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Abstract Variations of water levels in ports and estuaries

are important for ship guidance and navigation and are

influenced by a variety of factors. The hourly data that was

collected from the coastal site at the Port of Mariupol,

Ukraine during January–December 2005 were analysed

with an objective to reveal features of chaotic behaviour.

The concepts and methods of chaos theory (average mutual

information, correlation dimension, false nearest neigh-

bours, Lyapunov exponents) were applied. The

manifestation of low-dimensional chaos was found in the

time series. The possibility of nonlinear prediction was

concluded.

Keywords Coastal water level � Chaos theory �
Nonlinear modelling � Predictability

1 Introduction

Coastal water levels are influenced by a variety of astro-

nomical, meteorological, oceanographical and tectonic

factors, the most readily apparent being the tides (e.g.

Madsen and Jakobsen 2004; Benavente et al. 2006). At

times, these factors interact in a complex way to elevate

water levels significantly above normal tide level. Storms,

which develop low atmospheric pressure, strong onshore

winds and large waves, are the most common cause of

elevated water levels.

The elevated water levels are of concern because they

intensify damage to the coastline and to coastal develop-

ments. The elevated water levels allow larger waves to

cross offshore bars and break closer to the beach, which in

turn increases beach erosion and the threat to coastal

developments. The elevated water levels can inundate low-

lying areas of the coastline and around estuaries.

The elevated water level is not the only troublesome

outcome of coastal wind events. Its companion, depressed

sea level, can render navigation of coastal bays and har-

bours difficult and hazardous. Misleadingly called blow-

out tides in the marine vernacular, sea level depression can

have the same magnitude in height as floods.

The water level variability can be studied using statis-

tical and mathematical models. For any attempt on

mathematical explanatory modelling (e.g. Surkov et al.

1990; Bates et al. 2005), a detailed knowledge of the local

oceanography and meteorology is required. When such

data are not available, there is room for statistical model-

ling of mean water level time series. Srinivas et al. (2005)

investigated the suitability of some statistical models for

their predictive potential for the monthly sea level. They

found that the exponentially weighted moving average

technique gives the lowest root mean square errors relative

to the verifying observations. Tilburg and Garvine (2004)

developed and tested an empirical model based on princi-

ples of coastal Ekman circulation. Their model employs

locally observed or forecast coastal winds and pressure and

uses regression analysis where the subtidal frequency
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response is set by the along-shelf wind, the across-shelf

wind stress, and the sea level atmospheric pressure. Sobey

(2006) shown that the normal mode decomposition

approach is a useful analysis methodology in the evaluation

of storm tide and tsunami hazard at a coastal site. During

the last years, the techniques based on wavelet decompo-

sitions (Ró _zyński and Reeve 2005), cardinal B-spline basic

functions (Wei and Billings 2006), artificial neural net-

works (Chang and Lin 2006) were used in the

investigations of water level variations at different time

scales. Among these methods, the chaotic time series

analysis of water level occupies a fitting place.

Chaos theory establishes that apparently complex

irregular behaviour could be the outcome of a simple

deterministic system with a few dominant nonlinear inter-

dependent variables. The past decade has witnessed a large

number of studies employing the ideas gained from the

science of chaos to characterize, model, and predict the

dynamics of various geophysical phenomena (e.g.

Sivakumar 2004). The outcomes of such studies are very

encouraging, as they not only revealed that the dynamics of

the apparently irregular geophysical phenomena could be

understood from a chaotic deterministic point of view but

also reported very good predictions using such an

approach, in particular for water level variations (Frison

et al. 1999; Zaldivar et al. 2000).

The present study attempts to employ a variety of

techniques for characterizing the dynamics of hourly water

level measured at the coastal site of Mariupol, Ukraine.

More specifically, we attempt to identify the possible

presence of chaotic dynamics in this time series. The

techniques employed range from standard statistical tech-

niques that can provide general indications regarding the

dynamics of the phenomenon to specific ones that can

provide comprehensive characterization of the dynamics.

The standard statistical techniques used are the autocorre-

lation function and the Fourier power spectrum, whereas

the mutual information approach, the correlation integral

analysis, the false nearest neighbour algorithm, the

Lyapunov exponents analysis, and the surrogate data

method are employed for comprehensive characterization.

Note that we give brief description only for the above

methods of chaos theory; more exhaustive information can

be found in the reviews of Abarbanel et al. (1993) and

Schreiber (1999).

