


Ministry of Higher Education and Science of Ukraine

Odesa State Environmental University

O.I.Gerasymov

Structure and Photonics
of discrete meso-scaled anisotropic

Systems

Monography

 9  26.10.2017 .)

Odesa
TES
2018



PACS 42.70.-a

Published by the decisions of the Scientific Council of Odesa State Environmental University
(protocol No. 9  from 26.10.2017)

Referees:
Academician A.G.Zagorodny, Dr.Sci., Prof., Director of Bogoluybov Institute for

Theoretical Physics, NAS of Ukraine, Kiev, Ukraine, Corr. Member of APS of Ukraine
A.V.Chaly, Dr.Sci., Prof.,  Head of the Department of Physics  Bogomolez National

Medical University,  Kiev, Ukraine

Gerasymov Oleg Ivanovich
Structure and photonics of discrete meso-scaled anisotropic systems : Monography /
Gerasymov O.I.; Odesa State Environmental University. Odesa: TES, 2018. - 242 .

) , , 
 ( ) . 

, , 
, 

 ( ) . -
,

    ( , , ),
 ( ). 

,  ,  ,  
. , 

, 
. , 

, , 
, 

.

Meso-scale photonics involves the interaction of light with material structures of
intermediate scale - structures that are too small to be described by traditional continuum
methods and too large to be characterized atomistically say as simple dipoles. At such
dimensions, photonic phenomena include scale-specific modifications of the structure in
response to the light so that a "passive" linear interpretation of the reciprocal action is
inadequate, and a nonlinear description including dynamics of the light-structure interaction is
necessary. Meso-scale phenomena occur in different circumstances, e.g., biological systems
(proteins and DNA), soft materials (colloids and polymers), and fabricated mechanical
nanostructures (motors, ratchets and scaffolding. Presented monograph gives a detailed
introduction to theoretical approaches , experimental evidences and applications in the field.
The book is proposed to attention of lecturers, researchers and students who specialized in
modern technologies and their applications including the environmental monitoring and safety
technologies.

ISBN 978-617-7337-75-0
, 2018

 Odesa State Environmental
University, 2018









6

Preface

Meso-scale photonics involves the propagation of light in mesoscaled
structured materials which are too small to be described by continuum models
and contrary, which are too large to be characterized microscopic methods. At
such dimensions, photonic phenomena based on particular scale modifications
of the structure as a feedback to the electro-magnetic irradiation so that a trivial
linear interpretation of the reciprocal action is nonadequate anymore, and
a nonlinear description (including dynamics of the light-structure scattering) is
required. Meso-scale phenomena occur in different circumstances: biological
systems, soft materials (colloids and polymers, granular media), dusty plasmas
and fabricated opto-mechanical nanostructures. Presented monograph gives a
detailed introduction to theoretical approaches, i.e. models and experimental
evidences and applications in the field. The book is proposed to attention of
lecturers, researchers and students who specialized in modern technologies and
their applications including the environmental monitoring and safety
technologies.
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1 THE ELECTROMAGNETIC-WAVE PROPAGATION THROUGH A
STRATIFIED INHOMOGENEOUS ANISOTROPIC MEDIUM

The electromagnetic-wave propagation through a medium consisting of
two dielectric half-spaces with a plate in between, has been investigated. The
half-spaces are isotropic with their dielectric permittivity depending only on the
z coordinate. The plate is anisotropic, and the components of its dielectric
permittivity tensor are also z-dependent. For the first time, the sufficient
conditions allowing the transformation of the system of Maxwell’s equations
into two independent equations, are ascertained. For an arbitrary z-dependence
of the dielectric permittivity, the plate’s reflectance and transmittance
coefficients are obtained, this result being a generalization of the Fresnel
formulas. We have considered both determinate and random dependences of the
dielectric permittivity on the z-coordinate, and the plate’s full-transparency
conditions are specified. For a statistically inhomogeneous plate, the conditions
of its full opacity are formulated. The Faraday effect in such a medium is
studied. The influence of the medium’s inhomogeneity on the temporal rotation
of the polarization plane of a propagating wave has been demonstrated.

1.1 Introduction

In Ref. [1], it has been shown that the medium’s inhomogeneity coupled
with its gyrotropy affects substantially the electromagnetic wave propagation
through the medium. This results in new effects, and changes — quantitatively
and/or qualitatively  – “ancient” ones, e.g., the Faraday effect. In this work [1],
an electromagnetic wave propagates through a medium consisting of two
isotropic homogeneous half-spaces parted with a homogeneous plane-parallel
gyrotropic plate. In the present work, the medium includes two isotropic half-
spaces with dielectric permittivities depending only on the z-coordinate, these
half spaces being divided by an anisotropic plate the dielectric-permittivity
tensor of which is also z-dependent. The plate is confined with the z = 0 and z =
a plates, that is, a is the plate’s thickness. The wave propagates along the z-axis
and so is incident normally to the plate’s surfaces. The paper consists of three
sections. In the first one, we consider the propagation of electromagnetic wave
through and reflection from an inhomogeneous isotropic plate enclosed between
two inhomogeneous isotropic half-spaces. In the second section, requirements
are formulated which reduce the problem of wave propagation through
anisotropic medium to a problem of propagation of two independent waves in
isotropic medium, each of the waves having its own refractive index. And in the
third section, the general results obtained in the two previous ones, are applied
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to a gyrotropic plate. It is to be noted that the medium studied in this work,
allows to consider simultaneous influences of the interference, anisotropy and
smooth inhomogeneity on the wave propagation.

