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ABSTRACT: The energies and hyperfine structure constants for some Li-like
multicharged ions and atoms of 133Cs and 181Hg are calculated within the quantum
electrodynamics (QED) perturbation theory formalism with correct taking into account
the correlation, relativistic, nuclear, and radiative corrections. © 2009 Wiley Periodicals,
Inc. Int J Quantum Chem 109: 3330–3335, 2009

Key words: hyperfine structure; QED theory; correlation; nuclear; radiative
corrections

1. Introduction

A t present time, studying the spectral lines hy-
perfine structure for heavy elements and mul-

ticharged ions is of a great interest for the further
development as atomic and nuclear theories and
spectroscopy of multicharged ions (see, for exam-
ple, Refs. [1–22]). One could also mention here the
important astrophysical applications. The experi-
ments on the definition of hyperfine splitting also
enable to refine the deduction of nuclear magnetic
moments of different isotopes and to check an ac-

curacy of the various calculational models used for
the theoretical description of the nuclear effects.
The multiconfiguration relativistic Hartree–Fock
(RHF) and Dirac–Fock (DF) approaches (see, for
example, Refs. [3–5, 8–18] are the most reliable
versions of calculation for multielectron systems
with a large nuclear charge. Usually, in these cal-
culations the one- and two-body relativistic effects
are taken into account practically precisely. It
should be given the special attention to three very
general and important computer systems for rela-
tivistic and QED calculations of atomic and molec-
ular properties developed in the Oxford and Ger-
man-Russian groups etc. (“GRASP,” “Dirac,”
“BERTHA,” “QED,” “Dirac”) (see Refs. [3–5, 8–18]
and references therein). For example, the BERTHA
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program embodies a new formulation of relativistic
atomic and molecular structure theory within the
framework of relativistic QED. This leads to a sim-
ple and transparent formulation of the Dirac–Har-
tree–Fock–Breit self-consistent field equations
along with algorithms for molecular properties,
electron correlation, and higher order QED effects.
These equations are solved by a direct method
based on a relativistic generalization of the Mc-
Murchie–Davidson algorithm for corresponding in-
tegrals that economizes memory requirements and
is not significantly more expensive computationally
than comparable nonrelativistic calculations. The
useful overview of the relativistic electronic struc-
ture theory is presented in Refs. [12, 13, 17–20] from
the QED point of view. The next important step is
an adequate taking into account the QED correc-
tions. This topic has been a subject of intensive
theoretical and experimental interest (see, for exam-
ple [3–5, 8–20]).

In this article, an effective ab initio QED ap-
proach [11, 14, 20–23] to calculation of the spectra
for multielectron heavy ions with taking into ac-
count the relativistic, correlation, nuclear, radiative
effects is applied to the relativistic calculation of the
hyperfine structure parameters for the Li-like mul-
ticharged ions and cesium and mercury atoms. The
calculation scheme is based on the gauge-invariant
QED perturbation theory (PT) with using the opti-
mized one-quasiparticle representation in the the-
ory of relativistic systems [11]. There have taken
into account all correlation corrections of the sec-
ond order and dominated classes of the higher or-
ders diagrams (electrons screening, mass operator
iterations etc.) [11, 21, 22]. The magnetic interelec-
tron interaction is accounted for in the lowest order
on �2 (� is the fine structure constant) parameter.
The Lamb shift polarization part is taken into ac-
count in the modified Uehling-Serber approxima-
tion. The Lamb shift self-energy part is accounted
for effectively within the generalized Ivanov-
Ivanova nonperturbative procedure [11].

2. Theory

Let us describe the key moments of the approach
(more details can be found in Refs. [11, 14, 20–23]).
The electron wave functions (the PT zeroth basis)
are found from solution of the relativistic Dirac
equation with potential, which includes ab initio
mean-field potential, electric, polarization poten-
tials of a nucleus. The charge distribution in the

Li-like ion and the mercury nuclei is modeled
within the Gauss model. The nuclear model used
for the Cs isotope is the independent particle model
with the Woods–Saxon and spin-orbit potentials
(see Ref. [24]). Although we have no guaranty that
these wave-functions yield a close approximation
to nature, its acceptability is checked in calculating
the metastable discharge of a nucleus by capture of
the negative muon [24].

