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A new approach is presented to constructing the true effective valency Hamiltonian 
for a molecular system, which is based on a quasiparticle description. The binding 
energy and self-consistent field potential are calculated via the effective valency- 
electron interaction. Valency-state energy calculations have been performed for 
neon-type highly ionized atoms, where the examples taken are C1 VIII and the poten- 
tial curve for the XIZ + state of HF, in addition to the spectroscopic factors for 
various atoms and ions. 

Nonempirical molecular-calculation methods are widely accompanied by various semiem- 
pirical theories [i], and such methods are thus applicable to many aspects of theoretical 
chemistry. On the other hand, there are various problems in the semiempirical theory, par- 
ticularly ones associated with the various parametrization schemes. The number of parameters 
involved increases further when these methodsare applied to any system containing several 
atoms from different elements such as transition ones. Also, the application ranges for these 
theories are usually restricted. There is a need for improved parameterization and reliable 
prediction from the theories, which has led to new developments. The problem over the various 
theories could be resolved if one could find the form for the true effective valency Hamil- 
tonian for a molecule that reproduces the potential surfaces for any valency state precisely. 

At present, there are various model expressions for H~ff, which are derived by various 
techniques, including by means of projection operators, van Vleck transformations, multipar- 
ticle perturbation theory, or the Bloch-de Cloiseaux quasi--degenerate-state perturbation theory, 
etc. [i]. In the latter forms, H~ff is a poor theoretical Hamiltonian, which is modified 

by the corrections in the perturbation-theory series for the total H. Higher-order corrections 
are required to give the needed accuracy. As a rule, it is laborious to calculate those terms. 

Here I propose a new approach to constructing H~ff, which is based on a quasiparticle 
description, where I consider calculating bond energies and self-consistent field potentials, 
which appear in H~ff, in terms of the effective valency-electron interaction; some applica- 
tions are discussed. 

EFFECTIVE QUASIPARTICLE VALENCY LAGRANGIAN 

The quasipa~ticle formalism in Fermi liquid theory [2, 3] involves converting from the 
actual system N = N c + N v of interacting electrons in the molecule (where N c and N v are the 
numbers of core and valency electrons) to a system of N quasiparticles having an effective 
pair interaction with an unambiguous relationship to the quasiparticle scattering amplitude 
near the Fermi surface. The quasiparticle equations of motion follow from Dyson's equation 
when the mass operator Z is expanded near the Fermi surface as a series in powers of g - 
eF ' p2 _ p~ (atomic units are used): 

Hett~x(r) --~ [ev + 20 (r) + pZ z (r) p 4- r ( r ) ] ~  (r) -- ex ~ ( r ) ,  (1) 

p~ ~ Za 
in which e~ =3-- ~r (~ enumerates the nuclei in the molecule), and *k is the quasipar- 
ticle wave function, which is orthonormalized with weight 
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in which E i are the components of the mass operator Zq, which are determined as the varia- 
tional derivatives of the quasiparticle Lagrangian Lq (see below). The basic task is to 
construct L., which has a standard relation to HV~. We construct Lq such that the Lagrange 
equations c~incide with (i) for the valency stat~ These equations can be derived by means 
of a variational principle starting from Lq, which must be determined as a quasiparticle- 
density functional [4]: 

n = E "~ I*~ I ~, 
g 

i - -  ~,x].  

The densities 90 and Vl are analogous to the Hartree--Fock electron density p (p = ~0a) 
and t h e  k i n e t i c - e n e r g y  d e n s i t y  c o r r e s p o n d i n g l y ;  ~2 does no t  have an analog in  Har t ree - -Fock  
t h e o r y  and appears  on account  of  i n c o r p o r a t i n g  t h e  energy  dependence f o r  Zq. We w r i t e L q  as 
Lq ffi L~ + Lq, where t h e  f r e e  Lagranglan L~ has t h e  s t a n d a r d  form 

L~ = dr : n~,~ (~ ~ 
X 

(3) 

' is defined by and the interaction Lagrangian Lq 

2 

' { ~ ~{hF(rlr2)vi(rl)vh(r2)drldr 2. (4) Lq = Lk-- ~ 
i, =0 

Here F is the effectivepolarization-interaction potential, while 8ik are constants; the 
Coulomb term L k takes the form 

L k =  --  ~ [1 -- E~ (rl)] v 0 (rl) [t --  E2(r2) ] v0 (r2)/I r~ --r~ldrxdr v (5) 

In the simplest approximation, F is determined from the correlation pseudopotential Vc: 

F (rlr2) 8Vc/8%" 8. (r~ -- r~). (6)  

