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Abstract It is presented an advanced chaos-geometrical approach to treating

chaotic dynamics in some nature systems and its numerical application to

hydroecological one. The approach combines together application of the ad-

vanced mutual information approach, correlation integral analysis, Lyapunov

exponent's analysis etc.
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1. Introduction

Earlier [1-10] we have developed a new, chaos-geometrical combined approach

to treating of chaotic dynamics of atmospheric pollutants and its forecasting.

Here we present the results of its application to studying hydroecological system

dynamics. The successful application of new chaos-geometrical approach has

been presented for studying another kind of nature systems, namely atmosphere

pollution systems [10].

During the last two decades, many studies in various �elds of science have

appeared, in which chaos theory was applied to a great number of dynamical

systems, including those are originated from nature (e.g. [1-22]). The outcomes

of such studies are very encouraging, as they reported very good predictions

using such an approach for di�erent systems.

2. Advanced chaos-geometrical approach to atmospheric pollutants

dynamics: Data

2.2.1. Data and methodics
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In this studying we investigate the pollution dynamics of the hydrological sys-

tems, in particular, variations of the nitrates and sulphates concentrations in

the river's water reservoirs in the Earthen Slovakia by using the non-linear pre-

diction approaches and chaos theory method (in versions) [1-10]. As the initial

data we use the results of empirical observations made on six watersheds in the

region of the Small Carpathians, carried out by coworkers of the Institute of

Hydrology of the Slovak Academy of Sciences [11]. The temporal changes in the

concentrations of nitrates in the catchment areas are listed in [11].

Following to [1-10], further we formally consider scalar measurements s(n) =

s(t0+ n∆t) = s(n), where t0 is a start time, ∆t is time step, and n is number

of the measurements. In a general case, s(n) is any time series (f.e. atmospheric

pollutants concentration). As processes resulting in a chaotic behaviour are fun-

damentally multivariate, one needs to reconstruct phase space using as well as

possible information contained in s(n). Such reconstruction results in set of d -

dimensional vectors y(n) replacing scalar measurements. The main idea is that

direct use of lagged variables s(n + τ), where τ is some integer to be de�ned,

results in a coordinate system where a structure of orbits in phase space can

be captured. Using a collection of time lags to create a vector in d dimensions,

y(n) = [s(n), s(n + τ), s(n + 2 τ), .., s(n +(d−1 )τ)], the required coordinates

are provided. In a nonlinear system, s(n + j τ) are some unknown nonlinear

combination of the actual physical variables. The dimension d is the embedding

dimension, dE .

Let us remind that following to [1,10], the choice of proper time lag is important

for the subsequent reconstruction of phase space. If τ is chosen too small, then

the coordinates s(n + j τ), s(n +(j +1 )τ) are so close to each other in numerical

value that they cannot be distinguished from each other. If τ is too large, then

s(n+j τ), s(n+(j +1 )τ) are completely independent of each other in a statistical

sense. If τ is too small or too large, then the correlation dimension of attractor

can be under-or overestimated. One needs to choose some intermediate position

between above cases. First approach is to compute the linear autocorrelation

function CL(δ) and to look for that time lag where CL(δ) �rst passes through

0. This gives a good hint of choice for τ at that s(n + j τ) and s(n + (j + 1 )τ)

are linearly independent. It's better to use approach with a nonlinear concept

of independence, e.g. an average mutual information. The mutual information I

of two measurements ai and bk is symmetric and non-negative, and equals to 0

if only the systems are independent. The average mutual information between

any value ai from system A and bk from B is the average over all possible
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measurements of I AB (ai , bk ). In ref. [4] it is suggested, as a prescription, that

it is necessary to choose that τ where the �rst minimum of I (τ) occurs.

In [1,10] it has been stated that an aim of the embedding dimension determina-

tion is to reconstruct a Euclidean space Rd large enough so that the set of points

dA can be unfolded without ambiguity. The embedding dimension, dE , must be

greater, or at least equal, than a dimension of attractor, dA, i.e. dE > dA. In

other words, we can choose a fortiori large dimension dE , e.g. 10 or 15, since

the previous analysis provides us prospects that the dynamics of our system

is probably chaotic. The correlation integral analysis is one of the widely used

techniques to investigate the signatures of chaos in a time series. If the time

series is characterized by an attractor, then correlation integral C (r) is related

to a radius r as d = lim

r → 0, N →∞

logC(r)
log r , where d is correlation exponent.

2.2.2 The results for time series

It table 1 we list the values of the autocorrelation function CL and the �rst

minimum of mutual information Imin1 for the concentration of nitrates in four

watersheds of the Small Carpathians.

Table 1. Time lags (hours) subject to di�erent values of CL, and �rst minima

of average mutual information,Imin1, for the concentration of nitrates in four

watersheds of the Small Carpathians.