1.2 Electromagnetic-wave propagation in isotropic inhomogeneous
medium

The wave propagation in a medium consisting of two inhomogeneous
isotropic half-spaces with an isotropic inhomogeneous plate between them, is
described by the following equations

azEzk
dz

Ed

azEzk
dz

Ed

zEzk
dz

Ed
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l
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0,0

0,0

2
2

2

2
2

2

2
2
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                 (1.1)

Here E is the electrical field,
c

k   with  the frequency of the propagating

wave, c is the light velocity in vacuum, and rl ,,  are the dielectric
permittivities of, respectively, the left half-space, the plate, and the right half-
space. The continuity conditions at the z = 0 and z = a planes for the field E and
its derivative with respect to z are:

z
aE

z
aEaEaE

z
E

z
EEE

,

;00,00
             (1.2)

In addition, at ± , the radiation conditions have to be satisfied. We
consider first a problem of the wave reflecting and transmitting with no plate
between the half-spaces, that is, assuming a  =  0. The waves in the left half-
space are described by the first of equations (1.1) and in the right half-space, by
the  third  one.  Let zU l1  and zU l 2  be the fundamental solution-system of the

rst of equations (1.1) with the 100 21 ll UU condition. Also, in view of the
radiation conditions, zU l1  is the wave propagating to the right, i.e. the incident
wave, and zU l 2  propagates to the left, i. e. the reflected wave. zU r  is  the
wave propagating to the right (transmitted wave), 1zU r . Desired solution of
the problem has a form
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where 0R  and 0T  are the coefficients of reflection and transmission, respectively.
0R  and 0T  deduced from boundary conditions (1.2) are resulting in:
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here and in the following equations, the tag means differentiation by z.
Now, consider the same problem, but in the presence of the inhomogeneous

plate. Let zU 2  and zU 2  form the fundamental solution-system of the second
of equations (1) with the 100 21 UU  condition.

Then, the solution of the system (1.1) we are looking for, has a form
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          (1.6)

Using boundary conditions (1.2) and solutions (1.6), a system of equations
is obtained determining the reflection coefficient R, transmission coefficient T,

1A  and 2A  the and  coefficients. Then, solving this system gives the following
expressions for R and T:
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From the equations (1.1), the following formulas are derived:

aikaUikUiU rll ,00,0 2,12,1
        (1.9)
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Let us dwell on the concept of absolute transparency of a plate. For
homogeneous plate, this question has been studied in detail in Ref. [2]. For a
uniform isotropic plate, it has been shown in Ref. [2] that for a discrete set of
frequencies fixed by:

qk                                                (1.10)

where q is an integer, the wave reflected from the l-half-space/plate/r-half-space
system behaves as if the plate is absent. This means that the plate can be referred
to as completely transparent. The reflection and transmission coefficients
coincide with, respectively, those for the l-half-space/r-half-space system
determined by formulas (1.4) and (1.5). With no temporal dispersion and -
independent, one obtains from (1.10)

a
cq

q                                                (1.11)

The presence of temporal dispersion introduces serious difficulties in
solving equation (1.10).

In the general case of inhomogeneous plate and half-spaces, the absolute-
transparency conditions are apparently as follows:

00 ,,, TaTRaR              (1.12)

where of one can readily proceed to

011 1221 aUaUaUaUaUaU rr

and then to

10,, 2,12,1 UaU           (1.13)
or  to

0,, 2,12,1 UaU            (1.14)

Each of these correlations, (1.13) and (1.14), can be regarded as the
equation for determining the frequencies and the plate’s thicknesses for which
the plate is transparent.

The wave propagation through an inhomogeneous plate with  specifically
depending on z has been considered previously [3, 4], but the question of the
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plate’s transparency was not discussed in this work. As for a homogeneous
plate, it is transparent for any thickness at the frequencies determined by (1.10).

For the following, we shall need an explicit form for the 2,1,
2,1

UU l  and U
functions.