A rigorous expression for F has been derived recently [5, 6] from calculations on the 
corresponding perturbation-theory polarization diagrams of Rayleigh--Schrodinger type. We 
use (4)-(6)to get as follows [3] for ~ =- 8L'q/69ik 

1 82Vc ~ - 6Vc - 6Vc 
z0 = (~ - z , )  vk + x~: + ~ ~ ~--[ n + ~ 8~ ~ n + ~0, ~ ~ + 

_ 6~Vc # V  c 8Vc 

8V e 8Vc 6Vc 

8V c 8Vc 6Vc 
~ = ~o~ ~ ,,o + ~ ~ ~ + ~ 870 n ,  

(7) 

where Z ex is the exchange term and V k is the Coulomb potential [see (5)]. 
�9 , S L q  �9 8 L  

V We use the H e f f = ~ ; ~ - ~ + ~ - - L q ,  We obtain an explicit expression for Her f. 8~ 
simple calculations get Her f as 

, 1 t~Vc~ 6Vc  t 8Vc ~ 1 8Vcv~" 
Heft I-I~ --}-' Hq = / - / ~  - -  Lk+  ~" [~oo ~ o  'v~ + [~o1 ~ ~o'Vl + "~" ~ n  ~ v l  - -  "~" [3., By-'? 

and after 

(8) 
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One needs to consider the 8ik to determine Hef f completely. 

QUASIPARTICLE SEMIEMPIRICAL-THEORY CONSTANTS 

El arises because of delay effects, whose contribution to the total energy is negligible, 
so one can put ~01 = ~11 = ~12 = 0. As the E2(~22) terms are also obviously small, we further 
assume ~22 = 0. The value of 600 is dependent to certain extent on the correctness in de- 
termining V c. If we introduce the renormalized pseudopotential V~ = ~ooV c and take one of the 
correct correlation pseudopotentials in density-functional theory as it, we can put Boo = i 
without loss of generality. We determine the energy-dependence constant from information 
on the spectroscopic factors', extracted from the ionization cross sections. The relation 
between ~02 and~ r is [7] 

in which vl = vo(0). One could use the normal conditions applied in semiempirical theory 
to determine $ik, which for example for ~-electron molecular systems take the form 

v 1 

v j <  ~t v i s e v j < h  

where E c is the core energy, Ak is a linear combination of Slater determinants composed of 
valency orbitals {v}, and = and ~ are the usual semiempirical values for the Coulomb integral 
~i and the electron--electron repulsion integral ~ij. From Lq, one can readily derive the 
quasiparticle scattering amplitude at the potential function F [3]. For small transferred 
momenta q, one can distinguish a block U from the set of r graphs that cannot be split up 
into parts joined by two lines on the particle-hole channel: F = U + UGGr (G is a Green's 
function). There is a substantial q dependence for those graphs in r that contain two lines 
each (particles and holes), and as there are none such in block U, then for small values of q it can 
be replaced by one that is the same for all molecules, i.e., by a universal constant. One can avoid 
the integration over the region remote from the potential surface present in the UGGr term by means 
of Landau's renormalization procedure [2], which involves the assumption that U has no singularities 
for q + 0. That assumption is naturally violated for Coulomb interaction, so the procedure for 
constructing L@ and r reqUires refinement: first one should distinguish the Coulomb interac- 
tion, after whlch the remaining part of Lq is parametrized by means of universal constants. 
This scheme has in fact been implemented above. 

RELATION~BETWEEN THE QUASIPARTICLE METHOD OF 
DERIVING H v AND THE PROJECTION-OPERATOR METHOD 

For convenience, we transfer to matrix noLation. We represent the exact wave function 
as ~ = r + X, where ~ is a linear combination of Slater determinants {gk} composed of the 
valency MO {v}, while X is defined as a superposition of all the other determinants formed 
as a result of introducing the complete set of excited orbitals {e} along with the {v} MO 
and the core MO {c}. We represent ~ and X as expansions in terms of the individual configu- 
rations: 

= E C hA h,  X = ECLQL. ( 1 0 )  
h L 

We substitute (5), (8), and (i0) into the Schrodinger equation: 

k h '  

-4- ~ <An[ H~t [ An> CL § ~ <A~, l He I AL> CL, 
L L 

(li) 

in which Hst is the standard molecular Hamiltonian, while 

6vo I%1 
---  -Poo ~ - ~ I q  - + \8' o / I q  - 
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(ii) in matrix form is 

HeffCp = (/-fppst ~- Hppc)Cp -~ (Hpqst -~ Hpqc)C q ~ ECp.  (12) 

We compare (12) with the analogous equation in the projection-operator method [i] to get 

Hpq(Elr -- Hcq)-iSqpCp = HppcCp-~ (Spqst J-~ Hpqc)Cq. ( 1 3 )  

Here s is unit matrix in the flL function space (q is a block). 
tions, H c can be renormalized in such a way that 

Hl~pcC p -~- (Hpqst -~- Hpqc)6'q = /~ppcCp ,  

To simplify the calcula- 

so instead of (12) we get 

(H'ppst -~ /Vtppc)C p = ECp. 