Manelo Ondava Gidra Vydrica

CL=0.1 175 132 266 282

CL=0.5 9 17 7 32

Imin1 27 26 48 52

The values, where the autocorrelation function �rst crosses 0.1, can be chosen as

τ , but in [6,9] it's showed that an attractor cannot be adequately reconstructed

for very large values of τ . So, before making up �nal decision we calculate the

dimension of attractor for all values in Table 1. The large values of τ result in

impossibility to determine both the correlation exponents and attractor dimen-

sions using Grassberger-Procaccia method [1,16]. Here the outcome is explained

not only inappropriate values of τ but also shortcomings of correlation dimension

method. If algorithm [14] is used, then a percentages of false nearest neighbours

are comparatively large in a case of large τ . If time lags determined by average

mutual information are used, then algorithm of false nearest neighbours provides

dE = 6 for all water pollutants.

2.2.3. Nonlinear prediction model

The fundamental problem of theory of any dynamical system is in predicting

the evolutionary dynamics of a chaotic system. Let us remind following to [1-
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,2,10] that the cited predictability can be estimated by the Kolmogorov entropy,

which is proportional to a sum of positive LE. As usually, the spectrum of LE

is one of dynamical invariants for non-linear system with chaotic behaviour.

The limited predictability of the chaos is quanti�ed by the local and global

LE, which can be determined from measurements. The LE are related to the

eigenvalues of the linearized dynamics across the attractor. Negative values show

stable behaviour while positive values show local unstable behaviour. For chaotic

systems, being both stable and unstable, LE indicate the complexity of the

dynamics. The largest positive value determines some average prediction limit.

Since the LE are de�ned as asymptotic average rates, they are independent of

the initial conditions, and hence the choice of trajectory, and they do comprise

an invariant measure of the attractor. An estimate of this measure is a sum

of the positive LE. The estimate of the attractor dimension is provided by the

conjecture dL and the LE are taken in descending order. The dimension dL gives

values close to the dimension estimates discussed earlier and is preferable when

estimating high dimensions. To compute LE, we use a method with linear �tted

map, although the maps with higher order polynomials can be used too. Non-

linear model of chaotic processes is based on the concept of compact geometric

attractor on which observations evolve. Since an orbit is continually folded back

on itself by dissipative forces and the non-linear part of dynamics, some orbit

points [1,10] yr (k), r = 1 , 2 , ..,N B can be found in the neighbourhood of any

orbit point y(k), at that the points yr (k) arrive in the neighbourhood of y(k) at

quite di�erent times than k . One can then choose some interpolation functions,

which account for whole neighbourhoods of phase space and how they evolve

from near y(k) to whole set of points near y(k + 1 ). The implementation of this

concept is to build parameterized non-linear functions F(x, a) which take y(k)

into y(k + 1 ) = F(y(k), a) and use various criteria to determine parameters

a. Since one has the notion of local neighbourhoods, one can build up one's

model of the process neighbourhood by neighbourhood and, by piecing together

these local models, produce a global non-linear model that capture much of the

structure in an attractor itself. Table 2 shows the correlation dimension (d2),

embedding dimension (dE), Kaplan-Yorke dimension (dL), and average limit of

predictability (Prmax, hours) for time series of the concentration of nitrates in

the watershed of the Small Carpathians.

Table 2. The Time lag (τ), correlation dimension (d2), embedding dimen-

sion (dE), Kaplan-Yorke dimension (dL), and average limit of predictability
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(Prmax, hours) for time series of the concentration of nitrates in the watershed

of the Small Carpathians.

Manelo Ondava Gidra Vydrica

τ 7 10 16 19

(d2) 3.71 3.65 5.13 5.21

(dE) 4 4 6 6

dL 3.66 3.27 5.87 5.01

Prmax 9 7 14 12

The sum of the positive LE determines the Kolmogorov entropy, which is in-

versely proportional to the limit of predictability (Prmax. Let us remind since

the conversion rate of the sphere into an ellipsoid along di�erent axes is deter-

mined by the LE, it is clear that the smaller the amount of positive dimensions,

the more stable is a dynamic system. Consequently, it increases the predictabil-

ity of it. As the numerical calculation shows the presence of the two (from six)

positive λi suggests the system broadens in the line of two axes and converges

along four axes that in the six-dimensional space. The time series of concentra-

tions at the site of the Vidrica have the highest predictability than other time

series.

3. Conclusions

In this paper we considered an advanced chaos-geometrical approach to treat-

ing of hydroecological systems dynamics. The approach combines the non-linear

analysis methods to dynamics, such as the correlation integral analysis, the LE

analysis, surrogate data method etc. We have investigated a chaotic behaviour

in the time series of the nitrates concentrations in the river's water reservoirs in

the Earthen Slovakia and found an availability of the low-D chaos.
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