The organization of this paper is as follows. Details on

the data considered for investigation are provided in the

next section. Further, the methods used in this study and

results are presented. Finally, conclusions drawn from the

present study are discussed.

2 Data

In the present study, water level data observed at the Port

of Mariupol, Ukraine are used. The port is located at

47�030N, 37�300E (north-western part of Taganrog Bay of

the Azov Sea, 14 miles from the entry into the Bay).

Average depth in the roads is 12 m and it allows handling

ships with draught up to 8 m. Navigation in the Port of

Mariupol is all year round.

For the present investigation, 1 year hourly water level

data from 2005, consisting of a total of 8,760 data points,

are used. Figure 1 shows the variation of this time series,

and Table 1 presents some of the important statistics of

the series. As it can be seen in Fig. 1, the water level

exhibits significant variations without any apparent

cyclicity. In the figure, the horizontal dashed lines indi-

cate the levels corresponding dangerous elevated

(531 cm) and depressed (411 cm) water levels. During

2005, the five events with dangerous elevated water level

and single event of dangerous depressed water level were

observed. It is clear that a visual inspection of the

(irregular) water level series does not provide any clues

regarding its dynamical behaviour, whether chaotic or

stochastic.

To detect some regularity (or irregularity) in the time

series, the Fourier power spectrum is often analyzed. For a
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Fig. 1 Time series plot for 1-

year water level data from 2005

at coastal site of Mariupol,

Ukraine. Horizontal dashed
lines indicate dangerous

elevated (531 cm) and

depressed (411 cm) water levels
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purely random process, the power spectrum oscillates

randomly about a constant value, indicating that no fre-

quency explains any more of the variance of the sequence

than any other frequency. For a periodic or quasi-periodic

sequence, only peaks at certain frequencies exist; mea-

surement noise adds a continuous floor to the spectrum.

Chaotic signals may also have sharp spectral lines but even

in the absence of noise there will be continuous part

(broadband) of the spectrum. The broad power spectrum

falling as a power of frequency is a first indication of

chaotic behaviour, though it alone does not characterize

chaos (Abarbanel et al. 1993). From this point of view, the

time series analyzed in this study is presumably chaotic

(Fig. 2). However, more well-defined conclusion on the

dynamics of the time series can be made after the data will

be treated by methods of chaos theory.

3 Investigation of chaos in water level time series

Let us consider scalar measurements s(n) = s(t0 + nDt) =

s(n), where t0 is the start time, Dt is the time step, and n is

the number of measurements. In a general case, s(n) is any

time series, particularly the water level. Since processes

resulting in the chaotic behaviour are fundamentally mul-

tivariate, it is necessary to reconstruct phase space using as

well as possible information contained in the s(n). Such a

reconstruction results in a certain set of d-dimensional

vectors y(n) replacing the scalar measurements. Packard

et al. (1980) introduced the method of using time-delay

coordinates to reconstruct the phase space of an observed

dynamical system. The main idea is that the direct use of

the lagged variables s(n + s), where s is some integer to be

determined, results in a coordinate system in which the

structure of orbits in phase space can be captured. Then

using a collection of time lags to create a vector in d

dimensions,

y nð Þ ¼ s nð Þ; s nþ sð Þ; s nþ 2sð Þ; . . .; s nþ d� 1ð Þsð Þ½ �; ð1Þ

the required coordinates are provided. In a nonlinear sys-

tem, the s(n + js) are some unknown nonlinear

combination of the actual physical variables that comprise

the source of the measurements. The dimension d is also

called the embedding dimension dE. The example of the

Lorenz attractor given by Abarbanel et al. (1993) is a good

choice to illustrate the efficiency of the method.

3.1 Choosing time lag

The statement of Mañé (1981) and Takens (1981) that any

time lag will be acceptable is not terribly useful for

extracting physics from data. If s is chosen too small, then

the coordinates s(n + js) and s(n + (j + 1)s) are so close to

each other in numerical value that they cannot be distin-

guished from each other. Similarly, if s is too large, then

s(n + js) and s(n + (j + 1)s) are completely independent of

each other in a statistical sense. Also, if s is too small or too

large, then the correlation dimension of attractor can be

under- or overestimated, respectively (Havstad and Ehlers

1989). It is therefore necessary to choose some interme-

diate (and more appropriate) position between above cases.

