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A consistent procedure is considered for the development of a correct model Hamiltonian for 
many-electron diatomic molecules in the framework of the Rayleigh-SchrOdinger perturbation theory with 
zero approximation model potential and with corrections for the exchange-correlation effects as high order 
effects. Using the pseudopotential approach, we have calculated some molecular constants, in particular, 
the dissociation energy of  homo- and heteronuclear diatomic alkaline molecules. It is shown that an 
accurate correction for the principal correlation effects (the polarization interaction of  valence electrons 
via the polarized core and mutual screening of outer particles) is critical for obtaining a reasonable 
calculation accuracy. We suggest ways to improve the accuracy of calculations by using (in zero 
approximation of  the perturbation theory) reliable empirical information about simple systems, such as 

the M~ ions (M = Li, Na, If, Rb, Cs). 

INTRODUCTION 

Modern quantum-chemical calculations widely use the semiempirical and ab initio pseudopotential (PP) 
theories. These provide a simple and efficient method allowing for the influence of inner shell electrons of molecules 
when the latter are explicitly described in the valence approximation (for example, [1-11]). There are two types of PP 
theories. One of them (the PP model method) employs the semiempirical PP model simulating the frozen core 
approximation with parameters fitted to experimental data. Such PP were extensively appfied to molecular calculations 
due to their simple mathematical form and an acceptable accuracy of calculation of some energies, e.g., the Rydberg 
energies, etc. At the same time, using this powerful method in the absence of reliable experimental data is problematic, 
which drastically restricts its applicability. The use of another type of PP, which does not require orthogonality of 
valence orbitals to a given set of core orbitals, is essentially reduced to purely theoretical transformations of the initial 
equations for valence electrons; this means in fact a transition to the frozen core approximation. Thus, formal PP 
equations neglect the most important correlation effects such as core polarization or the energy dependence of 
interparticle interactions. Still greater difficulties arise in obtaining the many-electron PP and deriving the PP equations 
for several valence electrons. A promising approach seems to be the inclusion of exchange polarization effects in the 
density functional theory using the one-particle exchange polarization PP. For many-particle effects the correct 
procedure has not been worked out. In some papers [12, 13] the exchange and correlation effects were included in 
the calculation by complementing the model PP with potentials depending on the dipole a d and quadrupole aq core 

polarizability. The drawbacks of this method axe the necessity of preliminary c~ a and aq determination (the accuracy 

of these calculations is usually not high) and the inadequate inclusion of the main exchange-correlation effects. 
Nevertheless, wide experience using model PP has shown that sometimes the results of correct ab initio many-electron 
calculations are reproduced with a rather high accuracy. In particular, this is true for molecules containing the atoms 
of the first two periods of the periodic table and transition metals [14-16]. Also of great importance is optimiTation of 
valence orbital bases (see [1, 2, 14]). Thus, the use of shortened valence bases often leads to unsatisfactory results. It 
is customary to assume direct optimization of PP in calculations of atoms to be the best way of valence function 
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determination. The optimized function sets are given in [17, 18]. Comparison of the results of PP calculations with 
those of configuration interaction ealculatious shows an average error of the former for correlation effects to be -10% 
or more. Probably the most suitable objects for PP calculations are the one-quasiparticle (having one electron over 
the core of filled electron shells) molecular alkaline ions M~', M = Li, Na, K, Rb, Cs [16, 19]. In the case of several 

outer electrons (quasiparticles), the problem of including an accurate correction for the interelectron correlation 
becomes very important. Only with correct methods of its solution can the PP calculations be accurate enough. Some 
papers describe construction of correct ab initio valence Hamiltonians within the quasidegenerate perturbation theory 
and other approaches (see [1, 20-24]). In our opinion, a very proficient and consistent procedure is construction of 
model PP (Hamiltonians) within a perturbation theory of Rayleigh-Schr6dinger type that effectively allows for the 
exchange-correlation effects as high-order effects and involves test PP of zero approximation. This method is successfully 
applied to atoms and ions [25-32], as well as to molecules [33-36]. 