Let the distances rl bb ,  and b, at which the zz rl ,  and (z) functions
substantially change, far exceed the wave-length, so that the WKB method is
applicable. Note that

dz
db

dz
db

dz
db r

r
r

l

l
l

1~,1~,1~ 111

The criteria of applicability of the WKB method and the explicit form of
the corresponding solutions are well known [4]:
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which is the same as bzkbzkbzk rrll ,, 1, and
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Here, z
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z

ll dzzkzSdzzkzS
0

2/1

0

2/1 , , and z
dzzkzS

0

2/1 .
Substituting (1.16) into (1.7) and (1.8) gives for the reflection, R, and
transmission, T, coefficients:
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Note that in the absence of the plate (a  = 0), the reflection lrR  and
transmission lrT  coefficients are:

00
02

,
00
00

1
lr

l

l

lr
lr TR         (1.18)

From (1.13), as well as from (1.14), the following criterions of
transparency can be derived:

0, aqaS               (1.19)

where q is an integer. We consider some examples of applications for formulas
(1.19). Let (z) be a periodical function of z with the period L, that is, (z  +
L)= (z). Then, from the second equation of (1.19), we obtain

pLa              (1.20)

where p is an integer. Decomposing z  into its Fourier expansion and
isolating the zero term, gives

0

2

0

2 z
L
iz

L
i

eez           (1.21)

Substituting this expansion into the first formula of (1.19), the transparency
condition for the plate’s thickness is

qak 0                                               (1.22)

With no temporal dispersion, i. e., 0  being non-dependent of , the result
is given by

a
cq

q
0

                                               (1.23)

And, with account of (1.20):

p
q

L
c

qpq
0

           (1.24)

It is seen that all the plates with thickness according to (1.20) and at
frequencies defined by (1.24), are absolutely transparent. The cases of such a
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kind are infinite in number. Now, let the function z  be polynomial of Nth
power, which represents a general enough and interesting case because, on finite
interval za ,,0  can be approximated by a polynomial with any degree of
accuracy. It is obvious that this polynomial can be written as

N

b
z

b
zz

1

1

0              (1.25)

here b is the distance at which the (z) function substantially changes. It follows
from the second condition of (1.19) that the possible values of thickness a  are
defined by the equation

0
1

1N

b
z                (1.26)

and the number of these values is equal to that of positive solutions of (1.25). It
is evident that the possible number of these thicknesses is not more than N 1.

Consider some special cases.
a) N = 1. Equation (1.24) has no roots, which means that a plate whose

z  function changes linearly along the z axis, is always nontransparent.

b) N = 2.
1

2ba , the plate is transparent if 0
1

2 .

c) N > 2. These cases can be considered by analytically or numerically
solving Eq. (1.25). In the absence of temporal dispersion, from Eq. (1.25) an
expression for the transparency frequencies is obtained:

Nq

b
aa

cq

1 10
110

         (1.27)

Here  denotes positive-root’s number of equation (1.25) and N  the
number of these roots. If the medium’s dielectric permittivity changes at
distances much shorter than the wavelength, then electrodynamic properties of
the medium, as it was shown in Ref. [5], are described by a dielectric tensor with
components non-dependent on z, that is the plate is homogeneous.

Note that all results obtained in this section hold also for the scalar field
described by the Helmgoltz equation. The case of oblique incidence can also be
considered with a solution in the following form:

xcosikezUz,x
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where  is the incident angle and U(z) is described, as before, by Eqs. (1.1),
where the following substitutions have to be performed:

22 cos,cos zzzz ll , and 2coszz rr . We end this
section by considering an inhomogeneous plate with an inhomogeneous half-
space at each side of the plate, the dielectric permittivity of the latter being a
random function of the z-coordinate:

zzz            (1.28)

the upper bar denotes ensemble averaging. Thus, (z) is the average value
of the dielectric permittivity and (z) is the fluctuation of the latter. By
definition, (z)  = 0.  Suppose as usual  that 1R  and 2R  in formulas (1.17) for R
and T can be regarded as determinate values, and the only random value here is
the phase S:

a
dzznkS

0
           (1.29)

where zzn . Writing the phase as

SSS             (1.30)

with S  being the average value of the phase and S its fluctuation,

0,
0

2

0
SdzzlznkSanddzznkS

a

n

a                (1.31)

Average square of S  is defined by:

a

n dzzlznkS
0

222                (1.32)
where

0

2 dznznzlzn n             (1.33)

zln  being the mean correlation coefficient of fluctuations of the refractive-
index. If the fluctuations of the dielectric permittivity  are small compared to
its mean value , then

z
zn

2
           (1.34)

and for 2S , we have
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a
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z
zlzkS
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22
2
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Here zl  stands for the effective correlation coefficient of fluctuations of
the dielectric permittivity. Note that zln  and zl  are of the order of b.

We are interested in the mean values of the reflection R and transmission T
coefficients, as well as in the average of their modules squared:

dSSFSTTdSSFSTT

dSSFSRRdSSFSRR
22

22

,,

,,
                   (1.36)

Consider first a distribution function of the following type:
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;,0
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2
1

SSSSSSfor
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SSF                  (1.37)

where 22
0 3 SS , i. e., the mean-square value, accurate to fixed factor, of

the phase incursion. For the sought values, we get
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Note that RRqS ,20 , and 0T ; corresponding expressions for 2R  and
2T  are

02
21

21
02

21

21
2
2

2
10

2
2

2
12

1
1

1
1

12
1 SStan

RR
RRarctanSStan
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  (1.40)

22 10 R
a

T                  (1.41)

When 1,2 2
0 RqS  and 02T , that is, the plate is completely opaque.

