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A new method is suggested for negative ion calculations, based on perturbation 
theory with a model zeroth approximation and a polarization potential formal- 
ism. The binding energy of an electron in an Na- ion is calculated as a test, 
and is found to agree with experiment. 

I. As is well-known, the binding energy (BE) of an electron in negative ions is one of 
the most important characteristics of these systems, and is required in the construction of 
kinetic models in plasma processes, in developing gas lasers and radiation sources, and in 
a large number of other applications [1-4]. The available experimental methods do not al- 
low total coverage of the large group of ions needed for these applications. The contempo- 
rary a priori methods of atomic calculations are valid in calculating transition energies, 
ionization potentials, and term splitting, but the calculation of BE in negative ions (NI) 
is a very complicated problem. The use of simplified models [5, 6] to solve this problem 
does not always provide results satisfying accurately the requirements of applications. 
Most NIs cannot generally be correctly described within the single-particle approximation, 
such as the Hartree-Fock (HF) approximation, since their total HF-energy is higher than the 
HF-energy of the ground state of the atom [7]. This implies that a correct NI calculation 
necessarily requires account of many-particle correlations. Most successful is, obviously, 
the method of many-body theory, particularly the approach using the solution of the Dyson 
equations with properly determined eigenenergy functions of E, for which, however, one re- 
quires accurate, quite awkward treatment of the contributions of various processes to E (see 
[8, 9]). A new effective approach is suggested in the present study of calculating the spec- 
trum of bound states and, in particular, determination of electron BE in an NI, based on the 
polarization potential method and perturbation theory with a model zeroth approximation [i0- 
12]. Based on these methods, it has been possible to enhance the spectroscopic accuracy in 
describing a wide range of properties of atomic systems (see [13-21]). Though relativisitic 
effects do not play a substantial role in most NIs, except heavy ions, following the purpose 
of including the NI calculation method in the most general complex of atomic programs, the 
treatment below is carried out within the relativistic approximation. 

2. For definiteness consider the Na- NI (configuration 3s = IS), for which there exists 
a quite accurate measurement of the BE experimental value: EA : 0.5479 eV. To find the true 
value it is required to calculate the ground state energy of Na', as well as the energy value 
of neutral Na, which is well known. For correct Na- calculation one requires accurate ac- 
count of interelectron correlations, including in our approach effects of order higher than 
second order perturbation theory (PT) of the Rayleigh-Schrodinger type. The complete Na- 
Hamiltonian can be written in the following form (with account of the comments on behavior 
of relativistic effects) 

where ~i, =j are Dirac matrices. The single-particle wave function of the zeroth approxima- 
tion is determined by the Dirac equation, in which the eigenvalue is the empirical electron 
energy Ess , and the potential is 

No = ~ h (r,) + ~ Ve (r, I b), (2) 
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where 

V~ (r I b) = 2 [ 1 - e -2r (1 "4- r)]/'r + 
3 +Mr~+ lbara)]/r .  (3) +8 [l--e-b'( l  +-~br  + 

The model potential V c describes the interaction of the external 3s electron with the 
core of filled electron shells is22s22p6. The choice of analytic shape of the potential V c 
was motivated in [17], and b is an adjustable parameter. A correctly selected value guaran- 
tees satisfaction of the conditions 

f(r)--*O, g(r)-*O, r-->-oo, (4) 
where f(r), g(r) are the large and small components of the wave functions determined by the 
solution of the Dirac equation. The perturbation operator is 

= .,... ( = i  ru) ( = j  ru ) / rb  - -  . V~ (r~ I b), (5)  
t , i  

where eiji~r is a delay factor, and the summation is carried out over the tota~ number of 
electrons. In relativistic theory, structured on the Dirac wave functions, the Breit opera- 
tor includes only retardation and magnetic interaction effects [18]. One further calculates 
the energy matrix within the j-j coupling scheme of angular momenta; transition to the inter- 
mediate coupling scheme is realized by diagonalization of the secular matrix. The energy of 
state E(3s 2 zS) is represented in the form of a PT series 

