TRUE EFFECTIVE MOLECULAR VALENCY HAMILTONIAN IN A LOGICAL
SEMIEMPRICIAL THEORY

A. V. Glushkov UDC 539.182

A new approach is presented to constructing the true effective valency Hamiltonian
for a molecular system, which is based on a quasiparticle description. The binding
energy and self-consistent field potential are calculated via the effective valency-
electron interaction. Valency-state energy calculations have been performed for
neon-type highly ionized atoms, where the examples taken are Cl VIII and the poten-
tial curve for the X!it state of HF, in addition to the spectroscopic factors for
various atoms and ions.

Nonempirical molecular-calculation methods are widely accompanied by various semiem-
pirical theories [1], and such methods are thus applicable to many aspects of theoretical
chemistry. On the other hand, there are various problems in the semiempirical theory, par-
ticularly ones associated with the various parametrization schemes. The number of parameters
involved increases further when these methods are applied to any system containing several
atoms from different elements such as transition ones. Also, the application ranges for these
theories are usually restricted. There is a need for improved parameterization and reliable
prediction from the theories, which has led to new developments. The problem over the various
theories could be resolved if one could find the form for the true effective valency Hamil-
tonian for a molecule that reproduces the potential surfaces for any valency state precisely.

At present, there are various model expressions for vaf, which are derived by various
techniques, including by means of projection operators, van Vleck transformations, multipar-
ticle perturbation theory, or the Bloch-de Cloiseaux quasi—degenerate-state perturbation theory,

{1}. 1In the latter forms, HXff is a poor theoretical Hamiltonian, which is modified
by the corrections in the perturbation-theory series for the total H. Higher-order corrections
are required to give the needed accuracy. As a rule, it is laboriocus to calculate those terms.

Here I propose a new approach to constructing mY offs Which is based on a quasiparticle
description, where I consider calculating bond energies and self-consistent field potentials,
which appear in Heff’ in terms of the effective valency-electron interaction; some applica-
tions are discussed.

EFFECTIVE QUASIPARTICLE VALENCY LAGRANGIAN

The quasipi?ticle formalism in Fermi liquid theory [2, 3] involves converting from the
actual system N = N, + Ny of interacting electrons in the molecule (where Ne and Ny are the
numbers of core and valency electrons) to a system of N quasiparticles having an effective
pair interaction with an unambiguous relationship to the quasiparticle scattering amplitude
near the Fermi surface. The quasiparticle equations of motion follow from Dyson's equation
when the mass operator I is expanded near the Fermi surface as a series in powers of ¢ —
€W, p? — PF (atomic units are used):

Harpa(r) = [gp + 3y (1) + P2, () P + &, (M1 (1) = 22 alr), (1)
: 2Za

in which ?P;7%'—‘a, (o enumerates the nuclei in the molecule), and Y is the quasipar-

ticle wave function, which is orthonormalized with weight

{9 () 11— S, () s () dr = B,
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in which Ij are the components of the mass operator Ig, which are determined as the varia-
tional derivatives of the quasiparticle Lagrangian Lq (see below). The basic task is to
construct Lq, which has a standard relation to H'... We construct Ly such that the Lagrange
equations c01nc1de with (1) for the valency statés. These equations can be derived by means
of a variational principle starting from Lq, which must be determined as a quasiparticle-
density functional [4]:

Vo =§nh|¢ll21
1
V1=§;nx|vﬂ>xlz, (2)
1
=3 2 i, [9akn — PApa-
The densities v, and v; are analogous to the Hartree—Fock electron density p (p = vea)

and the kinetic-energy density correspondingly; v, does not have an analog in Hartree—Fock
theory and appears on account of incorporating the energy dependence for Zq. We write Lg as

Lq = L& + Lq, whgre the free Lagrangian L& has the standard form
Lg_Sdrznmp;h(l——ap)llJm (3)
and the interaction Lagrangian L& is defined by
Lq = Lk— = P4 5 ﬁ,kF‘(rlrz) v; (Py)vy (rp) drydr,. (4)
i, 9

Here F is the effective polarization-interaction potential, while Bji are constants; the
Coulomb term Ly takes the form

L, = -—‘%5[1—22("1)] Vo (1) [1 — 24(r)] Vo (ro)/| 7y — 1y | drydr,. (5)