This paper deals with the problem of PP calculations of homo- and heteronuclear diatomie alkaline molecules 
M2, M = Li, Na, K, Rb, Cs. At present, interest in this problem remains very high due to the importance of information 
about these molecules in some applications, for example in laser and chemical physics, in plasma chemistry, and so 
on (see the recent paper [7] and [37, 38]). The model Hamiltonian for the system is constructed in the 
Rayleigh-Schr6dinger perturbation theory using the test zero approximation PP. As the zero approximation PP, a 
local model potential of the Hellmann type [2] is used. Two main effects of the second-order perturbation theory are 
critical in obtaining an acceptable accuracy: the polarization interaction of valence particles via the core and their 
mutual screening. We report here original procedures for including corrections for these effects in the calculation. It 
is shown that in calculations of diatomic alkaline molecules in zero approximation of the perturbation theory with zero 
approximation PP, employment of empirical information about simpler corresponding ions makes it possible to improve 
the accuracy of calculations without additional calculation efforts. 

ZERO APPROXIMATION 

Within the PP approach, the problem of calculating the M 2 molecules (M = Li, Na, K, Rb, Cs) may be 
reduced to calculating the system consisting of two outer electrons (quasiparticles) moving in the inert gas ionic field 
of M + - M  + forming the core. The ground state of the system (with two quasiparticles over the core in the second 
quantized representation) is 

~b = ~ C~r/a ~a~" D0, 

where a + is the creation operator for the particle over the core; D0, the core state; and C, the angular symmetry 

coefficient. The electronic Hamiltonian of the system is 

a = ~. eia:a i + 2 Fija+a: + 2 Fijkla+a? akal' 
, ij ijk.l 

where e i are the one-quasiparticle energies, and 

rii = - y J  a3 i (r) Vra (ria)Hj (0, 
=a,b 

e,:/4 = f f  (rl) H: (r2) r~ I Hk (r2) HI (rl). 

Here VM(ria ) is the one-particle model PP simulating the core potential in which the quasiparticles move. The 

interaction energy E 0 of the core ions M + is defined as follows: 

E o = z ~ , ~ b / R ,  

where R is the internuclear distance; and &'Ca, ~ are effective charges (see [39, 40]). The procedure of correct 

determination of Z c is presented, for example, in [39]. As a model potential V M, a local potential of the Hellmann 
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TABLE 1. Parameters of the Model Potential V M (a.u.) and Experimental 
Ionization Energies of Alkaline Atoms (eV) 

Atom 

Li 
Na 
K 
Rb 
Cs 

A 

1.287 
1.826 
1.989 
1.640 
1.672 

k 

0.422 
0.536 
0.449 
0.358 
0.333 

5.39 
5.14 
4.32 
4.18 
3.88 

type [2] is used: 

VM(r ) = _ !  + 21 e_2kr, (1) 
r r 

where A, k are parameters of the potential usually calibrated according to the experimental energies of the ground 
state of alkzline atoms (Table 1). The correct molecular model PP is represented as the sum 

VM = VM (ra, 0a, + VM (rb, (2) 

To realize the method of the perturbation theory with zero approximation PP, we should use the eigenfunctions 
of the known quantum mechanical two-center problem having the potential V M as functions of zero approximation 

(see [38]). This will be done below for the Li 2 molecule as a variation of the calculations. Previously we have already 
dealt with the two-center problem (see [34], and also [41, 42]). As a second version we use the variation Rayleigh-Ritz 
principle, and as a test wave function we use a function of the form [16] 

(L = (m)  n e (3) 

where2,/z are ordinary prolate spheroidal coordinates, 2 = (r a + rb)/R , 1 <-,~ <_ oo, fz = (r a - rb) /R  , - 1  <__/z < 1; a,fl  

are the variation parameters determined by mlnlmb'ation of the ground state energy; and n is an integer chosen so as 
to obtain the best energy (for details, see [16]). In this version, different homo- and heteronuclear types of alkaline 
molecules are considered. The third version of calculations is practically identical to the second one excluding the fact 
that the a ~ ,  n) parameters are chosen to fit the experimental dissociation energy of the corresponding M~ ion (in 

particular, Li~-). So the calculation of the M 2 system involves two steps: 