First approach is to compute the linear autocorrelation

function

CLðdÞ ¼
1
N

PN

m¼1

½sðmþ dÞ � �s�½sðmÞ � �s�

1
N

PN

m¼1

½sðmÞ � �s�2
; ð2Þ

Table 1 Some statistics of

water level at coastal site of

Mariupol during January–

December 2005

Statistics Value

Number of data 8,760

Mean (cm) 489.81

Maximum value (cm) 556

Minimum value (cm) 395

Standard deviation

(cm)

16.93

Skewness –0.94

Kurtosis 3.25
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Fig. 2 Fourier power spectrum for hourly water level data at coastal

site of Mariupol
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where �s ¼ 1
N

PN

m¼1

sðmÞ and N is the number of data

measurements, and to look for that time lag where CL(d)

first passes through zero (Holzfuss and Mayer-Kress 1986).

This gives a good hint of choice for s at that s(n + js) and

s(n + (j + 1)s) are linearly independent. However, a linear

independence of two variables does not mean that these

variables are nonlinearly independent since a nonlinear

relationship can differs from linear one. It is therefore

preferably to utilize approach with a nonlinear concept of

independence, e.g. the average mutual information.

Briefly, the concept of mutual information can be

described as follows. Let there are two systems, A and B,

with measurements ai and bk. The amount one learns in bits

about a measurement of ai from a measurement of bk is

given by the arguments of information theory (Gallager

1968) as

IAB ai; bkð Þ ¼ log2

PAB ai; bkð Þ
PA aið ÞPB bkð Þ

� �

; ð3Þ

where the probability of observing a out of the set of all A

is PA(ai), and the probability of finding b in a measurement

B is PB(bi), and the joint probability of the measurement of

a and b is PAB(ai, bk). The mutual information I of two

measurements ai and bk is symmetric and non-negative,

and equals to zero if only the systems are independent. The

average mutual information between any value ai from

system A and bk from B is the average over all possible

measurements of IAB(ai, bk),

IABðsÞ ¼
X

ai;bk

PAB ai; bkð ÞIAB ai; bkð Þ: ð4Þ

To place this definition into the context of observations

from a certain physical system, let us think of the sets of

measurements s(n) as the A and of the measurements a time

lag s later, s(n + s), as the B set. The average mutual

information between observations at n and n + s is then

IABðsÞ ¼
X

ai;bk

PAB ai; bkð ÞIAB ai; bkð Þ: ð5Þ

Now we have to decide what property of I(s) we should

select, in order to establish which among the various values

of s we should use in making the data vectors y(n). Fraser

and Swinney (1986) suggest, as a prescription, that it is

necessary to choose that s where the first minimum of I(s)

occurs.

Figure 3a presents the variations of the autocorrelation

coefficient for the hourly water level observed at the Port of

Mariupol in 2005 up to the lag time equal to 1,000 h. As it

can be seen, the autocorrelation function exhibits some

kind of exponential decay up to a lag time of about 100 h.

Such an exponential decay can be an indication of the

presence of chaotic dynamics in the process of water level

variations. On the other hand, the autocorrelation coeffi-

cient failed to achieve zero, i.e. the autocorrelation function

analysis not provides us with any value of s. Such an

analysis can be certainly extended to values exceeding

1,000, but Islam and Sivakumar (2002) showed that an

attractor cannot be adequately reconstructed for very large

values of s.

Figure 3b shows the variation of the mutual informa-

tion function against the lag time. The mutual information

function exhibits an initial rapid decay (up to a lag time

of about 10 h) followed more slow decrease before

attaining near-saturation at the first minimum. Thus, we

can use in following investigations the value of s equals

to 40 h that is obtained by using the average mutual

information analysis.

Let us also note that the autocorrelation function and

average mutual information can be to some extent con-

sidered as analogues of the linear redundancy and general

redundancy, respectively, which was applied by Paluš

(1995) in the test for nonlinearity. If a time series under

consideration have an n-dimensional Gaussian distribu-

tion, these statistics are theoretically equivalent (Paluš

1995). The general redundancies detect all dependences in

the time series, while the linear redundancies are sensitive

only to linear structures. Although we do not perform the

test for nonlinearity of Paluš (1995) in full, the simple

comparison of the curves in Fig. 3a and b shows that

most of features observed in the autocorrelation function

values are missing in the average mutual information. In

other words, the nature of curves in Fig. 3a and b is

substantially different. From this fact, a possible nonlinear

nature of process resulting in the water level variations

can be concluded.