In the simplest approximation, F is determined from the correlation pseudopotential V.:
F(ryry) = 6Vc/6y0- 8(r,—ry). (6)

A rigorous expression for F has been derived recently [5, 6] from calculations on the
corresponding perturbation-theory polarization diagrams of Rayleigh—Schrodinger type. We
use (4)-(6) to get as follows [3] for 3; = — 8L, 6v;x

8 8v &
Zo = (1—3) Vic+ Z5 4+ g oo 5 o+ Progy Vo + B ooV +
0

8, 8, 8,
ﬂol Vo"l + Boe—5 o “ve¥y + Boa gy &, % Va3
o o (7)
14
3= ﬁolg\,‘g"o + ﬂlzﬁT': vy + B (S—vosvl;
0
GVc 6Vc 'SVc
2, = ﬁ""‘ﬂ_vo- Vo + ﬁlzm‘h + ﬁzzﬁ"’zw
where 2% is the exchange term and Vi is the Coulomb potential [see (5)1.
L
We obtain an explicit expression for Hsz We use the He“ = 1p;6_ + 1p,v_._ L, and after
simple calculations get Hgff as A &b,
14
(] (8)

- ’ ’ 1 vGVc 2 6Vc . .1. —CN = —
‘ Heft=Hg+I{q=Hg—Lk+‘§'ﬁoo'&To‘ vo + 5015,: VoVi + 3 ﬁ115v0 vi—3 ﬁ“ﬁvo Vg

496



One needs to consider the fi)x to determine Hgff completely.

QUASTPARTICLE SEMIEMPIRICAL-THEORY CONSTANTS

Y, arises because of delay effects, whose contribution to the total energy is negligible,
s0 one can put 847 = B;; = B12 = 0. As the I,(B,,) terms are also obviously small, we further
assume B,; = 0. The value of B,y is dependent to certain extent on the correctness in de-
termining V.. If we introduce the renormalized pseudopotential VE = Bg¢Vc and take one of the
correct correlation pseudopotentials in density-functional theory as it, we can put Bgq = 1
without loss of generality. We determine the energy-dependence constant from information
on the spectroscopic factors &, extracted from the ionization cross sections. The relation
between By, and & is [7]

| Boa = (1 — g.—i) / [6VC/6V° ‘]v;=v8v3]’: (9)

in which v} = v4(0). One could use the normal conditions applied in semiempirical theory
to determine Bk, which for example for m-electron molecular systems take the form

(Ar| Hin| Aw) = Ec + 2 06j+% 2 YViio

‘Dy‘<h vi¢vj<k

where E. is the core energy, Ax is a linear combination of Slater determinants composed of
valency orbitals {v}, and o and y are the usual semiempirical values for the Coulomb integral
oj and the electron—electron repulsion integral yjj. From Lg, one can readily derive the
quasiparticle scattering amplitude at the potential function I' [3]. For small transferred
momenta q, one can distinguish a block U from the set of I' graphs that cannot be split up
into parts joined by two lines on the particle-hole channel: T = U + UGGT (G is a Green's
function). There is a substantial q dependence for those graphs in I' that contain two lines
each (particles and holes), and as there are none such in block U, then for small values of q it can
be replaced by one that is the same for all molecules, i.e., by a universal constant. One can avoid
the integration over the region remote from the potential surface present in the UGGT term by means
of Landau's renormalization procedure [2], which involves the assumption that U has no singularities
for q > 0. That assumption is naturally violated for Coulomb interaction, so the procedure for
constructing Ly and I' requires refinement: first one should distinguish the Coulomb interac-
tion, after which the remaining part of Ly is parametrized by means of universal constants.
This scheme has in fact been implemented above.

RELATION BETWEEN THE QUASIPARTICLE METHOD OF
DERIVING HY AND THE PROJECTION-OPERATOR METHOD

For convenience, we transfer to matrix notation. We represent the exact wave function
as § = & + X, where ¢ is a linear combination of Slater determinants {Ay} composed of the
valency MO {v}, while X is defined as a superposition of all the other determinants formed
as a result of introducing the complete set of excited orbitals {e} along with the {v} MO
and the core MO {c}. We represent ¢ and X as expansions in terms of the individual configu-
rations:

(D == EChAh, X == %CLQL‘ (10)
Tk
We substitute (5), (8), and (10) into the Schrodinger equation:

g (Apr | Hett|Apy Cp = ECp =2 {{An | Hst | Ap> + (Apr | He | Ad] Cy +

B!