Let us consider in details more simple case of the
Li-like ion. We set the charge distribution in the
Li-like ion nucleus �(r) by the Gaussian function.
With regard to normalization we have:

��r�R� � �4�3/ 2/���exp� � �r2� (1)

where � � 4/�R2 and R is the effective nucleus
radius. The Coulomb potential for the spherically
symmetric density �(r) is:

Vnucl�r�R� � � ��1/r��
0

r

dr�r�2��r��R� � �
r

�

dr�r���r��R�

(2)

It is determined by the following system of differ-
ential equations:

Vnucl��r, R� � �1/r2��
0

r

dr�r�2��r�, R� � �1/r2�y�r, R�

(3)

y��r, R� � r2��r, R� (4)

���r, R� � � 8�5/ 2r/��exp� � �r2� � � 2�r��r, R�

� �
8r
�r2��r, R� (5)

with the corresponding boundary conditions. Con-
sider the DF type equations for a three-electron
system 1s2nlj. Formally, they fall into one-electron
Dirac equations for the orbitals 1s and nlj with the
potential:

V�r� � 2V�r�1s� � V�r�nlj� � Vex�r� � V�r�R� (6)

V(r R) includes the electrical and the polarization
potentials of the nucleus; the components of the
Hartree potential (in the Coulomb units):

PERTURBATION THEORY CALCULATION FOR HEAVY-ELEMENT ISOTOPES

VOL. 109, NO. 14 DOI 10.1002/qua INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 3331



V�r�i� �
1
Z�dr����r�i�/r� � r��� (7)

Here ��r�i� is the distribution of the electron density
in the state i �, Vex is the exchange interelectron
interaction. The main exchange effect will be taken
into account if in the equation for the valent
electron orbital we assume V�r� � V�r�core�
� V�r�nlj� and in the equation for the nlj orbital
V�r� � 2V�r�core�. The rest of the exchange and
correlation effects will be taken into account in the
first two orders of the PT by the total interelectron
interaction [11, 14, 21, 22].

A procedure of taking into account the radiative
QED corrections is in details given in the Refs. [11,
14, 20–22]. Regarding the vacuum polarization ef-
fect, let us note that this effect is usually taken into
consideration in the first PT theory order by means
of the Uehling potential. This potential is usually
written as follows:

U�r� � �
2�

3�r�
1

�

dtexp� � 2rt/�Z��1

� 1/2t2�
�t2 � 1

t2 � �
2�

3�r C�g�, (8)

where g � r/(�Z). In our calculation, we use more
exact approach [22]. The Uehling potential, deter-
mined as a quadrature (8), may be approximated
with high precision by a simple analytical function.
The use of new approximation of the Uehling po-
tential permits one to decrease the calculation er-
rors for this term down to 0.5–1%. A method for
calculation of the self-energy part of the Lamb shift
is based on an idea by Ivanov-Ivanova (see Ref.
[11]). In an atomic system the radiative shift and the
relativistic part of energy are, in principle, defined
by one and the same physical field. It may be sup-
posed that there exists some universal function that
connects the self-energy correction and the relativ-
istic energy. The self-energy correction for the states
of a hydrogen-like ion was presented by Mohr [9]
as:

ESE�H�Z, nlj� � 0.027148
Z4

n3F�H�Z, nlj� (9)

These results are modified here for the states 1s2 nlj
of Li-like ions. It is supposed that for any ion with

nlj electron over the core of closed shells the sought
value may be presented in the form:

ESE�Z, nlj� � 0.027148
�4

n3 f��, nlj��cm�1� (10)