1) construction of the model zero approximation using empirical information to determine the PP parameters; 
and 

2) calculation of corrections of various orders of the perturbation theory employing the Rayleigh- Schrrdinger 
perturbation theory and efficiently taking into account the exchange-correlation effects as effects of higher orders of 
the perturbation theory by using the corresponding one- and many-particle PP. The operator 

HpT= ~ i j  [ri-fl-VM(rir (4) 

where d, i , j  are the dummy indices with respect to nuclei and electrons respectively, is assumed to be the perturbation 
operator. 

CORRECTIONS OF VARIOUS ORDERS OF THE RAYLEIGH-SCHRODINGER 
PERTURBATION ~ E O R Y  

In [34, 36], the perturbation theory series for the secular operator matrix was built and methods of summing 
the diagrams for the states with nearly degenerate (in zero approximation) levels were considered. The terms of the 
series were represented as contributions of the Feynman diagrams classified according to the number of terminal lines 
(see Fig. 1). In accordance with this classification, the matrix element M of the secular operator was represented as 

653 



Vscuurll 
d/;~grams 

One-,a~i:te 
~agrarns 

I 
Two-pa~e I 
diagrams I 

~rst-order 
pedurba#~n 
~eory 

0 
9 

I 

S~cond~rder 
pe,'furbabbn theory 

9 
! 

T9 
, I 

The diagram correspond/hg to 
- V M (reflex X) is almost ful~ 
'cornpensated by ~e d/agrarn 
having '~lar#ee-Fod~ /nser#ons" 

( s .$) i ,  all orders of ~e  
pe#urba#~7 theory 

I I 

A 8 C 

Fig. 1. Feyaman diagram~ of the perturbation theory with the model 
zero approximation pseudopotential. 

where i is the total number of quasiparticles; M (~ the vacuum diagram (without terminal lines); M 0), the 
one-quasiparticle diagram (with a pair of terminal lines); M (2), two-quasiparticle diagrams (two pairs of terminal lines), 
and so on. The M (~ term defines the core energy. M O) equals the sum of the one-quasiparticle states e i. In the 

first-order perturbation theory we should calculate only the contribution of the first-order two-quasiparticle diagrom~ 
that take into account direct Coulomb interaction of quasiparticles. The desired first-order correction equals the 
interaction energy of quasiparticles AE0) and is expressed via ordinary matrix elements using the wave functions of 

zero approximation. For the r~  1 operator, we use here Neimznn's expansion in terms of the associated Legendre 

polynomials of the first and second types and spherical harmonics (for details, see [42]). Note that the two-particle 
diagrams having a compensating term in HpT (--VM) are absent in the first-order perturbation theory. Such diagrams 

arise in the second order but, as was shown by Tolmachev, for our case their contribution is substantially compensated 
by the contribution of the diagrams having the so-called proper energy insertions (see [27, 28]). Below we consider 
the second-order diagrams A, B, and C (see Fig. 1) for which the calculation should be done. In the theory of 
many-electron systems, the correlations are usually included in the calculation by adding some extra configurations, 
that is, by expanding the secular matrix. The additional configurations may be divided into two groups: 

1) the states with excited core electrons (having one vacancy in the core and three electrons over the core); 
addition of these states permits us to include the polarization interaction of quasiparticles via the polarizable core 
(second-order diagram.~ in Fig. 1 A, B); and 

2) the states with an excited outer quasiparticle, the number of outer particles remaining constant; with these 
states we can describe the mutual screening effect of outer particles (second-order diagram in Fig. 1 C). 