~(01 tnol~j2) (q~ " AE (l) E (n=12j=n,l,jl) = ~ e s  ~ . �9 + E ~ s  (nlllJl) + + AE(~), ( 6 )  

where Ees176 is the single-particle electron energy over the core is22s22pS (being referred 
to the total core energy). For the electron E (~ is determined by the first ionization po- 
tential of the Na atom and by the electron transition energies over the Na core [16, 17]. 
The single-particle energies provide a contribution to the diagonal elements only. The ex- 
perimental information included in the zeroth approximation already contains the major por- 
tion of all correlation and relativistic effects. Within first order PT one calculates the 
matrix element of the interparticle interaction operator on wave functions of external elec- 
trons: 

AE(') = <n, l t j ,  n2[=j 2 [ ]M : ]  el~r'= nl Zlj; n2 12j2 [ / M } ] >  = 
r12 

= l ( 2 f  + 1) (2j~ --{- 1) (2j ,  + 1) (2j= + 1)IV= X 
�9 ' j ,  j :  �9 j ~  ) ( 7 )  

X I~a (--1)'+s'+J,+a+:{~j~ j , t ( l~2 - -~2  ~1 (I/2 J2 a X 
. - 1/2 0- 

X {a[,l;} {alzl;) Ra (n, laj,n~l~j,; n~ t~j;n; l ; j l )  + (2J-{- 1)- '  X 

1/2 --1:2 \1/2 -- 

Account of r e t a rda t ion  e f fec t s  has led to replacement of the usual combination U~(rLr2)~- 
a r <  

r~+1 in the radial integrals by the expression Ua(rlr2) ~__Ua(rir2)Zl(&)Z2(r~), where ZI, Z 2 are 

modified Bessel functions. In each order of PT, starting from the first, there exist vacuum 
diagrams (without free edge), single-particle diagrams (one pair of free edges), two-particle 
(for two pairs of free edges), etc. (Fig. I). The vacuum diagrams (A) describe only the refer- 
ence point, therefore their contribution vanishes. The contributions of single-particle dia- 
grams (B) of all orders are directly determined by experimental information concerning the 
vanishing approximation. The first order two-particle diagrams (C) provides in the case of 
an electron the contribution (7) to the total energy. Within first order there exist no two- 
particle diagrams with a compensating term to Hint; --Vc. Within second order, however, such 
diagrams appear, but their contribution is compensated by diagrams with self-energy inser- 
tions (or HF). Consider the second order two-particle diagrams DI, D2, D3 (Fig. ib), for 
which the calculation must be carried out. Correlations are usually included by imposing 
additional configurations, i.e., extending the secular matrix. The additional configurations 
can be partitioned into two groups: i) states with electron excitation from the core; states 
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Fig. I. Feynman diagrams for perturbation theory energy 
corrections: a) first, b) second order. 

with a single vacancy and three electrons outside the core; their imposition includes the 
polarization interaction of exterior electrons with each other (the diagrams DI, D2); 2) 
states corresponding to excitation of one of the exterior particles (the number of exterior 
particles does not change in this case); their application describes the external screening 
effect of the exterior particles with each other (the, diagram D3). These two state types 
provide the second order PT correction AE (2) = ~Epol L2) + AEscr (2). Characteristically, 
this additive partitioning is possible only within second order; in higher orders diagrams 
occur describing interference of these effects. The inclusion of states of the first type 
has led to calculations of otherwise awkward matrix elements; states of the second type can 
be included, in principle, in the secular matrix by expression (7) directly. Here, however, 
it seems that it is necessary to include the whole continuum of higher order states to 
achieve the required accuracy. An effective method of taking into account states of both 
types without increasing the size of the secular matrix was suggested in [16], and consists 
of supplementing the Coulomb interparticle interaction operator by a polarization operator, 
describing the interaction of exterior particles in terms of a polarizable core. According 
to [16], the matrix elements of the polarization operator are contributions of the direct 
and exchang e polarization diagrams 

=po, = SS dr, dr=p, (r,) [ Vp% (r,r=) -I- Vv~ (r: , ) ]  P2 (r=), 
where P z ,  P2 are the density distributions for exterior electrons, and 

V~po, (r, ,  r~) = X { [ drp~ )1'3 ( r ) /  [ r ,  - r I I r - r~ i-- 

- -  [ [ d rp  (~ ( r ) /  I r ,  - -  r I [ d r ' p ~  )113 ( r ' ) /  J r '  - -  r= [ / I } ;  

~, PC [(p~>ii3 :>,:3 ' r  ~" Vpo, ( r , r D  = - -  ~-  (0,375) '/3 ( r , )  + ~ ~ =,,: l r ,  - -  r ,  I - -  

- -  ~ drp~ I2j3 ( r )  {p~- l l3 ( r , ) /  ] r ,  - -  r ]  + ~>-~13 ( r D / I  r - r2 I}/1], 

1 = [ d r p ~  )I/a ( r ) .  

