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On the basis of pseudopotential theory, within the framework of a formally accurate model perturbation theory 
of Rayleigh-SchrOdinger type with a zero-approximation inoculating potential, the calculation of some 
diatomic alkali molecules in homo- and heteronuclear variants LiM (M = Li, Na, K, Rb, Cs, Fr) is 

considered. A local model potential of Gell-Mann type is adopted as the zero-approximation potential. The 
calculation results for the energy parameters - in particular, the energy of dissociation - are given; some 

of these results are obtained here for the first time. The calculation demonstrates the fundamental role of two 
basic second-order perturbation-theory effects in achieving acceptable accuracy: polarizational interaction of 
the valence particles through the core; and mutual screening of these particles. 

INTRODUCTION 

Calculation of the spectroscopic parameters of diatomic molecules is still a very important problem, since these 

parameters are important for a number of optical applications. Semiempirical and nonempirical pseudopotential (PP) theories 
are widely used in modern calculations of the parameters of diatomic molecules; this is mainly due to the effectiveness and 

simplicity of taking the influence of internal-shell electrons into account in the explicit description of the molecular system in 
the valence approximation; see [1-11], for example. Usually, two such theories are employed. The first is the model-PP 

method, based on semiempirical model PP that simulate the PP approximation of the frozen core; the parameters of the model 

PP are chosen so as to match the experimental data. These PP are intensively used in calculations of the parameters of diatomic 

molecules, because of their relatively simple mathematical form and the acceptable accuracy in calculating the energy properties 
- for example, the Rydberg-level energies for a number of molecules. At the same time, the use of this method in the absence 

of reliable experimental data for the molecules is problematic; this severely restricts its application. The use of the second type 
of PP theory, in which the valence orbitals are not required to be orthogonal to a specified set of core orbitals, essentially 

reduces to purely theoretical transformation of the initial equations for the valence electrons, i.e., to transformation to the 

frozen-core approximation. This means that the formal PP equations take no account of the most important correlation effects 

of the type of core polarization and energy dependence of the particle interaction. A promising approach is to take account of 

exchange-polarization effects in density-functional theory, using single-particles exchange-polarizational PP. In [12-14], 

exchange and correlation effects were taken into account by adding potentials that depend on the dipole ot d and quadrupole O~q 

polarizability of the core to the model PP. The deficiencies of this method include the need for preliminary determination of 

ot d and Otq (the accuracy of their calculation is low, as a rule) and the incomplete incorporation of the most important exchange- 

correlation effects. Experience in using model PP in molecular calculations nevertheless shows that these methods are 
sometimes able to reproduce the results of correct ab initio complete multielectron calculations with adequate accuracy - in 

particular, if molecules containing atoms from the first two periods of the Periodic Table and transition metals are considered 

[4-11]. Comparison of the results of PP calculations with the best calculations by the configurational-interaction method show 

that PP calculations give, on average, an error of - 10% or more in calculating electron-correlation effects. Evidently, PP 
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TABLE 1. Parameters of 

Model Potential V M (at. 

units) and Experimental 

Ionization Energy E of 

Alkali Atoms (eV) 

Atom A x --E 

Li 1,287 0,422 5,39 
N a 1,826 0,536 5,14 
K 1.989 0,449 4.32 
Rb 1,640 0,358 4,18 
Cs 1,672 0,333 3,88 

methods are most appropriate for single-qnasiparticle (i.e., with one electron above a core of •led electron shells) molecular 

alkali ions of type M2 + (M = Li, Na, K, Rb, Cs) [5, 8]. If there are several external electrons (quasiparticles) in the system, 

it is very important to take accurate account of the interelectron correlations and, unless correct methods are used, solution by 

PP methods may give results of poor accuracy; for more details, see [3, 4, 15]. In our view, the construction of model PP 

within the framework of Rayleigh-SchriSdinger perturbation theory (PT), taking account of exchange-correlation effects as 

higher-order effects and with zero-approximation inoculating PP, is very effective and systematic. At least, this approach has 

been successfully implemented in calculations of atoms, ions, and molecules [13-30]. 

In the present work, on the basis of PP methods, within the framework of  model PT, we consider the calculation of 

homo- and heteronuclear alkali diatomic molecules LiM (M = Li, Na, K, Rb, Cs, Fr), which are currently of  great interest 

in numerous applications, including plasma chemistry [2.5] .  The model Hamiltonian of  the system is constructed within the 

framework of Rayleigh-Sehr&linger PT, with a zero-approximation inoculating PP [13-17]. A local model potential of  Gell- 

Mann type is used as the zero-approximation PP [2]. Two main second-order PT effects play a fundamental role in ensuring 

acceptable accuracy: the polarizational interaction of the valence particles through the core; and their mutual screening. In the 

present work, novel procedures for taking these effects into account are adopted. It is shown that using empirical information 

on simpler corresponding ions in zero-approximation PT with PP in alkali-molecule calculations permits increase in accuracy 

of the result, without additional computational complexity. 