3.2 Choosing embedding dimension

The goal of the embedding dimension determination is to

reconstruct a Euclidean space Rd large enough so that the

set of points dA can be unfolded without ambiguity. In

accordance with the embedding theorem, the embedding

dimension dE must be greater, or at least equal, than a

dimension of attractor dA, i.e. dE [ dA. In other words, we

can choose a fortiori large dimension dE, e.g. 10 or 15,

since the previous analysis provides us prospects that the

dynamics of our system is probably chaotic. However, two

problems arise with working in dimensions larger than

really required by the data and time-delay embedding

(Abarbanel et al. 1993). First, many of computations for

extracting interesting properties from the data require

searches and other operations in Rd whose computational

cost rises exponentially with d. Second, but more
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significant from the physical point of view, in the presence

of noise or other high dimensional contamination of the

observations, the extra dimensions are not populated by

dynamics, already captured by a smaller dimension, but

entirely by the contaminating signal. In too large an

embedding space one is unnecessarily spending time

working around aspects of a bad representation of the

observations which are solely filled with noise. It is

therefore necessary to determine the dimension dA.

There are several standard approaches to reconstruct the

attractor dimension (see, e.g., Abarbanel et al. 1993;

Schreiber 1999), but let us consider in this study two

methods only.

The correlation integral analysis is one of the widely

used techniques to investigate the signatures of chaos in a

time series. The analysis uses the correlation integral C(r),

to distinguish between chaotic and stochastic systems. To

compute the correlation integral, the algorithm of Grass-

berger and Procaccia (1983) is the most commonly used

approach. According to this algorithm, the correlation

integral is computed as

CðrÞ ¼ lim
N!1

2

Nðn� 1Þ
X

i;j
ð1� i\j�NÞ

H r � jjyi � yjjj
� �

; ð6Þ

where H is the Heaviside step function with H(u) = 1 for

u [ 0 and H(u) = 0 for u £ 0, r is the radius of sphere

centered on yi or yj. If the time series is characterized by an

attractor, then the correlation integral C(r) is related to the

radius r given by

d ¼ lim
r!0
N!1

log C rð Þ
log r

; ð7Þ

where d is the correlation exponent that can be determined

as the slop of line in the coordinates log C(r) versus log r

by a least-squares fit of a straight line over a certain range

of r, called the scaling region.

If the correlation exponent attains saturation with an

increase in the embedding dimension, then the system is

generally considered to exhibit chaotic dynamics. The

saturation value of the correlation exponent is defined as

the correlation dimension (d2) of the attractor. The nearest

integer above the saturation value provides the minimum or

optimum embedding dimension for reconstructing the

phase–space or the number of variables necessary to model

the dynamics of the system. On the other hand, if the

correlation exponent increases without bound with increase

in the embedding dimension, the system under investiga-

tion is generally considered stochastic.

In this study, the correlation functions and the exponents

was computed for the hourly water level. Figure 4 shows

the correlation dimension results, i.e. the relationship

between the correlation exponent and embedding dimen-

sion values. As it can be seen, the correlation exponent

value increases with embedding dimension up to a certain

value, and then saturates beyond that value. The saturation

of the correlation exponent beyond a certain embedding

dimension is an indication of the existence of deterministic

dynamics. The saturation value of the correlation exponent,

i.e. correlation dimension of attractor, for the water level

series is about 3.46 and occurs at the embedding dimension

value of 6. The low, non-integer correlation dimension

value indicates the existence of low-dimensional chaos in

the hourly water level data of Mariupol.

The nearest integer above the correlation dimension

value can be considered equal to the minimum dimension

of the phase–space essential to embed the attractor. The

value of the embedding dimension at which the saturation

of the correlation dimension occurs is considered to pro-

vide the upper bound on the dimension of the phase–space

sufficient to describe the motion of the attractor. Further-

more, the dimension of the embedding phase–space is

equal to the number of variables present in the evolution of

the system dynamics. Therefore, the results from the

present study indicate that to model the dynamics of
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process resulting in the water level variations the minimum

number of variables essential is equal to 4 and the number

of variables sufficient is equal to 6. Therefore, the water

level attractor should be embedded at least in a four-

dimensional phase–space. The results also indicate that the

upper bound on the dimension of the phase–space sufficient

to describe the motion of the attractor, and hence the

number of variables sufficient to model the dynamics of

process resulting in the water level variations is equal to 6.

There are certain important limitations in the use of the

correlation integral analysis in the search for chaos. For

instance, the selection of inappropriate values for the

parameters involved in the method may result in an

underestimation (or overestimation) of the attractor

dimension (Havstad and Ehlers 1989). Consequently, finite

and low correlation dimensions could be observed even for

a stochastic process (Osborne and Provenzale 1989). To

verify the results obtained by the correlation integral

analysis, we use surrogate data method.