This HV derivation gives a physically more definite Hamiltonian than do existing methods. 

A feature of the (8) H[~ is that the energy dependence is explicitly incorporated. Previously, 
forms have been sugges~e~ that are not explicitly dependent on the energy. Such forms require 
(Es -- Hqq) -I in (13) to be expanded as a series around a certain energy. Calculating the 
energy-dependence corrections for such a series involves some computational difficulties, which 
are absent in the quasiparticle approach. As H(E) varies slowly in the range in E for the 
valency states, this enables one to determine rapidly whether the valency shell has been 
chosen correctly. If the determination is incorrect, one should expand the derivation and 
derive a new H v slightly dependent on E in a particular E range. The true H~ff shows trans- 
ferability for the main parts in H v between related molecules. We specify 8ik in (8) to get 
a unique Hef f dependent on E, which is the same for related molecules, e.g., for any ~-elec- 
tron system containing six ~ electrons. 

SOME APPLICATIONS 

We consider excited states of Ne-type highly ionized atoms, in particular C1 VIII. These 
represent a major applicaEion, because Ne-type ions are very important in applications (see reviews 
[8, 9]). A low-lying excited state is formed on the excitation of a 2s or 2p electron from 
the ground-state is22s22p 6 configuration (core), which results in a 3s electron above it, 
and a 2s vacancy in the core. To determine the energy of such a state, one has to calculate 

�9 V 
the ezgenvalues of Hef f for the two-quasiparticle system (3s electron and 2s hole in the rela- 
tivistic approximation). It is essential to incorporate relativistic effects for highly 
ionized atoms. We decompose H~ff into the zeroth-approximation Hamiltonian 

HeVt~ = ~ h D + ~ dr'pc ( r ' ) l  I r - -  r '  I + (3/8=) ' / '  p~/a(r), 
i=1 

in which h~ is the one-particle Dirac Hamiltonian and Pc is the core density, for which we 
1 

use a hydrogen-type approximation with an effective screening parameter [5]; there is also the 
perturbation Hamiltonian 

VeVff = I 
I r l  - -  r2"i 

i + ~~176 (rlr2) - -  ~ ! dr'pc (r')/[ rz - -  r '  I - -  

i2 S dr'pc ( r ' ) / I  r '  - -  r2 I. 

We take the potential F as [5] 

~ooF (rlr2) X {S d ' I/3 , , = r p c  ( r ) / I r l - - r  [ ' [ r ' - - r 2 ] - -  

[S , lla , , S d r p  c ( r ) / ] r ,  r~[]/Sdrp~/3(r)} ' dr Pc ( r ) / [ r ~ - - r  [. , 1/3 , 
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TABLE i. Transition Energies in C1 Viii (eV) Reckoned from the 
Ground-State Energy 

Conforma- I Calcula- Fxperi- Confor- Term Calcula- Experi- 
tion i Term tion ment mation tion ment 

t 

2p38 

2p3p 

2s3p 

L 3P2 
sP 1 
aP o 

; 3D3 
i sD~ 

3D 1 

! 8P2 

i lP, 

IS 0 

sP 0 
3P I 
aPs 
*P, 

208,84 
209,54 
2t0,49 
21i,43 

222,43 
224,56 
22453 
225,28 
225,89 
227,i4 
226,85 
226,49 
227,03 
235,54 

293,90 
293,98 
294,i8 
295,25 

208,79 
209,47 
2t0,47 
2H,33 

222,28 
224,57 
224,72 
225,30 
225,9i 
227,21 
226,89 
226,52 
227,06 
234,76 

294,04 

297,79 

2p3d 

2s3s 

2s3d 

~o 
aP I 
3P z 
~F 4 

aF s 
*Fa 

3D I 

~D3 
1D z 
ip, 

3& 

*So 

3D, 

3D 2 

aD s 

244,42 
244,61 
245,01 
245,44 
245,79 
246,29 
246,8t 
247,77 
248,08 
248,05 
247,81 
251,54 

278,39 
281,46 

3i4,545 
3t4,548 
3i4,554 
316,352 

244,43 
244,62 
245,02 
245,40 
245,70 
246,23 
246,62 
247,66 
248,02 
247,95 
247,73 
250,59 

W., au ,  

-~oo, o 

-wo,2 

-,oo,4] 
-1oo,61 . 