The parameter � � (ER)1/4, ER is the relativistic part
of the bounding energy of the outer electron; the
universal function f��, nlj� does not depend on the
composition of the closed shells and the actual po-
tential of the nucleus. The procedure of generaliza-
tion for a case of Li-like ions with a finite nucleus
consists of the following steps: (i) calculation of the
values ER and � for the states nlj of H-like ions with
the point nucleus (in accordance with the Zommer-
feld formula); (ii) construction of an approximating
function f��, nlj� by the found reference Z and the
appropriateF�H�Z, nlj�; (iii) calculation of ER and �
for the states nlj of Li-like ions with a finite nucleus;
(iv) calculation of ESE for the sought states by the
formula [10].

The energies of the states of Li-like ions were
calculated twice: with a conventional constant of
the fine structure � � 1/137.04 and with �̃
� �/1,000. The results of latter calculations were
considered as nonrelativistic. This permitted isola-
tion of ER and �. A detailed evaluation of their
accuracy may be made only after a complete calcu-
lation of ESE

n �Li Z, nlj�. It may be stated that the
above extrapolation method is more justified than
using the widely spread expansions by the param-
eter �Z.

The energies of electric quadruple and magnetic
dipole interactions are defined by a standard way
with the hyperfine structure constants, usually ex-
pressed through the standard radial integrals [25]:

A � �	�4,32587�10�4Z	g1
2 
/�4	2 � 1���RA��2,

(11a)

B � �7.2878 10�7Z3Q/	�4	2 � 1�I�I � 1���RA��3,

(11b)

Here gI is the Lande factor, Q is a quadruple
momentum of nucleus (in Barn); (RA)�2, (RA)�3 are
the radial integrals usually defined as follows:

�RA��2, � �
0

�

drr2F�r�G�r�U�1/r2, R�, (12a)
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�RA��3, � �
0

�

drr2	F2�r� � G2�r�U�1/r2, R�. (12b)

The radial parts F and G of the Dirac function
two components for electron, which moves in the
potential V(r,R) � U(r,R), are determined by solu-
tion of the Dirac equations. To define the hyperfine
interaction potentials U(1/rn, R), we use the method
by Ivanov et al. [11]. Other details of the used
method can be found in the references [11, 14, 21–
24].

3. Results of Calculating the
Hyperfine Structure Parameters and
Discussion

In Table I, we present the calculated data of the
hyperfine structure constants for some Li-like ions.
There are presented results for the following pa-
rameters: A � Z3gI A� and B � Z3Q/I�2I � 1�B� .

In Table II, the experimental (AExp) and theoret-
ical data of the magnetic dipole constant A (MHz)
for the valent states of 133Cs atom (I � 7/2, gI �
0.7377208) are presented. The theoretical results are
obtained on the basis of the standard RHF (ARHF)
calculation, the RHF (ARHF � dA) calculation with
taking into account the PT second and higher cor-
rections (see Ref. [15] and references therein) and
the QED PT (AQED) calculation (this work). The
analysis shows that taking into account the corre-
lation and QED corrections is important to reach
the physically reasonable agreement between theo-
retical and experimental data.

Further we present the experimental data and
theoretical results (see Table III) for the energies,
hyperfine structure constants, and electric quadru-
pole nuclear moment Q for the isotope of 181Hg.
This atom has the external valent shell 6s2 and can
be naturally treated as the two-quasiparticle sys-
tem. The corresponding formula (11), (12) are gen-
eralized on this case by standard way [25]. In this
Table III, we present the results of calculation of
the hyperfine structure constants (in MHz) for 3P1
state of mercury on the basis of different methods,
namely: standard uncorrelated DF approach, mul-
ticonfiguration DF (MCDF) method with taking
into account the Breit and QED corrections, and the
QED PT approach (see Refs. [8, 21]).