The method of surrogate data (Theiler et al. 1992) is an

approach that makes use of the substitute data generated in

accordance to the probabilistic structure underlying the

original data. This means that the surrogate data possess

some of the properties, such as the mean, the standard

deviation, the cumulative distribution function, the power

spectrum, etc., but are otherwise postulated as random,

generated according to a specific null hypothesis. Here, the

null hypothesis consists of a candidate linear process, and

the goal is to reject the hypothesis that the original data

have come from a linear stochastic process. One reasonable

statistic suggested by Theiler et al. (1992) is obtained as

follows.

Let Qorig denote the statistic computed for the original

time series and Qsi for the ith surrogate series generated

under the null hypothesis. Let ls and rs denote, respec-

tively, the mean and standard deviation of the distribution

of Qs. Then the measure of significance S is given by

S ¼ jQorig � lsj
rs

: ð8Þ

An S value of *2 cannot be considered very significant,

whereas an S value of *10 is highly significant (Theiler

et al. 1992). The details on the null hypothesis and surro-

gate data generation are described by Schreiber (1999).

To detect nonlinearity in the water level data, the one

hundred realizations of surrogate data sets were generated

according to a null hypothesis in accordance to the prob-

abilistic structure underlying the original data. The

correlation integrals and the correlation exponents, for

embedding dimension values from 1 to 20, were computed

for each of the surrogate data sets using the Grassberger–

Procaccia algorithm as explained earlier. Figure 4 shows

the relationship between the correlation exponent values

and the embedding dimension values for the original data

set and mean values of the surrogate data sets as well as for

one surrogate realization. As it can be seen from Fig. 4, a

significant difference in the estimates of the correlation

exponents, between the original and surrogate data sets, is

observed. In the case of the original data, a saturation of the

correlation exponent is observed after a certain embedding

dimension value (i.e., 6), whereas the correlation exponents

computed for the surrogate data sets continue increasing

with the increasing embedding dimension. The significance

values (S) of the correlation exponent are computed for

each embedding dimension and are shown in Fig. 5. The

significance values lie mostly in the range between 10 and

50. The high significance values of the statistic indicate

that the null hypothesis (the data arise from a linear sto-

chastic process) can be rejected and hence the original data

might have come from a nonlinear process.

Let us consider another method for determining dE that

comes from asking the basic question addressed in the

embedding theorem: when has one eliminated false cross-

ing of the orbit with itself which arose by virtue of having

projected the attractor into a very low dimensional space?

In other words, when points in dimension d are neighbours

of one other? By examining this question in dimension one,

then dimension two, etc. until there are no incorrect or false

neighbours remaining, one should be able to establish,

from geometrical consideration alone, a value for the
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Fig. 4 Relationship between correlation exponent and embedding

dimension for hourly water level data at coastal site of Mariupol for

original time series (line 1), mean values of surrogate data sets (line 2),

and one surrogate realization (line 3). Error bars indicate minimal

values of correlation exponent among all realizations of surrogate data
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necessary embedding dimension. Such an approach was

described by Kennel et al. (1992).

In dimension d each vector

y kð Þ ¼ s kð Þ; s k þ sð Þ; s k þ 2sð Þ; . . .; s k þ d � 1ð Þsð Þ½ � ð9Þ

has a nearest neighbour yNN(k) with nearness in the sense

of some distance function. The Euclidean distance in

dimension d between y(k) and yNN(k) we call Rd(k):

R2
dðkÞ ¼ sðkÞ � sNNðkÞ

� �2þ sðk þ sÞ � sNNðk þ sÞ
� �2

þ � � � þ ½sðk þ sðd � 1ÞÞ � sNNðk þ sðd � 1ÞÞ�2

ð10Þ

Rd(k) is presumably small when one has a lot a data, and

for a dataset with N measurements, this distance is of order

1/N1/d. In dimension d + 1 this nearest-neighbour distance

is changed due to the (d + 1)st coordinates s(k + ds) and

sNN(k + ds) to

R2
dþ1ðkÞ ¼ R2

dðkÞ þ ½sðk þ dsÞ � sNNðk þ dsÞ�2: ð11Þ

We can define some threshold size RT to decide when

neighbours are false. Then if

jsðk þ dsÞ � sNNðk þ dsÞj
RdðkÞ

[ RT; ð12Þ

the nearest neighbours at time point k are declared false.