2. PT C A L C U L A T I O N  ME T HOD.  ZERO APPROXIMATION 

In the PP approach, the calculation of molecules of type M 2 (M = Li, Na, K, Rb, Cs) may be reduced to calculating 

a system consisting of  two external electrons (quasiparticles) moving in the field of ions of inert-gas atom type M + - M  +, 

which form the core [13-15]. The ground state of the system - a state with two quasiparticles above the core, in the secondary- 

quantization representation - takes the form 

11)= 4- + 

where a + is the creation operator for the particles above the core; ~o is the state of the core; the coefficient c takes account 
of angular symmetry. The electron Hamiltonian of the system takes the form 

t l /  tJ~t 

where e i are the single-quasiparticle energies, and 

F , i = - -  Z f d3rff~i(r) VM(rio)'#i(r) , 
~=a.b 

Fij.., = f f  d3r ld3r2~i  (f l)q~l (r2) f~-/ q2x (/2) q~! ( f t ) .  
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TABLE 2. Values of Parameters a ,  /3, n, O, and N (at. units), 

Equilibrium Distance R e (at. units), and ionic Dissociation Energy 

D e (eV) 

Io. t ~ I I~ I ,, I o. R. N I 0 

I.i~ + 0,6111 0 3 0,95 6,36 0 , 3 0 1 2  0,7239 

LiNa + 0 ,5996  0,0570 3 6,58 0,2147 0,7281 

LiKe" 0,5722 0,0584 3 6,90 0,1166 0,7403 

LiRb3 + 0 ,5548 0,9603 3 7,21 0,1107 0,7523 

LiCs2 + 0 ,5364 0,0672 3 7,99 0 , 1 0 3 8  0,7641 

LiFt + 0 ,5192 0,0743 3 8,14 0,0953 0,7792 

First.order PT Second.order PT 

Vacuum ~ Q 

Single-particle . ' [ ' 

I I I I A=~ I B=~'A C= ,I 
! ! I I I ~  v l , , ,  , 

Fig. 1 

Here VM(rio ) is the single-particle model PP simulating the core potential in which the quasiparticles move. The interaction 

energy E o of  the ions core M* is defined as 

E o = Z  ~ c Z~/R, 

where R is the internuclear distance; Za c, Zb c are the effective charges [31-35]. The procedure for correct determination of 

Z c may be found in [31], for example. The model potential V M chosen is a local potential of  Gell-Mann type [5, 8] 

VM = - L + A e  - ~ ,  (1) 
r r 

where the parameters A, r of the potential are usually calibrated from the experimental ground-state energy of  the alkali atoms 

(Table 1). The correct molecular model PP is expressed as a sum 

V.=VM(r., Oa, e;~) + V.(rb, Oh, ~b). (2) 

In the systematic implementation of the PT method with zero-approximation PP, the eigenfunctions of  the well-known quantum- 

mechanics problem of two centers with potential V M must be used as the zero-approximation functions [35]. We consider this 

approach for the Li 2 molecule as our first illustration in the present work. The solution of the bicentric problem was considered 

in [13, 18, 33]. As our second illustration, we consider the Rayleigh-Ritz  variational principle, with a trial wave function of 
the form [8] 

(3) 

w h e r e X , ~  are the usual elliptical coordinates: k = (r a + rb)/R, 1 < X < c o ; ~  = (r a - rb)/R ' 1 < ~ < 1; c~,/3 are 

variational parameters determined by minimizing the ground-state energy; n is an integer chosen so as to obtain the best energy; 

for more details, see [8]. Our third illustration is practically the same as the second, except that the parameters c~, /3, n are 
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chosen so as to reproduce the experimental dissociation energy of the corresponding ion M2 + . Calculation of the M 2 system 

thus breaks down into two stages: 1) construction of the zero-order model approximation, with determination of the PP 
parameters on the basis of empirical information; 2) calculation of corrections of various PT orders using a PT of 
Rayleigh-Schr6dinger type, taking effective account of exchange-correlation effects as higher-order PT effects on the basis 

of the corresponding single-particle and multiparticle PP. The perturbation operator employed takes the form 

a, l /  

where the subscripts a, i, j correspond to summation over the nuclei and electrons, respectively. 