+ 2 (Anl Hat | Ay Cr + 2 <Aw | He| ALy Cr, ~an

in which Hgt is the standard molecular Hamiltonian, while

2
0

[re—7al

14 v v,

1 v, &, 0 2 : M
e =3P gy = o = + Py
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(11) in matrix form is

HeyCp = (prst + Hppe)Cp + (Hypgst + Hpge)Cq = ECy. (12)
We compare (12) with the analogous equation in the projection-operator method {1] to get
Hyo(Ely — Hqq)*HapCp = HppcCp + (Hyogst + Hpge)Cyq- o (13)

Here & is unit matrix in the Q function space (q is a block). To simplify the calcula-
tions, H, can be renormalized in such a way that ~

HypeCp + (Hpqst + H pqc)Cq =H pocCps

so instead of (12) we get
(Hppst -+ f?ppc)cp = ECD-

This HVY derivation gives a physically more definite Hamiltonian than do existing methods.
A feature of the (8) HY off is that the energy dependence is explicitly incorporated. Previously,
forms have been suggesteg that are not explicitly dependent on the energy. Such forms require
(Ez — Hg )‘ in (13) to be expanded as a series around a certain energy. Calculating the
energy dependence corrections for such a series involves some computational difficulties, which
are absent in the quasiparticle approach. As H(E) varies slowly in the range in E for the
valency states, this enables one to determine rapidly whether the valency shell has been
chosen correctly. If the determination is incorrect, one should expand the derivation and
derive a new HYV slightly dependent on E in a particular E range. The true vaf shows trans-
ferability for the main parts in HV between related molecules. We specify By in (8) to get
a unique Hgoff dependent on E, which is the same for related molecules, e.g., for any m-elec-
tron system containing six w electrons.

SOME APPLICATIONS

We consider excited states of Ne-type highly ionized atoms, in particular Cl VIII. These
represent a major applicacion, because Ne-type ions are very important in applications (see reviews
[8, 9]). A low-lying excited state is formed on the excitation of a 2s or 2p electron from
the ground-state 1s22s22p® configuration (core), which results in a 32 electron above it,
and a 2% vacancy in the core. To determine the energy of such a state, one has to calculate
the eigenvalues of Hef for the two-quasiparticle system (3% electron and 2% hole in the rela-
tivistic approximation). It is essential to incorporate relativistic effects for highly
ionized atoms. We decompose Hgff into the zeroth-approximation Hamiltonian

oft = Z Ry + Sdr pe(r)|r—T1' |+ (3/8ﬂ)1/s ol/3(r),

i==1

in which h? is the one~particle Dirac Hamiltonian and pc is the core density, for which we
use a hydrogen-type approximation with an effective screening parameter [5]; there is also the

perturbation Hamiltonian
it = e  BuoF (7 — 3§ Arpe () F— 1| —
ett‘—lrl__r2l 00 172 2,
%jldr’pc (Y| — 1yl
We take the potential ¥ as [5]

BooF (rr) = X{[ ar o )l 1y~ v |1 — 1y | —
[S dr o (r')|ry — 1" |- Sdr’pm(r M —ry| ] Sdrp””(r)},
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TABLE 1. Transition Energies in C1 VIII (eV) Reckoned from the
Ground-State Energy

fonforma | peyy | Caloula- Experi- vonfor-| Term |Celculas | aporis
p, | 208,84 208,79 2P, %4 42 244,43
23 | P | 20954 209,47 3p, 244,61 244,62
p, | 210,49 210,47 sp, 245,01 245,02
| 21143 211,33 5, 245,44 245,40
s, | 2243 | 22298 3F, 245,79 245,70
s | 29456 st | 23 | °Fs 246,29 246,23
p, | 224,73 224,72 i ;’*6’81 izggé
D, | 22528 225,30 Dy AT,T7 500
p, | 225.89 225.91 D, | 248,08 248,
23p | sp | 227,14 227,24 3Dy 28,05 247,95
p, | 226.85 296,80 ‘D, | 24781 241,73
1p, | 22649 226,52 Py 251,54 250,59
1, | 227,03 227,06 8, 278,39
15, | 23554 234,76 253 15, 281,46
sp, | 203,90 3p, 314,545
sp, | 293,98 294,04 3D, 314,548
23p | sp, | 20418 253d 3D, 314,554
1p, | 295,25 297,79 1p, 316,352