Kennel et al. (1992) showed that for values in the range

10 £ RT £ 50 the number of false neighbours identified by

this criterion is constant. In practice, the percentage of false

nearest neighbours is determined for each dimension d. A

value at which the percentage is almost equal to zero can

be considered as the embedding dimension.

Figure 6 displays the percentage of false nearest

neighbours that was determined for the water level series,

for phase-spaces reconstructed with embedding dimensions

from 1 to 20. As it can be seen, the percentage of false

neighbours drops to almost zero at 4 or 5. This indicates

that a four or five-dimensional phase–space is necessary to

represent the dynamics (or unfold the attractor) of the water

level series. From the other hand, the mean percentage of

false nearest neighbours computed for the surrogate data

sets decreases steadily but at 20 is about 35%. Such a result

seems to be in close agreement with that was obtained from

the correlation integral analysis, providing further support

to the observation made earlier regarding the presence of

low-dimensional chaotic dynamics in the water level

variations.

3.3 Lyapunov exponents

Lyapunov exponents are the dynamical invariants of the

nonlinear system. They are very useful when physics of

process is considered. Using the spectrum of Lyapunov

exponents, the average predictability of nonlinear system

can be estimated. In a general case, the orbits of chaotic

attractors are unpredictable, but there is the limited pre-

dictability of chaotic physical system, which is defined by

the global and local Lyapunov exponents.
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surrogate data
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A concept of Lyapunov exponents existed long before

the establishment of chaos theory, and was developed to

characterize the stability of absolute value of the eigen-

values of the linearized dynamics averaged over the

attractor. A negative exponent indicates a local average

rate of contraction while a positive value indicates a local

average rate of expansion. In the chaos theory, the spec-

trum of Lyapunov exponents is considered a measure of the

effect of perturbing the initial conditions of a dynamical

system. Note that both positive and negative Lyapunov

exponents can coexist in a dissipative system, which is then

chaotic.

Since the Lyapunov exponents are defined as asymptotic

average rates, they are independent of the initial conditions,

and therefore they do comprise an invariant measure of

attractor. In fact, if one manages to derive the whole

spectrum of Lyapunov exponents, other invariants of the

system, i.e. Kolmogorov entropy and attractor’s dimension

can be found. The Kolmogorov entropy K, measures the

average rate at which information about the state is lost

with time. An estimate of this measure is the sum of the

positive Lyapunov exponents. The inverse of the

Kolmogorov entropy is equal to the average predictability.

The estimate of the dimension of the attractor is provided

by the Kaplan and Yorke (1979) conjecture:

dL ¼ jþ

Pj

a¼1

ka

jkjþ1j
; ð13Þ

where j is such that
Pj

a¼1

ka [ 0 and
Pjþ1

a¼1

ka\0; and the

Lyapunov exponents ka are taken in descending order.

There are several approaches to computing the Lyapunov

exponents (see, e.g., Abarbanel et al. 1993; Schreiber 1999);

in this paper, we use one which computes the whole spec-

trum and is based on the Jacobi matrix of the system

function (Sano and Sawada 1985).

To calculate the spectrum of Lyapunov exponents from

the water level data, we use the time delay s = 40 and

embed the data in the four-dimensional space. Such a

choice of the input parameters is the result of the previous

calculations. Table 2 summarizes the results of the

Lyapunov exponent analysis. For the time series under

consideration, there exist two positive exponents (indicat-

ing expansion along two directions) and two negative ones

(indicating contraction along remaining directions). The

Kaplan–Yorke dimension is equal to 3.23; this value is

very close to the correlation dimension which was deter-

mined by the Grassberger–Procaccia algorithm. The

estimations of the Kolmogorov entropy and average pre-

dictability show that a limit, up to which the water level

data can be on average predicted, is equal to 110.6 h or

4.6 days.

3.4 Statistical significance of results

It is known from experience that results of state–space

reconstruction are highly sensitive to the length of data set

(i.e. it must be sufficiently large) as well as to the time lag

and embedding dimension determined.

Indeed, there are limitations on the applicability of

chaos theory for observed (finite) hydrometeorological

time series arising from the basic assumptions that the time

series must be infinite. A finite and small data set may

probably results in an underestimation of the actual

dimension of the process. There are two opposite views on

the sufficient length of data set. Smith (1988) concluded

that the minimum number of data points (Nmin), must be

equal to 42dE : In our case, dE = 4 and Nmin = 3,111,696,

i.e. the length of data used in current study is certainly

insufficient. From the other hand, Nerenberg and Essex

(1990) showed that the minimum number of points is

Nmin�102þ0:4dE ; i.e. Nmin is about 4,000 for dE = 4.