This result is analogous to that of obtained in [6] for stochastic localization, but
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unlike the traditional stochastic localization, for which | 12R  and 02T  only
by a  and the correlation coefficient being small compared to the wave
length, here the localization takes place by discrete set of the plate’s thicknesses.
It should be mentioned that in Ref. [7], a problem of the electromagnetic wave
propagation through a homogeneous plate confined by statistically rough
surfaces, has been considered. In the present work, an analogous problem with
Gaussian distribution of the wave phase, has been considered in detail.

1.3. Equations for electromagnetic waves propagating through anisotropic
layered media

The Maxwell equation system describing the electromagnetic wave
propagation through an anisotropic layered medium is as follows:
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2
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zxzyxyxxx
x
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dz

Ed

EzEzEzk
dz

Ed

           (1.42)

Here zEi  are components of the electric eld, i = x,y,z, and kik  are
components of the dielectric permittivity tensor. Eliminating zE  from the
equation system (1.42), we get
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yyyxyx
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where
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zz

xzzxzzxx
xx

,

,
           (1.44)

Hence, the electromagnetic wave propagation through layered anisotropic
medium is described by a system of two second-order equations. The solving of
this system is significantly simplified if it can be reduced to two independent
equations. For getting the conditions of such a reduction, multiply the second
equation of the system (1.43) by a constant Q , sum it up with the first one,
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factor out the coefficient by Ex, and coefficient by yE equate with Q , which
gives an equation for deriving Q . As a result, we arrive at

02
2

2

Ezk
dz

Ed           (1.45)

where

xyyx
yyxxyyxx

yxxx

yx

zQzz
EQEE

42
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        (1.46)

and

yx

xy

yx

yyxx

yx

yyxxQ
2

22
          (1.47)

For the values Q  to be constant, it is sufficient that the following
combinations of the -tensor components would be constant:

QQQQ
yx

xy

yx

xxyy
,             (1.48)

Hereinafter we shall assume the conditions (1.48) are satisfied and that the
equation system (1.43) can be represented in the form of (1.45). Consider some
important special cases. Let the diagonal components xx  and yy  of the -tensor
be equal. Then 0QQ , from which follows

2, QQQ
yx

xy                 (1.49)

If the -tensor is symmetric, yxxy , then yxxxyx nEEE 2, , and
1Q . If this tensor is antisymmetric, yxxy , then

yxxxyx iniEEE 2, , and iQ , refractive index zzn  being
de ned by (1.46). The case of 0yxxy  is also of importance. Then Eqs.
(1.43) can be separated into two independent equations

02
2

2

xxx
x Ek

dz
Ed                  (1.50)

and
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02
2

2

yyy
y Ek

dz
Ed                  (1.51)

Now, substituting the expressions for the components of the tensor  from
(1.43) into (1.48) gives

QQQQ
yzzxzzyx

xzzyzzxy

zz

yzzyzxxzzxxyy ,           (1.52)

that is, in order the three-equation system (1.42) to be split into two independent
equations, the following condition must be fulfilled: two combinations
composed from the nine components of the ik  tensor have to be constants. A
wide enough class of the dielectric permittivity tensors meet this requirement.

xE  and yE , as well as xD  and yD , can be expressed through E :

yyyxyxyyxyxxxx

yx

EEDEED
QQ
EEE

QQ
EQEQE

,

,
          (1.53)

1.4. Faraday effect in inhomogeneous anisotropic media

To begin with, consider electromagnetic waves propagating through
unbounded inhomogeneous anisotropic media. Through this whole section we
assume that the electromagnetic field in a medium is described by Eqs. (1.45),
that is, the components of the  tensor satisfy conditions (1.48). Exact solution
of Eqs. (1.45) can be obtained for a wide enough class of the z functions (cf.,
f.e., [2]). We will not dwell on these solutions and content ourselves with results
obtained using the WKB approach. Such a choice is favoured by the fact that by
small values of z, that is, when one can assume 0z , then zeE ik 0
is derived from the formulas for the fields obtained by the WKB method, see
(1.16). For large values of z, the WKB approach is an asymptotically exact one.
Thus, for small and large values of z, the WKB method gives correct results. We
expect that also for intermediate values of z, the fields obtained by the WKB
method are good approximations. Consider first the Faraday effect in unbounded
medium. It is known [5], that this effect is characterized by the relation xy D/D

describing the rotation of the polarization plane of a wave propagating in an
anisotropic medium:

EEEQEQ
EEEQEQ

D
D

xyxx

yyyx

x

y            (1.54)
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E  being calculated in the WKB approximation, we obtain

ziS dzzSe
z

E
0

,0            (1.55)

and formula (1.54) turns into
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             (1.56)

