 264
7p1/2 −14 282 −15 203 – −15 142 −15 104
6p3/2 −36 670 −42 704 −41 432 −41 497 −41 471
7p3/2 −13 359 −14 224 – −14 135 −14 103
6d3/2 −12 218 −13 130 −13 175 −13 167 −13 146
6d5/2 −12 167 −13 042 – −13 083 −13 064

Table 4. The shift fρ (Hz/Torr) of the Tl hyperfine line for the pairs:
Tl–He, Kr, Xe (T = 700 K).

System Tl–He Tl–Ar Tl–Xe

Experiment 130 ± 30 −490 ± 20 −1000 ± 80
Theory [41] 155.0 −850.0 −1420.0
Theory [39] 137.2 −504 −1052
Our theory 135.4 −501 −1044

Another variant is using the relativistic wave functions as
the solutions of the Dirac equations with different density
functionals (the Kohn–Sham density-functional theory) and
effective potentials [37–41, 43]. In this paper, we have
used the set of relativistic functions, generated by the Dirac
equation with the optimized model potential [28, 39]. The
detailed approbation of this model potential in studying
spectra and radiative characteristics of the ytterbium and
thallium atoms is given in [37, 38], too. In a number of papers,
it has been strictly shown that using the optimized sets for
calculating the atomic electron density-dependent properties
has a very important role (see discussions in [21, 22, 24]). In
this work, we will not discuss this question in detail.

4. Results

We applied the above-described approach to calculating the
energies and oscillator strengths of transitions in spectra
of the Li-like ions (Z = 11–42, 69, 70). There are studied
the radiative transitions from the ground state to the
low-excited and Rydberg states, especially, 2s1/2–np1/2,3/2,
np1/2,3/2–nd3/2,5/2 (n = 2–12). To test the obtained results, we
compare our calculation data on the oscillator strengths values
for some Li-like ions with the known theoretical and compiled
results [1, 2, 6, 8].

As an example, in table 1, we present the oscillator
strengths for the 2s1/2–2p1/2,3/2 transitions in Li-like ions
S13+, Ca17+, Fe23+, Zn27+, Zr37+, Mo39+, Sn47+, Tm66+, Yb67+.
The DF calculation data of Zilitis [6] and the ‘best’ compiled
(experimental) data [1, 2] for the low-Z Li-like ions are listed
in table 1 for comparison, too. It should be remembered
that experimental data on the oscillator strengths for many
(especially high-Z) Li-like ions are absent hitherto. On the
whole, there is physically reasonable agreement between the
listed data. The important features of the approach applied
are using the optimized one-particle representation and
accounting for the polarization (exchange-correlation) effects.
It should be noted that the estimate of the gauge-non-invariant
contributions (the difference between the oscillator strengths
calculated using the transition operator in the form of ‘length’

and ‘velocity’) is about 0.3%. The results obtained using
different photon propagator gauges (Coulomb, Babushkon
and Landau) are practically equal. In table 2, we present the
oscillator strengths values for the 2s1/2–np j (n = 3–12, j =

1/2, 3/2) transitions in the spectrum of the Ca17+ ion.
The quantum defect approximation (QDA) [6, 30] and

the DF oscillator strengths calculation results obtained by
Zilitis [6] and some compiled (experimental) data obtained by
Martin–Weiss [1, 2] are also listed in table 2 for comparison.
It is self-understood that the QDA oscillator strengths data
become more exact with the growth of the principal quantum
number. At the same time the accuracy of the DF data may
be decreased. The agreement between the Martin–Weiss data
and our results for the transitions between low-lying terms
is sufficiently good. In table 3, we list the energy level
values for low-excited states of the thallium atom, obtained on
the basis of calculation within different theoretical methods:
RHF, TDRHF, RMBPT-DF [30–34, 46] and our approach.
The experimental data from [34] are presented too. The
general conclusion is that accurately accounting for the
exchange-correlation and relativistic effects allows us to
obtain the results that are in physically reasonable agreement
with the experimental data.

In table 4, we present our theoretical results for the shift
f p(Hz/Torr) for the Tl–He, Ar, Xe pairs. The observed value
of the line shift (T = 700 K) and other theoretical results
with using DF and optimized DF methods are also listed in
table 4 [39, 41].

An important feature of our scheme is correctly
accounting for the correlation and polarization effects using
special effective functionals. The difference between our data
and other theoretical data is explained using different sets of
relativistic wave functions and different PT schemes.
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