Sivakumar (2000) argued also that the phase space recon-

struction can be successful for smaller observational data

sets. Nevertheless, we check the robustness of our results

with respect to the size of time series by dividing the data

in 2 sets of 4,380 points and in 4 sets of 2,190 points and

using the methods described in Sects. 3.2 and 3.3 for these

subsets. The main assumption is that the results obtained

for the subsets are close to the results obtained for the

whole time series.

Table 3 presents a summary of the results achieved for

the whole data set and the subsets. The correlation

dimensions for the subsets are slightly smaller in compar-

ison that for the whole data set. It is noteworthy that when

the length of data sets is 2,190 points only, the correlation

dimension is still comparable with d2 = 3.46 obtained for

the whole time series. The percentages of false nearest

Table 2 Results of Laypunov exponents analysis for water level data at coastal site of Mariupol during January–December 2005

k1 k2 k3 k4 dL K P

0.0077 0.0013 –0.0051 –0.0175 3.23 0.0090 110.6

k1–k4 are the Lyapunov exponents in descending order, dL is the Kaplan–Yorke attractor dimension, K is the Kolmogorov entropy, and P is the

average predictability (hours)
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neighbours for the subsets are also insignificantly changed.

Furthermore, there still exist two positive Lyapunov

exponents for all subsets, and their values vary slightly

especially for the first exponents. It is therefore suggested

that, to reconstruct accurately the phase–space, the length

of our time series is sufficient.

As it was mentioned above, an appropriate time lag is

necessary because an optimum selection of s gives best

separation of neighboring trajectories within the minimum

embedding phase–space. Note that the mutual information

and autocorrelation function for some attractors behave in a

different way. For example, these approaches applied to the

Mackey–Glass system (Mackey and Glass 1977) provide

equal values of s, i.e. it really does not matter whether the

autocorrelation function or the mutual information is used.

On the other hand, for the system of Lorenz (1963) the

mutual information method provides s which is one order

lesser than that determined by the autocorrelation function.

In this study, we determine the time lag as a value at which

the autocorrelation function first crosses the zero (Holzfuss

and Mayer-Kress 1986). Other approaches consider the

time lag at which the autocorrelation function attains a

certain value, say 0.1 (Tsonis and Elsner 1988) or 0.5

(Schuster 1989). For observational time series, a practical

approach is to experiment with different s to ascertain its

effect on the correlation dimension (e.g. Tsonis et al. 1993;

Sivakumar 2000; Islam and Sivakumar 2002).

The dimensions determined for various time lags are

presented in Table 4. Here, s = 40 is the time lag provided

by the mutual information approach, and the correlation

dimension is 3.46 due to the saturation at the embedding

dimension 6 (see Fig. 4). Using other s values of 30, 35,

45, and 50 h, an underestimation or overestimation of the

dimensions is observed when s is smaller or larger than

40 h, but the embedding dimension which is provided by

the false nearest neighbours algorithm is still 4 (except for

s = 50). If ever the criterion proposed by Schuster (1989) is

used, s = 75 and d2 = 4.08 with the embedding dimension

dN = 6. Moreover, if the time lag at which the

autocorrelation function first crosses the zero (i.e.

s = 1,521) or time lag at which the autocorrelation function

attains the value of 0.1 (i.e. s = 1,371) is applied, the

saturation is not observed at low dimensions. The value of

s = 40 is therefore seems to be optimal for the time series

discussed in this study.

Thus, the statistical convergence tests that are described

in this subsection together with the surrogate data approach

that was applied in Sect. 3.2 provide the satisfactory sig-

nificance of our results regarding the state–space

reconstruction.

4 Conclusions and discussion

This paper investigated the existence of chaotic behaviour

in the hourly water level data at the coastal site of

Mariupol, Ukraine. The mutual information approach, the

correlation integral analysis, the false nearest neighbour

algorithm, the Lyapunov exponents analysis, and the sur-

rogate data method were used in the analysis.