The two state types give the correction of the second-order perturbation theory 

= + 

Note that such an additive division is possible only in the second order of the perturbation theory; higher 
orders involve terms describing interference of these effects. The addition of states of the second type would lead to 
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very cumbersome matrix elements. The states of the second type may be in principle included in the secular matrix 
using AE (1) for a matrix element. However, it may appear that the whole continuum of high states will have to be 
included to get reliable accuracy. An effective way to include the states of both the first and the second types with the 
matrix size remaining constant (and without additional calculation efforts) was suggested in [34, 36]. It involves adding 
the polarization operator describing the interactions of outer particles via the polarizable core to the Coulomb operator 
of an interparticle interaction. According to [36c], the matrix elements of the polarization operator 

~pol(rl, r2) = s (  f darplc/3(r)/lr 1 - r l  " It - r21 - 

I f  d3rplc/3/lr 1 - r [  • f d3rplc/3(r)/lr-r2[]/f d3rplc/3(r)} (5) 

are the contributions of polarization diagrams (see Fig. 1). Here X is the numerical coefficient (its calculation technique 
is presented in detail in [36c]); Pc is the core electron density neglecting outer quasiparticles. The polarization correction 

for Pc was calculated using the ansatzpc = Pa + Pb; Pa,b were determined as in [43]. The general calculation procedure 

for AE(r~2) I is described in [36c] (see also [34]). Note that the angular parts of matrix elements r121~g(rl,r2) coincide; 

therefore, inclusion of the AE(~ correction amounts to modification of radial integrals entering the relation for AE (1). 

Introduction of "~'pol allowed us to reduce the problem to that of two particles interacting via potential 

r~ I + ~rpol(rl, 1"2) , now with an accuracy of the second-order perturbation theory. 

The mutual screening effect of outer particles may be included by adding a screening potential Wsc r arising 

due to the presence of the second particle to the interaction potential of the outer electron with all core electrons in 
the zero approximation Hamiltonian. The desired Wsc r was chosen so that 

where0 is the potential parameter (see below). In this case, the matrix elements are calculated using the wave functions 
of zero approximation with the test model potential. Alternative methods to include the screening effect are described 
elsewhere (see, for example, [30, 41]). Due to the zero-order Wsc r we can effectively include the "ladder" diagrams in 

all orders of the perturbation theory (see Fig. 1). 

CALCULATION RESULTS AND THEIR ANALYSIS 

We report the dissociation energies of the diatomic molecules M 2 (M = Li, Na, K, Rb, Cs) calculated by the 
PP method in the Rayleigh-Schr6dinger perturbation theory. Table 2 lists the test values of the a, fl, n, N (N is the 

TABLE 2. The 0, a, fl, n, N Values (N is the normalization constant), Equilibrium Distances Re, and Dissociation 
Energies of Ions D e (all values are in a.u., D e in eV) 

Ion 

Na~ 

c4 
NaK + 
NaRb + 

0.5044 

0.6111 
0.4816 

0.5865 
0.4940 

0.4731 

0.4468 

0.5332 
0.5249 

0 

0 
0 

0 
0 

0 

0 

0.0473 
0.0576 

r t  

2 

3 
2 

3 
3 

3 

3 

3 
3 

De 
0.97 

0.95 
1.14 

1.13 
1.03 

0.86 

0.85 

0.73 
0.60 

Re 
6.29 

6.36 
6.48 

6.48 
7.90 

8.4 

8.97 

7.30 
7.53 

N 

0.3012 

0.3777 

0.1444 

0.1270 

0.1465 

0.1249 
0.1149 

0 

0.7239 

0.7318 

0.7983 

0.8149 

0.8277 

0.7648 
0.7752 
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TABLE 3, Dissociation Energies (eV) of M 2 molecules (M = Li, Na, K, Rb, Cs) Calculated in Various 
Approximations of the PP Method, and Experimental Data (see [4, 16, 37, 43, 44]) 