Fig. 1. Potential curves for the X3+ state
in HF calculated: 1) here; 2) by the Hartree-
Fock method; 3) by the generalized valency-
bond method; 4) from the coupled electron
pair method; 5) from multiparticle perturba-
tion theory with zeroth-approximation Har-
tree—Fock treatment (m and e from experi-
ment ),

where X is a numerical coefficient. This F enables one to incorporate correctly an important
second-order perturbation-theory effect: the polarization interaction between the quasipar-
ticles via the core. Another second-order effect is quasiparticle mutual screening, which

is incorporated by adding the screening potential to Hggf and subtracting it from ngf‘

Wirlg) = g3 -+ gr)/Z(3 + 2gr + 2¢%),

in which g = Z/n?(Z + N;). The compytational procedure has been described in detail in [5].
Table 1 gives calculated energies for the 2s22p®3s, 3p, 3d, and 2s2p®3s, 3p, 3d states of

Cl VIIT together with measurements [10]. Another application is the energy of the X'i+ ground
state for HF. The bond here is formed by a pair of shared electrons, which are considered

as quasiparticles against the background of the other core electrons. One averages Hgff on
the standard Heitler—London molecular wave functions composed of the AO ¥, to give the bond
energy AE as [11]

AE = 2°25° R — [ wize/rade — | [ yaudt]x
FonlE+ 5) e i
jvjilpg (1) [—‘1—"" + BooF (rlrz)] P (2) dr,d,.

[ri =71y
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TABLE 2. Spectroscopic Factors for
Atoms and Ions

Atom | Shell F Ion | Shell:} F

Xe 5% 0,34* | C1~ 3% 0,70
Kr 4g% 0,46 [K* 3% 0,66
Ar 3s* 0,68 {Ca** 342 0,64

*Exact value.

We take the effective potential for the exchange-correlation interaction [11] as F:

Buo (rars) = C8 (ry — r)[ | wiwiac ™,

in which C = 3(3/8w)1/%ap and a is the parameter in the X, theory, while B is function of
the internuclear distance R, which is dependent parametrically on the atomic radii Ry and
Ry [12]:

B(R) = vexp[(Ro + Ry — 2R)/(2Z2 + 22})].

The effective molecular charges Z¢O and Z* together with the empirical parameter y have
been determined by the method described in detail in [11] (see also [12]). We merely note
that y is found from the condition for correct bond-characteristic description for the group
of diatomic hydrides AH (A = H— F), in particular HF: y = exp (—0.6 — R). As ¢ we took
Slater AQ0 with the exponents from [13]. Figure 1 shows our calculated potential curve for
X!5HHF (curve 1) together with the curves calculated from the Hartree—Fock method (curve 2),
the valency-bond method (curve 3), and the coupled electron-pair method (curve 4), in addi-
tion to perturbation theory with zeroth-approximation Hartree—Fock treatment (curve 5), and
the observed curve [14]. Effective correlation incorporation gives agreement between theory
and experiment better than that with the other and more complicated methods. A natural appli-
cation is to calculations on spectroscopic factors for atoms and molecules, as information
on these is important for example in fast-electron scattering [7]. We use (9) and take V.
as the Gunnarsson-Lundqvist potential [15] to get the spectroscopic factor as

-1
psz'NOﬂ ! (14)

)
Yo=Vo

8V -1 v
g.=[1"‘5025_vf 'Vg] z[i"ﬁoza—'pc

in which 8V./8p = 0.3283p~2/% + 0.20398p-2/3/(1 + 18.3767p/3). We calibrate the universal
constant By, from the exact value of F, and in particular we take the spectroscopic factor
for the 5s2 shell in Xet Fxe = 0.34 [16]. We use Hartree—Fock p [17] to get from (14)
that By, = —0.47. Table 2 gives calculations on spectroscopic factors for various atoms.
A separate paper deals with applications to ionization cross sections, molecular oscillator
strengths, advancing Fermi-surface quasiparticle theory, and a new form of the CNDO method.
I am indebted to L. N. Ivanov and E. P. Ivanova for valuable advice.
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