With the aid of expression (1.56), we explore the rotation of the
polarization plane of a wave propagating in a gyrotropic medium. A medium is
called gyrotropic if the electrical induction vector is related to the electrical field
vector by the relation [5]

g,EiED            (1.57)

where g  is the gyration vector,  and g  being slowly changing functions of z.
We will assume the g -vector lies in the xz-plane, i.e., having only components

xg  and zg . We assume also that the g -vector is small in the sense that |g|  and
values of 2g  can be neglected. Using (1.46) and (1.47), and the smallness of g,
we get

z

x

y dz
z

zgk
D
D

0
0

2
tan                (1.58)

With gx and gz non-dependent on z, this formula turns into the wellknown
expression for the rotation of the polarization plane of the field in gyrotropic
homogeneous medium. Now, let the inhomogeneous medium be consisting of an
inhomogeneous anisotropic plate with an inhomogeneous half-space on each of
sides. Then, the rotation of the polarization plane for the reflected and
transmitted fields, respectively are

RRRQRQ
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D
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yyyx
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In the general case, R  and T  are determined by formulas (1.7) and (1.8),
respectively, and using the WKB approach, by (1.17). If the inhomogeneous
plate is gyrotropic, one has to considerate two cases: a totally transparent plate
and a non-transparent plate. The results are presented with components of the

ik -tensor expressed in terms of the g -vector, using Eq. (1.57). For the
transparent plate, omitting cumbersome elementary calculations, we get:

sincos1
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42
21
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iSiS

iS

Rx

y

eRReRRR
eRR

D
D                    (1.61)

a

a

iS

iS

Tx

y

eRR
eRR

D
D

2
21

2
21

1
tan1                (1.62)

where 2,1R  are the same as in (1.17), a

a dzzkS
00 , and z

dz
z

zgk
0

0

2
.

Analysis and simplification of formulas (1.61) and (1.62) are analogous to the
ones carried out in Ref. [1]. The transparency conditions for both waves, as
follows from (1.19), are:

0,,0, aqaSaqaS                (1.63)

where q  and q  are integers, which in general do not coincide. The solutions
defining the plate’s thicknesses and corresponding frequencies at which the plate
is transparent for the reflected wave do not coincide with those for the
transmitted wave. However, with small gyrotropy (g ) and a narrow enough
incident wave impulse [1], the plate can be transparent for both waves. The
gyrotropy results in a frequency shift that can be determined from Eqs. (1.63),
for which aim q  = q  = q has to be put. If the gyrotropy is small (the criterion is
given above), then Eqs. (1.63) can be solved using the convergence method,
which gives the frequency shift

0

0

0

020
a

g

a

qq

zv
dz

dz
z
zgk
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ad

aggk                    (1.64)

Here zk
d
d

zvg

1 , k and a0 are determined from (1.19). Note that for

homogeneous plates, the first item in (1.64) is absent. For the fields RE  and TE

we have
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with

dad
gagk

/
0

And, finally, the rotation of the polarization plane of the reflected and
transmitted fields are, respectively,

z

grTx
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glRx

y

zv
dzt

D
D

zv
dzt

D
D

0

0

tan

tan

           (1.66)

One can see that here, like in the case of homogeneous plate [1], the
rotation of the polarization plane has both spatial and temporal components. We
will not dwell on the situation when yxxy , because for this case Eqs. (1.50),
(1.51) are of the same structure as Eqs. (1.45), which allows to carry out
corresponding analysis in an analogous way.

1.5. Conclusions

As asumming up, the Fresnel formulas are generalized for the reflection
coefficients of an isotropic plate the dielectric permittivity of which, as well as
the dielectric permittivities of enclosing half-spaces, are arbitrary functions of
the coordinate, either determinate or stochastic. For the general case, the
conditions for the plate’s full transparency are formulated. As an example, a
case is considered when the plate’s dielectric permittivity is a slowly changing
function of the coordinate, which justifies application of the WKB method.
When the plate’s dielectric permittivity is a stochastic function of the coordinate,
a new effect appears: the full non-transparency (opacity) for a discrete set of the
plate’s thicknesses. For an anisotropic plate, sufficient conditions are formulated
for the two- equation Maxwell system to be split into two independent
equations, which simplifies substantially the calculations. All these results can
be applied immediately for working out the needed parameters of the Fabry-
Perot interferometers, filters, resonators.
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2. WAVES IN INHOMOGENEOUS SOLIDS

The paper aims at presenting a numerical technique used in simulating the
propagation of waves in inhomogeneous elastic solids. The basic governing
equations are solved by means of a finite-volume scheme that is faithful,
accurate, and conservative. Furthermore, this scheme is compatible with
thermodynamics through the identification of the notions of numerical fluxes (a
notion from numerics) and of excess quantities (a notion from irreversible
thermodynamics). A selection of one-dimensional wave propagation problems is
presented, the simulation of which exploits the designed numerical scheme. This
selection of exemplary problems includes (i) waves in periodic media for
weakly nonlinear waves with atypical formation of a wave train, (ii) linear
waves in laminates with the competition of different length scales, (iii) nonlinear
waves in laminates under an impact loading with a comparison with available
experimental data, and (iv) waves in functionally graded materials.