3. CALCULATION METHOD.  HIGHER-ORDER PT CORRECTIONS 

In [13, 18], a series of PT for matrices of the secular operator were constructed, and methods of diagram summation 

for the secular-operator matrix were considered. The terms of such series were expressed as contributions to Feymnann 
diagrams, which were classified in terms of the number of end lines. In this classification, the matrix element M of the secular 

operator may be represented as 

x,t~O) ~,~(I } hA(i )  .M~ = zv}~n q- ~,l~ ~ ... q- ~*t~n, 

where i is the total number of quasiparticles; M (0) is the contribution of the vacuum diagrams (without end lines); M (1) is the 

contribution of single-quasiparticle diagrams (with one pair of end lines); M (2) is the contribution of two-quasiparticle diagrams 

(with two pairs of end lines); and so on. The contribution M (°) def'mes.the core energy, while M (1) is the sum of single- 
quasiparticle states t i. In the first order of PT, only the contribution of first-order two-quasiparticle diagrams, taking account 

of the direct Coulomb interaction of the quasiparticles, need be taken into account. The first-order correction is equal to the 
quasiparticle interaction energy AEO) and is expressed in terms of matrix elements of the usual type based on zero- 

approximation wave functions. For the operator r12 -1, as usual, we employ the Neumann expansion in terms of secondary 
Legendre polynomials of the first and second kind and spherical harmonics; for more details, see [35]. Note that, in the first 
PT order, there are no two-particle diagrams with a compensating term - V  M in HpT. In the second PT order, however, such 
diagrams appear, but their contribution is significantly compensated by that of diagrams with intrinsically energetic insets, as 

shown by Tolmachev [22-25]. In what follows, we consider the second-order diagrams A, B, C (Fig. 1), for which the 
calculation must be conducted. In the theory of multielectron systems, the correlation is usually taken into account by the 
superposition of additional configurations, i.e., by expansion of the secular matrix. The additional configurations may be 

divided into two groups: I) states with the excitation of core electrons: a state with one vacancy in the core and three electrons 

above the core; the superposition of these states taken account of the mutual polarizational interaction of the quasiparticles 
through the polarizable core (second-order diagrams A and B in Fig. 1); 2) states corresponding to the excitation of one of the 

external quasiparticles, with no change in the number of external particles; the superposit.;on of these states describes external 
mutual screening of the external particles (second-order diagram C in Fig. 1). These two types of states result in a second-order 

PT correction 

"XL, po |  "J[-- ~ s c r .  

Note that this additive division is only possible in second-order PT; terms describing the interference of these effects 

appear in higher orders. The superposition of states of the second type would involve the calculation of very cumbersome 

matrixelements. Statesof thesecond typemay be taken into account in the secular matrix, in principle, by means of the expres- 
sion for AE (1) for the matrix element. Here, however, a whole continuum of higher states must be taken into account in order 

to obtain the desired accuracy. An effective method of taking states of both the first and second types into account without 

increasing the size of the secular matrix (and additional computational complexity) was proposed in [26-29]; see also [15-19]; 
in this approach, a polarizational operator describing the interaction of external particles through the polarizational core is added 

to the Coulomb particle-interaction operator. The matrix elements of the polarizational operator, of the form [26, 13] 

1 / 3  
Fpot (r l ,  r2) : X { ~  d3re~ ( r ) / I r ,  - -  r l .  Ir  - r a l -  

[~ d roc ( r ) / l r t - - r l  Jd'rp~c ;3 ( r ) / I  r - r 2 l ] , "  j" d ~r -In (5) 
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TABLE 3. Dissociation Energy (eV) of Alkali Dimers LiM (M = Li, Na, K, Rb, Cs, 

Fr) Calculated by PT Method and in Other Approximations and Experimental Data 

LiLi 1,05 1,57 0,24 0,89 0,95 0 ,92  0,97 1,03 0,98 
NaLi 0,87 1,33 0 , 3 5  0,27 0,86 0,81 

KLi 0,75 0,76 0,70 

RbLi 0,66 0,62 
CsLi 0,58 0,52 
FrLi 0,53 0,45 

Note. a) Experimental data; b) Ganssian PP and model wave functions; c) Gell-Mann 

potential and Gaussian model wave functions; d) Gell-Mann potential and Gai t ler -  

London sum with Slater orbitals; e) Har t ree-Fock potential + precise Phil- 
l ips-Clayman PP and Gaitler-London sum with Slater orbitals (taking account of 
core polarization in the form of an effective potential); f) model PP and 13- 

configuration wave function; g) model PP and configurational-interaction approxima- 

tion, using approximate natural orbitals; hi-h3) present work, cases 1-3 (see text); K) 

semiempirical PT (with experimental fitting of De);/') local-density approximation in 

the density-functional theory. 