Here X is a numerical coefficient, with the procedure of finding it given in [16], and 
pc (~ is the electron density of the core in the absence of exterior electrons. The angular 
parts of the matrix elements Vpol d, Vpol "ex, rz2-~coincide, therefore account of the &orrections 
AEpol (=) reduces to modification ofthe radial integrals appearing in the expression for 

AE Lz), whose analytic form is given in [16]. The introduction of Vpo I made it possible to_ 
reduce the problem to a two-particle problem accurately within second order PT. Account of 
the screening effect of the exterior electrons can be carried out, adding to the interaction 
potential of the exterior electron with the core in the vanishing approximation in the Hamil- 
tonian an additional screening potential, generated by the presence of the second particle: 
W(r) = ~dr'Yns where r> is the larger of r and r'. Calculation has shown (see 
[16]) that for'any state of the screening particle the potential W is well-approximated by 
the expression 

( r i g )  = g/Z (3-+-gr) / (3-J-2gr-+-2g2r=),  

where g = Z/n2(Z + N), N is the number of electrons in the core, Z is the nuclear charge, 
and n is the principal quantum number. The potentials W(r) and W(rlg) coincide asymptoti- 

~dr' . , ;  
cally for r + =, while for g~|_-5-~nu they also coincide for r + O. The parameter g can 

jr 

be found from the minimization condition of the ground state. Inclusion of W(r It) in the 
zeroth order makes it possible to account effectively for ladder type diagrams of all PT or- 
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ders (Fig. i). The procedure consists of the following phases: I) for each exterior par- 
ticle state ns one solves the Dirac equation with Hamiltonian H0, in which one uses experi- 
mental data on ionization energies Ens to determine the parameters of the potential Vc(r]b); 
2) in the single-electron equation, for each exterior particle one introduces the potential 
W(r Ig), and the new orbital energies are found. The final form of the zeroth approximation 
potential is 

V~ (r~ I ~) + V~ (r21 O) + W (r~ I g) + I~'2 (r21 g) --Z/rl--Z/r2, 

and the perturbation is 

e'+~,,/r,2 + Vpo, (r, r2) - -  [V~ (r, I b) + V~ (r~ I b) + ~ (r, I g) + W (r2 I g)J; 

3) with the new orbitals one calculates the radial integrals and the energy matrix; from the 

diagonal elements of the energy matrix <n~llj,n21~j2[j]e~'r'In, l,j=n~l=j~[J]> one calculates the 
quantity r~2 

<n,ld, t W (rlg) In, l , / ,> + <ndd~l W (r ig) IndiA>, 

i.e., the matrix element of the second compensating term in the perturbation operator. The 
calculation procedure practically accounts for the whole second order correction AE (=), as 
well as some part of higher order PT corrections. 

3. The BE calculation of an electron in the Na- ion, carried out on the basis of the 
method described, provided the following value: EA = 0.546 eV, in very good agreement with 
the experimental value. We stress that even though for definiteness we selected the Na- Ni, 
the method suggested can be used in treating and calculating arbitrary, more complex Nls 
with one or several electrons outside the core of filled electron shells. In this case one 
requires an accurate choice of the corresponding treated system of the model potential (for 
example, the universally modified Thomas-Fermi potential, used in the well-known program of 
atomic calculations "SUPER-STRUCTURE," etc.), and the total energy calculation requires as- 
sembly of the energy matrix and its subsequent diagonalization. In the case of an Ni with a 
single electron outside a core of filled shells the whole problem reduces to solving a Dirac 
equation with a model plus a polarization potential. 

In conclusion, the author is grateful to E. P. Ivanova for her interest, to V. V. Flam- 
baum and V. K. Ivanov for supplying preprints of [8, 9], and to V. V. Filatov for help in 
the numerical calculations. 
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