2.1 Introduction

Waves correspond to continuous variations of the states of material points
representing a medium. The characteristic feature of waves is their motion. In
mechanics the motion of waves is governed by the conservation laws for mass,
linear momentum, and energy. These conservation laws, complemented by
constitutive relations, are the basis of the theory of thermoelastic waves in solids
[8, 10, 16, 26]. Inhomogeneous solids include layered and randomly reinforced
composites, multiphase and polycrystalline alloys, functionally graded materials,
ceramics and polymers with certain microstructure, etc. Therefore, it is
impossible to present a complete theory of linear and nonlinear wave
propagation for the full diversity of possible situations, in so far as geometry,
contrast of multiphase properties and loading conditions are concerned. From a
practical point of view, we need to perform numerical calculations. Many
numerical methods have been proposed to compute wave propagation in
heterogeneous solids, among them, the stiffness matrix recursive algorithm [40,
45] and the spectral layer element method [17, 18] should be mentioned, in
addition to more common finite-element, finite-difference, and finite-volume
methods. Here the general idea is the following: division of a body into a finite
number of computational cells requires the description of all fields inside the
cells as well as the interaction between neighboring cells. Approximation of
wanted fields inside the cells leads to discontinuities of the fields at the
boundaries between cells. This also leads to the appearance of excess quantities,
which represent the difference between the exact and approximate values of the
fields. Interaction between neighboring cells is described by means of fluxes at
the boundaries of the cells. These fluxes correspond to the excess quantities and,
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therefore, can be calculated by means of jump relations at the boundaries
between cells. In this paper, we demonstrate how the finite-volume wave-
propagation algorithm developed in [34] can be reformulated in terms of the
excess quantities and then applied to the wave propagation in inhomogeneous
solids. Both original and modified algorithms are stable, high-order accurate,
thermodynamically consistent, and applicable both to linear and nonlinear
waves.

2.1.1 Governing equations

The simplest example of heterogeneous media is a periodic medium
composed by materials with different properties. One-dimensional wave
propagation in the framework of linear elasticity is governed by the conservation
of linear momentum [8]

0
xt

vx              (2.1)

and the kinematic compatibility condition

x
v

t
               (2.2)

Here t is time, x is the space variable, the particle velocity v = ut is the time
derivative of the displacement u, the one-dimensional strain  = ux is the space
derivative of the displacement,  is the Cauchy stress, and  is the material
density. The compatibility condition (2.2) follows immediately from the
definitions of the strain and the particle velocity. The two equations (2.1) and
(2.2) contain three unknowns: v,  and . The closure of the system of equations
(2.1) and (2.2) is achieved by a constitutive relation, which in the simplest case
is Hooke’s law

xcx 2              (2.3)

where xxxxc /2  is the corresponding longitudinal wave velocity,
and (x) and (x) are the so-called Lamé coefficients. The indicated explicit
dependence on the point x means that the medium is materially inhomogeneous.
The system of equations (2.1)–(2.3) can be expressed in the form of a
conservation law

0,, txqf
x

txq
t

              (2.4)
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with

v
txq ,  and

2,
c

v
txf            (2.5)

In the linear case, equation (2.4) can be rewritten in the form
0,, txq

x
Atxq

t
              (2.6)

where the matrix A is given by

0
/10

2c
A                  (2.7)

We will solve the system of equations (2.1)–(2.3) numerically. Although a
numerical solution can be difficult with standard methods, high-resolution finite
volume methods based on solving Riemann problems have been found to
perform very well on linear hyperbolic systems modeling wave propagation in
rapidly-varying heterogeneous media [23].

2.2 The wave-propagation algorithm

Standard methods cannot give high accuracy near discontinuities in the
material parameters and will often fail completely in problems where the
parameters vary drastically on the grid scale. By contrast, solving the Riemann
problem at each cell interface properly resolves the solution into waves, taking
into account every discontinuity in the parameters, and automatically handling
the reflection and transmission of waves at each interface. This is crucial in
developing the correct macroscopic behavior. As a result, Riemann-solver
methods are quite natural for this application. Moreover, the methods extend
easily from linear to nonlinear problems. Expositions of such methods and
pointers to the rich literature base can be found in many sources [24. 27, 34, 43,
44].

2.2.1 Averaged quantities

Let us introduce a computational grid of cells 2/12/1 , nnn xxC  with
interfaces xnxn 2/12/1  and time levels tkt k . For simplicity, the grid size
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x and time step t are assumed to be constant. Integrating equation (2.4) over
1, kkn ttC  gives
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Introducing the average Qn of the exact solution on Cn at time t = tk and the
numerical flux Fn that approximates the time average of the exact flux taken at
the interface between the cells Cn-1 and Cn, i. e.
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we can rewrite equation (2.8) in the form of a numerical method in the flux-
differencing form
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x
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1                (2.10)

In general, however, we cannot evaluate the time integrals on the right-
hand side of equation (2.8) exactly, since txq n ,2/1  varies with time along each
edge of the cell, and we do not have the exact solution to work with. If we can
approximate this average flux based on the values Qk, then we will have a fully-
discrete method.