0 

2U 

e l  el 

i 

' k ' ,~ R, au 

Fig. i. Potential curves for the XIE+ state 
in }IF calculated: I) here; 2) by the Hartree-- 
Fock method; 3) by the generalized valency- 
bond method; 4) from the coupled electron 
pair method; 5) from multiparticle perturba- 
tion theory with zeroth-approximation Har- 
tree-Fock treatment (m and �9 from experi- 
ment). 

where X is a numerical coefficient. This F enables one to incorporate correctly an important 
second-order perturbation-theory effect: thepolarization interaction between the quasipar- 
ticles via the core. Another second-order effect is quasiparticle mutual screening, which 
is incorporated by adding the screening potential to H~f and subtracting it from ~eeff: 

W(rlg) = g(3 ~- gr)/Z(3 + 2gr q- 2g~r2), 

in  which g = Z/n2(Z + Nc).  The c o m p u t a t i o n a l  p r o c e d u r e  has  been d e s c r i b e d  in  d e t a i l  i n  [5 ] .  
Tab le  1 g i v e s  c a l c u l a t e d  e n e r g i e s  f o r  t h e  2s22pS3s,  3p, 3d, and 2s2p63s ,  3p, 3d s t a t e s  o f  
C1 V I I I  t o g e t h e r  w i t h  measurements  [10] .  Ano the r  a p p l i c a t i o n  i s  t h e  e n e r g y  o f  t h e  X1Z+ ground 
s t a t e  f o r  HF. The bond h e r e  i s  formed by a p a i r  o f  s h a r e d  e l e c t r o n s ,  which a r e  c o n s i d e r e d  
as  q u a s i p a r t i c l e s  a g a i n s t  t h e  background  o f  t h e  o t h e r  c o r e  e l e c t r o n s .  One a v e r a g e s  H~ff  on 
t h e  s t a n d a r d  H e i t l e r - - L o n d o n  m o l e c u l a r  wave f u n c t i o n s  composed of  t h e  AO 9, t o  g i v e  t h e  bond 
e n e r g y  5E as  [11] 

AE = Zf~176 - S ~Z: / rad~- - [~  *a*bdz]x 
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TABLE 2. Spectroscopic Factors for 
Atoms and lons 

Ato  shellJ  Ionlshe11 -I 
Xo 
Kr 
Ar 

5s2 1 0,34* 
4s2 1 0,46 
3s 2 1 0,68 

C1- I 3s~ I 0,70 K +" 3s 2 0,66 
Ca ++ 3s ~ 0,64 

*Exact value. 

We take the effective potential for the exchange-correlation interaction [ii] as F: 

,'.4[S = - -  ~a~2ba'~] , 

in which C = 3(3/8~)i/a=8 and a is the parameter in the Xa theory, while 8 is function of 
the internuclear distance R, which is dependent parametrically on the atomic radii R a and 

R b [12]: 

~(~) = ~exp [(~a + n b -  2R)/(2Z: + 2Z~)]. 

The effective molecular charges ZCO and Z* together with the empirical parameter y have 
been determined by the method described in detail in [ii] (see also [12]). We merely note 
that y is found from the condition for correct bond-characteristic description for the group 
of diatomic hydrides AH (A = H -- F), in particular HF: 7 = exp (--0.6 -- R). As ~ we took 
Slater A0 with the exponents from [13]. Figure i shows our calculated potential curve for 
XIZ+HF (curve i) together with the curves calculated from the Hartree--Fock method (curve 2), 
the valency-bondmethod (curve 3), and the coupled electron-pair method (curve 4), in addi- 
tion to perturbation theory with zeroth-approximation Hartree-Fock treatment (curve 5), and 
the observed curve [14]. Effective correlation incorporation gives agreement between theory 
and experiment better than that with the other and more complicated methods. A natural appli- 
cation is to calculations on spectroscopic factors for atoms and molecules, as information 
on these is important for example in fast-electron scattering [7]. We use (9) and take V c 
as the Gunnarsson-Lundqvist potential [15] to get the spectroscopic factor as 

] 8V c I 1-I  vo, o ] , 
(!4) 

in which 6Vc/~ p = 0.3283p-2/~ + 0.20398p-2/~/(i + 18.3767pI]~). We calibrate the universal 
constant 802 from the exact value of F, and in particular we take the spectroscopic factor 
for the 5s 2 shell in Xe: ~'xe = 0.34 [16]. We use Hartree--Fock p [17] to get from (14) 
that 802 = --0.47. Table 2 gives calculations on spectroscopic factors for various atoms. 
A separate paper deals with applications to ionization cross sections, molecular oscillator 
strengths, advancing Fermi-surface quasiparticle theory, and a new form of the CNDO method. 
I am indebted to L. N. Ivanov and E. P. Ivanova for valuable advice. 
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