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The transmission of energy impulse through the low-dimmensional systems of
discrete particles which interact with each others by elastic forces shows us the
possibility of specific transformation which happens between dispersive and
nonlinear modes (like solitons). We show how already in the linear
approximation in nonhomogeneous systems the formation of nonlinear modes
can be induced with the help of disordering which interplay with other
parameters like nonlinearity and dimmension. We found a set of rigorous
solutions of governed equations for wave transmition through 1D Hertzian
chains either under the finite length or infinite length including the case of
specific decoration.
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The study of wave transport in complex inhomogeneous media belong
either to traditionally actual or complex problems where solid state physics,
theory of dynamic systems and numerical modeling are combine their efforts. In
the series of papers the mentioned problem have been studied in many details
[1-12]. Within mentioned problems the nonlinear character of wave transport is
superimposed with nonlinearity of medium where this phenomena has been
occurred. Particular focus of research has been paid to low-dimensional media
(like, for instance, 1D chains) where the above mentioned problem can be
relatively easy solved numerically or even analytically. It is known after [1-13]
that linear limit of above mentioned problem characterized by normal mode
solutions as well as in the continuous limit one has a soliton. In what follows we
focus on study of perturbation at intermittency between rigorous nonlinear
discrete formulation of problem and linear inhomogeneous, and continuous form
of governing equations. As it is shown here we have a specific wave-modes
which approach the familiar solutions in the relevant limits of studied interval.

We perform numerical solution of general equation
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which govern the evolution of displacement of the n -th grain in vertical column

subject into gravity. Here: 213m
dE   - is a force constant, m  - is a mass of

an individual grain, d  - is the diameter of an unloaded particle, E  - is a Young
elastic modulus,  - is the Poisson ratio [14]. The exponent , in Eq.(1), could
approach  different values. For instance Hertzian contacts between beads gives
rise to 2/3 . Note, that in what follows we will ignore the role of dissipation
in the present study. Equations like (1) normally called Hertzian.

Consider  current  displacement  of  the n -th grain nz  by use of molecular
dynamics implementing 4-order predictor-corrector method. On Fig.1 we plot
results of numerical simulations in case when system became weakly perturb by
mechanical impulse which came from highest outmost particle. We observe a
typical bell-like form of developed wave with a negligible decay and almost
conserved dispersion. This characters normally belong to soliton mode.

Fig.1 – Result of numerical calculation of Eq.(1).

Linearization of Eq.(1) as it is known [10-13] lead to wave-diffusion
scenario of impulse transport. On Fig.2 we plot the results of numerical
simulations of the linear form of Eq.(1).

Obtained results shows a complex multiscaled character of the wave
transport in 1D inhomogeneous systems of the force centers which happens at
intermittency between discrete and continuous limits for governed equations.
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The applicability of WKB approach for linking the solutions related to the
different scales of wave transport in inhomogeneous media has been discussed.

Fig.2 – Solutions for linearized form of Eq.(1): (a) – “static” excitation
and (b) – “dynamic” excitation.
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