2.2.2 Numerical fluxes

Numerical fluxes are determined by means of the solution of the Riemann
problem at interfaces between cells. The solution of the Riemann problem (at
the interface between cells n  1 and n) consists of two waves, which we denote,
following [34], I

nW  and II
nW . The left-going wave I

nW  moves into cell n  1, and
the right-going wave II

nW  moves into cell n. The state between the two waves
must be continuous across the interface (Rankine-Hugoniot condition) [34]:
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n QQWW                 (2.11)

In the linear case, the considered waves are determined by eigenvectors of
the matrix A [34]:
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This means that equation (2.11) is represented as
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n rWrW 11,               (2.13)

Considering the definition of eigenvectors Ar = r,  we  see  that  the
eigenvector

c
r I 1             (2.14)

corresponds to the eigenvalue I = c (left-going wave). Similarly, the
eigenvector

c
r II 1             (2.15)

corresponds to the eigenvalue II =  c (right-going wave). Substituting the
eigenvectors into equation (2.13), we have
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or, more explicitly,
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Solving the system of linear equations (2.17), we obtain the amplitudes of
the left-going and right-going waves. Then the numerical fluxes in the Godunov-
type numerical scheme are determined as follows:
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Finally, the Godunov-type scheme is expressed in the form
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This is the standard form for the wave-propagation algorithm [34]. Within
the wave-propagation algorithm, every discontinuity in parameters is taken into
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account by solving the Riemann problem at each interface between discrete
elements. The reflection and transmission of waves at each interface are handled
automatically for the considered inhomogeneous media.

2.2.3 Second-order corrections

The scheme considered above is formally first-order accurate only. To
increase the order of accuracy, we rewrite the numerical scheme as
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1             (2.21)

where up
n  equals the upwind flux (or Godunov flux) obtained from equation

(2.20). The term k
nF~  is used to update the solution so that second order accuracy

is achieved. The flux for the second-order Lax-Wendroff scheme may be written
as the Godunov flux plus a correction [34],
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where AAA . Hence, a natural choice for F~  is
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The Godunov-type scheme exhibits strong numerical dissipation, and
discontinuities in the solution are smeared, causing low accuracy. The Lax-
Wendroff scheme, on the other hand, is more accurate in smooth parts of the
solution. However, near discontinuities, numerical dispersion generates
oscillations, also reducing the accuracy. A successful approach to suppress these
oscillations is to apply flux limiters [23, 30, 31, 32].

2.2.4 The conservative wave propagation algorithm

For the conservative wave-propagation algorithm [9], the solution of the
generalized Riemann problem is obtained by using the decomposition of the flux
difference 11 nnnn QfQf  instead of the decomposition (2.11):
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The waves I
nL  and II

nL  are still proportional to the eigenvectors of the matrix
A
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and the corresponding numerical scheme has the form
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The coefficients I  and II  are determined from the solution of the system
of linear equations
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As it is shown in [9], the obtained algorithm is conservative and second-
order accurate on smooth solutions.

2.3 Excess quantities and numerical fluxes

We could simply apply the numerical scheme described in the previous
sections to simulate the wave propagation in periodic media. However, the
splitting of the body into a finite number of computational cells and averaging
all the fields over the cell volumes leads to a situation known in
thermodynamics as “endoreversible system” [29]. This means that even if the
state of each computational cell can be associated with a corresponding local
equilibrium state (and, therefore, temperature and entropy can be defined as
usual), the state of the whole body is a non-equilibrium one. The computational
cells interact with each other, which leads to the appearance of excess quantities.
In the admitted non-equilibrium description [39], both stress and velocity are
represented as the sum of the averaged (local equilibrium) and excess parts:

Vvv,                  (2.28)

Here  and v  are averaged fields and  and V are the corresponding
excess quantities. Therefore, we rewrite a first-order Godunov-type scheme
(2.10) in terms of the excess quantities
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Here an overbar denotes averaged quantities, a superscript k denotes a time
step, a subscript n denotes the number of the computational cell, while t and x
are time step and space step, respectively. Though excess quantities are
determined formally everywhere inside computational cells, we need to know
only their values at the boundaries of the cells, where they play the role of
numerical fluxes. To determine the values of the excess quantities at the
boundaries between computational cells, we apply the jump relation for the
linear momentum [13], which is reduced in the isothermal case to

0            (2.31)

Similarly, the jump relation following from the kinematic compatibility
(2.2) reads

0Vv            (2.32)

It should be noted that the two last jump conditions can be considered as
the continuity of genuine unknown fields at the boundaries between
computational cells, which is illustrated in Fig. 2.1.