are the contributions due to the polarizational diagrams (Fig. I). Here X is a numerical coefficient, determined by the procedure 
in [26]; ,% is the electron density of the core, disregarding the external quasiparticles. In calculating the polarizational 

correction, Pc = Pa + Pb is assumed, and then ,Oa, b are determined by the expressions in [13]. The general calculation 

procedure for AEpol (2) was described in [26]; see also [27]. Note that the angular components of the matrix elements r12 - t  

correction Al~po I into account reduces to modification of the radial integrals in and Fpol(r 1, r2) agree; therefore, taking the - (2) 
the expression for AE (1). Introducing Fpo I allows the calculation to be reduced to a two-particle problem with an interaction 

potential [rl2 - ]  + Fpol(r l, r2)], to the accuracy of second-order TP. The mutual screening of the external particles may be 

taken into account by adding the supplementary screening potential Wsc r arising on account of the second external particle to 
the interaction potential of the external electron with all the core electrons in the zero-approximation Hamiltonian. The potential 

Wsc r is chosen so that 

0 
<1 '~ .  I >  = < l r i ~ l l > ,  

where 0 is the potential parameter (see below). The matrix elements here are calculated on the basis of the zero-approximation 

wave functions with an inoculating model potential. Other ways of taking screening effects into account are possible [27-33]. 

Including W in zero order allows ladder-type diagrams to be effectively taken into account in all PT orders (Fig. 1). 

4. CALCULATION RESULTS 

We now consider the calculation results given by the Rayleigh-Schr6dinger PT method, with a zero-approximation 

inoculating model potential, for the dissociation energy D e and the equilibrium distances R e of a series of diatomic alkali-metal 

dimers: LiM (M = Li, Na, K, Rb, Cs, Fr). Table 1 gives values of A and K in Eq. (1), as calibrated on the basis of empirical 

ground-state energies for alkali atoms [1, 13]. Table 2 gives values of the parameters o~, fl, n, N (N is the normalization 

constant) for the zero-approximation wave function found variationally for the corresponding molecular ions M2 + (by 

minimization). Of course, in the homonuclear case,/3 = c; in the heteronuclear case, ~/ ~ 0. Table 2 also gives the parameter 

0 of the screening potential Wsc r. Table 3 summarizes the results of calculating the dissociation energy for a lithium dimer in 

three cases: 1) the zero approximation is determined by solving the quantum-mechanics problem of two centers; 2) the zero- 

approximation wave function is a trial function with variationally defined parameters (Table 2); 3) the zero-approximation wave 
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function is a trial function with a parameter ~ chosen so as to match the experimental dissociation energy of Li2 +. The 

exchange-correlation effects in all cases are taken into account in the same way, by the method already described. Table 3 also 

gives the results for the dissociation energy of other diatomic alkaline molecules in case 2. For comparison, Table 3 includes 

literature data on the energy of some of the molecules obtained by other methods: various versions of the PP approach - in 
particular, with PP of Gauss, PhiUips-Clayman, and Gell-Mann type and with wave functions of Gaussian and multicon- 

figurational type or in the form of a Gaitler-London sum with Slater orbitals and approximate natural integrals, and by the 
density-functional method in the multiconfigurational approximation [1-11, 13, 35]. Note the good agreement of our calculation 

results with empirical data. For a number of molecules, the energy values are obtained here for the first time. The most 
important aspect of the calculation is that the polarizational interaction of the external quasiparticles through the core and the 

mutual screening of these particles are accurately taken into account, in the PT framework. As a result, the accuracy of the 

results exceeds that of previous calculations. Analysis of the calculation of the lithium dimer in the three cases considered shows 
that the use of eigenfunctions of the bicentric problem as wave functions in the first approximation leads to more accurate 
results than does the use of molecular wave functions with the variational parameters ~t and 13. Fitting the parameter ct in the 

third case to the experimental dissociation energy of Li2 + leads to more accurate determination of D e for Li 2 than does 
variational determination of o~. This is obviously associated with the use of empirical information on a simpler related system 
when formulating the PT zero approximation in the theory of atomic and ionic calculation within an analogous approach [26- 

30]. In terms of diagrams, this means that the corresponding correlation diagrams are more completely taken into account. 

Note, in conclusion, that the calculation scheme in the present approach permits the use of the ab initio PP in the PT zero 
approximation, as was done for atomic systems in [28-30]. This implies that diatomic systems for which absolutely no 

experimental spectral or structural data exist can be calculated by our method. This topic will be considered in a separate work, 

along with a new selection principle for the PT basis with an inoculating zero-approximation PP; this selection principle is 

based on the GelbMann-Low adiabatic formalism [28] and is of enormous interest for relativistic quantum chemistry. 
This work was supported in part by the International Soros Program for the Support of Education in the Precision 

Sciences (ISSEP), under grant SPU 061016. 
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