The mutual information approach provided a time lag

which is needed to reconstruct phase space. Such an

Table 3 Correlation dimensions (d2), embedding dimensions deter-

mined by false nearest neighbours method (dN) with percentage of

false neighbours (in parentheses), Lyapunov exponents in descending

order (k1–k4), and Kolmogorov entropy (K) in different ranges of data

points for water level data at coastal site of Mariupol during January–

December 2005

Data points d2 dN k1 k2 k3 k4 K

1–8,760 3.46 4 (1.2) 0.0077 0.0013 –0.0051 –0.0175 0.0090

1–4,380 3.43 4 (2.0) 0.0072 0.0012 –0.0059 –0.0180 0.0084

4,381–8,760 3.45 4 (1.7) 0.0069 0.0012 –0.0055 –0.0168 0.0081

1–2,190 3.41 4 (2.1) 0.0094 0.0004 –0.0060 –0.0172 0.0098

2,191–4,380 3.42 4 (2.2) 0.0072 0.0006 –0.0066 –0.0176 0.0078

4,381–6,570 3.44 4 (1.8) 0.0066 0.0010 –0.0062 –0.0176 0.0076

6,571–8,760 3.43 4 (2.3) 0.0080 0.0003 –0.0058 –0.0172 0.0083

Table 4 Correlation exponents (d2) and embedding dimensions

determined by false nearest neighbours method (dN) with percentage

of false neighbours (in parentheses) calculated for various time lags

(s) from hourly water level data at coastal site of Mariupol during

January–December 2005

s d2 dN

30 3.22 4 (1.3)

35 3.29 4 (1.4)

40 3.46 4 (1.2)

45 3.56 4 (1.2)

50 3.78 5 (1.4)

75 4.08 6 (2.5)

1,371 No saturation 8 (4.2)

1,521 No saturation 8 (4.0)
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approach allowed concluding the possible nonlinear nature

of process resulting in the water level variations.

The correlation dimension method provided a low

fractal-dimensional attractor thus suggesting a possibility

of the existence of chaotic behaviour. Based on the

attractor dimensions, the minimum number of variables

essential to model the hourly water level dynamics at the

Port of Mariupol was identified as 4 and the number of

variables sufficient as 6. This implies that it is impossible

to model the dynamics of the hourly process resulting in

the water level variations with fewer than 4 variables.

Significant improvement can be achieved when additional

variables, up to the number of variables sufficient (6), are

included in the model.

The method of surrogate data, for detecting nonlinearity,

provided significant differences in the correlation expo-

nents between the original data series and the surrogate

data sets. This finding indicates that the null hypothesis

(linear stochastic process) can be rejected.

The results from the aforementioned methods indicate

that the hourly water level at the Port of Mariupol exhibits

a nonlinear behaviour and possibly low-dimensional chaos.

Thus, a short-term prediction based on nonlinear dynamics

is possible. The Lyapunov exponents analysis supported

this conclusion. It can be noted that the nonleading expo-

nents are notoriously difficult to estimate from time series

data. Moreover, the interpretation of inverse Lyapunov

exponents as predictability times can results in ambiguous

conclusions. In fact, the degree of instability and predict-

ability can vary considerably throughout phase space

(Schreiber 1999). Zaldivar et al. (2000) showed that non-

linear forecasting produces adequate results for the

‘normal’ dynamic behaviour of the water level of Venice

Lagoon, outperforming linear algorithms, however, both

methods fail to forecast the ‘high water’ phenomenon more

than 2–3 h ahead.

Though a large number of studies employed the ideas

gained from the science of chaos, there have also been

widespread criticisms on the application of chaos theory.

Important reasons for this are: (1) the assumptions with

which the chaos identification methods have been devel-

oped, i.e. infinite and noise-free time series; and (2) the

inability of the investigative methods to provide irrefutable

proof regarding the existence of chaos. The fact that

observational time series are almost always finite and are

inherently contaminated by noise, such as errors arising

from measurements, necessitate addressing the above

issues in the application of chaos theory.

On the one hand, the basis for the criticisms of studies

investigating and reporting existence of chaos in water

level variations is our strong belief that they are influenced

by a large number of variables and, therefore, are sto-

chastic. On the other hand, the outcomes of the present

study provide support to the claims that the (seemingly)

highly irregular processes could be the result of simple

deterministic systems with a few degrees of freedom.

Therefore, the hypothesis of chaos in water level variations

is reasonable and can provide an alternative approach for

characterizing and modelling the dynamics of processes

resulting in the water level variations. The evidence that

chaos theory can be applied to observational time series

was in detail adduced by Sivakumar (2000).

From our point of view, future investigations can be

realized as follows. First, the adaptation of linear or

empirical models such as that of Tilburg and Garvine

(2004) is needed. Next, the nonlinear prediction method or

artificial neural network approach can be applied to predict

the water level variations. Comparing outcomes from the

above methodologies, the best strategy for the short-term

forecasting of water level in the Port of Mariupol can be

achieved.
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