Molecule 

Li2 
Na2 
iq 

gb2 
Cs 2 

NaK 
NaRb 

a 

1.05 

0.74 

0.52 

0.49 

0.42 

0.63 
0.58 

b 

1.57 

1.33 

0.64 

0.49 

0.25 

0.90 
0.79 

r 

m 

0.25 

0.09 

0.02 

0.01 

0.15 
0.09 

d 

0.23 

012 

e 

0.24 

0.25 

0.24 

f 
0.89 

g 

0.59 

0.46 

hi 

0.98 

hII 

0.92 

0.68 

0.58 

0.40 

0.35 

0.55 
0.51 

hIII 

0.97 

w 

0.49 0.54 

0.46 0.48 

0.44 0.40 

Note. a) experimental data; b) Gaussian PP and model wave functions; c) Hellmann potential and Gaussian 
model wave functions; d) Hellmann potential and Heitler-London ansatz with Slater orbitals; e) Hartree-Fock potential 
plus the corrected Phillips-Kleinman PP and Heitler-London ansatz with Slater orbitals, with core polarization included 
in the form of an effective potential;f) model PP and 13-configuration wave function; g) model PP and the configuration 
interaction approximation using approximate natural orbitals; h) this paper: I, II, III are calculation versions (see text); 
k) the semiempirical approach of the perturbation theory (with fitting to experimental data); l) the local density 
approximation in the density functional theory. 

normaliTation constant) parameters for the zero approximation wave function found by the variation technique for the 

corresponding molecular ions M~- (see [16]) and the dissociation energies. 

Naturally,/3 = 0 for homonuclear and/3 ~ 0 for heteronuclear cases. The 0 values of Wsc r (see above) are also 

given-in Table 2. Table 3 presents the dissociation energies calculated for the lithium dimer in three variants (see 
above): 1) zero approximation functions are the functions of the quantum mechanical two-center problem; 2) the test 
wave function (3) with parameters determined by the variation technique (see Table 2); and 3) the test function (3) 

with the a parameter chosen to fit the experimental dissociation energy of Li~. The exchange-correlation effects were 

induded by the above-described procedure. Table 3 also contains the dissociation energies (variant 2) for diatomic 
alkaline molecules except Li 2. For comparison we give the dissociation energies calculated in different versions of the 
PP approach, particularly using the Gaussian, Phillips-Kleinman, and Hellmann PP and the wave functions in the 
Gaussian form, the Heifler-London ansatz having Slater orbitals, and multiconfiguration approximate natural orbitals. 
In this PP approach, an accurate correction for the effects of polarization interaction of outer quasiparticles via the 
core and the mutual screening of these particles is critical. The main conclusion inferred from comparison and analysis 
of these data is the need for an accurate method for inclusion of these effects in calculations of diatomic alkaline 
molecules. It is due to the inclusion of these effects in the Rayleigh-SchrSdinger perturbation theory that the results 
obtained in this work are more precise than those of previous PP calculations. Apparently, on the basis of modern ab 

initio methods with correct inclusion of the configuration interaction one can obtain data of equal or even higher 
precision. However, this needs equivalent calculation efforts [20-22]. The analysis of calculations for the lithium dimer 
in three variants shows that the employment of eigenfunctions of the two-center problem in zero approximation as 
wave functions leads to more precise results than employment of model functions (3). Fitting the m parameter of (3) 

in the third variant of calculations for Li 2 to the experimental dissociation energy of Li~ (De = 1.29 eV) leads to a 

more precise D e value for Li 2 than in the case of variationally determined ct. This is probably explained by the use of 

empirical data on simpler related systems in the zero-approximation perturbation theory. This method is well known 
from atomic theory, in particular, from calculations of the ground and excited atomic state in a similar approach (see 
[30, 31]). In terms of diagrams it means more adequate regard for the respective correlation diagrams. Of special 
interest is the use of this method for calculations of excited molecular states (solution of such problems involves 
considerable difficulties). Finally, due to the known progress in the ab initio quantum theory [22, 33], in particular, the 
ab initio PP theory, it seems appropriate to use the ab initio PP in zero approximation of  the given perturbation theory 
method. This question, as well as the new ab initio approach to construction of the molecular PP (Hamiltonian) and 
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a new principle of choosing the perturbation theory basis with zero approximation model PP based on the 
HeUmznn-Low adiabatic formalism [45] (which is of particular interest for relativistic quantum chemistry) will be 
considered in a separate paper. 

In conclusion, the author woiald like to thank Professor Yu. A. Kruglyakov for useful consultations, Professor 
R. J. Boyd for repriats of his recent papers, and also V. V. Filatov and N. N. Dudnik for performing numericaI 
calculations. 
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