In Table IV, we present the values of the electric
quadrupole moment Q (in mBarn) for the isotope of
181Hg. Different experimental methods have been
used and listed in the table. The corresponding
theoretical results of calculation within the MCDF
method (with taking into account the Breit and

TABLE I ______________________________________
The hyperfine structure constants of some Li-like
ions: A � Z3

gIA� (cm�1) and B � Z3QB� /[I (2I�1)]
(cm�1).

nlj Z 20 69 79 92

3s A� 26–03 51–03 63–03 90–03
4s A� 15–03 19–03 24–03 36–03
2p1/2 A� 25–03 56–03 71–03 105–02
3p1/2 A� 81–04 16–03 20–03 31–03
4p1/2 A� 32–04 72–04 91–04 11–03
2p3/2 A� 50–04 67–04 71–04 72–04

B� 9–04 13–04 15–04 17–04
3p3/2 A� 13–04 19–04 21–04 22–04

B� 31–05 51–05 55–05 62–05
4p3/2 A� 62–05 89–05 92–05 8–04

B� 10–05 20–05 22–05 26–05
3d3/2 A� 88–05 10–04 11–04 12–04

B� 51–06 9–05 10–05 11–05
4d3/2 A� 35–05 51–05 55–05 58–05

B� 12–06 44–06 50–06 56–06
3d5/2 A� 36–05 48–05 50–05 52–05

B� 21–06 38–06 39–06 40–06
4d5/2 A� 15–05 19–05 20–05 21–05

B� 59–07 15–06 16–06 17–06
4f5/2 A� 06–05 12–05 13–05 14–05

B� 16–07 53–07 58–07 63–07
4f7/2 A� 61–06 78–06 81–06 83–06

TABLE II _____________________________________
The values (in MHZ) of the hyperfine structure
constant A for valent states of the 133Cs isotope:
AEXP, experiment; ARHF, the RHF calculation data;
ARHF � dARHF, the RHF calculation data with taking
in to account the PT second and higher orders
contributions [15]; AQED, the QEDPT calculation data
(this work).

State ARHF ARHF � dA AQed AExp

6s1/2 1426.81 2291.00 2294.45 2298.16
7s1/2 392.05 544.04 545.480 545.90(9)
6p1/2 161.09 292.67 292.102 291.90(13)
7p1/2 57.68 94.21 94.317 94.35(4)
6p3/2 23.944 49.785 50.205 50.275(3)
7p3/2 8.650 16.255 16.590 16.605(6)
3d3/2 — — 16.422 —
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QED corrections) and QED PT method are pre-
sented too. The detailed analysis shows that our
value for the moment Q is best of all agreed with
the result by Ulm et al.

The fundamental reason of physically reasonable
agreement between theory and experiment is con-
nected with the correct taking into account the in-
terelectron correlation effects, nuclear (due to the
finite size of a nucleus), relativistic, and radiative
corrections. The key difference between the results
of the RHF, MCDF, QED PT methods calculations is
explained by using the different schemes of taking
into consideration the interelectron correlations.
The contribution of the PT high order effects and
nuclear contribution may reach the units and even

dozens of MHz and should be correctly taken into
account. It is necessary to take into account more
correctly the spatial distribution of the magnetic
moment inside a nucleus (the Bohr–Weisskopf ef-
fect), the nuclear-polarization corrections, etc. too.
One could note that the simple single-particle nu-
clear models are usually (see, for example, Refs.
[26]) used for the evaluation of the Bohr–Weisskopf
correction. It can be done within nuclear modeling
with using the shell model with the Woods-Saxon
and spin-orbit potentials or relativistic mean filed
approach [3, 6, 24, 26]. In last years, an account for
the Bohr-Weisskopf effect and the high-order QED
contributions is considered in many papers (see, for
example, [3–7,16, 24, 26, 27]). In any case, it is
obvious that the contributions due to these effects
and nonaccount of the QED high-order corrections
are in part responsible for difference between pre-
sented theoretical results and experimental data.
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