Fig. 2.1  Stresses in the bulk

The values of the excess stresses and excess velocities at the boundaries
between computational cells are not independent [15]. Considering Riemann
invariants at the interface between computational cells, one can see that

0nnnn Vc            (2.33)

01111 nnnn Vc           (2.34)
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i.e., the excess quantities depend on each other at the cell boundary.

2.3.1 Excess quantities at the boundaries between cells

Rewriting the jump relations (2.31), (2.32) in the form

11 nnnn               (2.35)

11 nnnn vvVV               (2.36)

and using the dependence between excess quantities (equations (2.33) and
(2.34)), we obtain then the system of linear equations for the determination of
the excess velocities

11 nnnn vvVV                 (2.37)
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In matrix notation the latter system of equations has the form
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Comparing the obtained equation with equation (2.30), we conclude that
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This means that the excess quantities following from non-equilibrium jump
relations at the boundary between computational cells correspond to the
numerical fluxes in the conservative wave-propagation algorithm. The
representation of the wave-propagation algorithm in terms of the excess
quantities given here is formally identical to its conservative form [9]. The
advantage of the new representation manifests itself at discontinuities, for which
jump relations cannot be reduced to the continuity of true values, e.g., at phase-
transition fronts or cracks.

2.4 One-dimensional waves in periodic media

As the first example, we consider the propagation of a pulse in a periodic
medium. The initial form of the pulse is given in Fig. 2.2, where the periodic
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variation in density is also shown by dashed lines. For the test problem, the
materials are chosen as polycarbonate (  = 1190 kg/m3, c = 4000 m/s) and Al
6061 (  = 2703 kg/m3, c=6149 m/s). We apply the numerical scheme (2.29) and
(2.30) for the solution of the system of equations (2.1)–(2.3). The corresponding
excess quantities are calculated by means of equations (2.35)–(2.38). As it was
noted, we can exploit all the advantages of the wave-propagation algorithm,
including second-order corrections and transversal propagation terms [31].
However, no limiters are used in the calculations. Suppressing spurious
oscillations is achieved by means of using a first-order Godunov step after each
three second order Lax-Wendroff steps. This idea of composition was invented
in [36]. Calculations are performed with Courant-Friedrichs-Levy number equal
to 1. The simulation result for 4000 time steps is shown in Fig. 2.3. We observe
a distortion of the pulse shape and a decrease in the velocity of the pulse
propagation in comparison to the maximal longitudinal wave velocity in the
materials. These results correspond to the prediction of the effective media
theory [41] both qualitatively and quantitatively [23].

Fig. 2.2  Initial pulse shape. Reproduced from [12].

Fig. 2.3  Pulse shape at time step 4000. Reproduced from [12].

It should be noted that the effective media theory [41] leads to the
dispersive wave equation
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where u is the displacement, p is the periodicity parameter, and ca and cb are
parameters of the effective media [22], instead of the wave equation following
from equations (2.1)–(2.3)
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Equation (2.41) exhibits both dispersion (fourth-order space derivative) and
the alteration in the longitudinal wave speed.

2.5 One-dimensional weakly nonlinear waves in periodic media

In the next example, we will see the influence of the materials’ nonlinearity
on the wave propagation. To close the system of equations (2.1) and (2.2) in the
case of weakly nonlinear media we apply a simple nonlinear stress-strain
relation

Bc 12           (2.43)

where B is a parameter of nonlinearity, the values and sign of which are
supposed to be different for hard and soft materials.

Fig. 2.4  Pulse shape at time step 400. Nonlinear case.

The solution method is almost the same as before. The approximate
Riemann solver for the nonlinear elastic media (equation (2.43)) is similar to
that used in [33, 35]. A modified longitudinal wave velocity ˆ c, following the
nonlinear stress-strain relation (2.43), is applied at each time step in the
numerical scheme (2.29) and (2.30):
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Bcc 21ˆ             (2.44)

instead of the piecewise constant one corresponding to the linear case. We
consider the same pulse shape and the same materials (polycarbonate and Al
6061) as in the case of the linear periodic medium. However, the nonlinear
effects appear only for a sufficiently high magnitude of loading. The values of
the parameter of nonlinearity B were chosen as 0.24 for Al 6061 and 0.8 for
polycarbonate. The results of the simulations corresponding to 400, 1600, and
5200 time steps are shown in Figs. 2.4–2.6.

Fig. 2.5  Pulse shape at time step 1600. Nonlinear case.

Fig. 2.6  Pulse shape at time step 5200. Nonlinear case. Reproduced from [12].

We observe that an initial bell-shaped pulse is transformed into a train of
soliton-like pulses propagating with amplitude-dependent speeds. Such kind of
behavior was first reported in [33], where these pulses were called “stegotons”
because their shape is influenced by the periodicity. In principle, the soliton-like
solution could be expected because if we combine the weak nonlinearity (2.43)
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with the dispersive wave equation in terms of the effective media theory (2.41),
we arrive at the Boussinesq-type equation
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which possesses soliton-like solutions.

2.6 One-dimensional linear waves in laminates

There are three basic length scales in wave propagation phenomena:
– the typical wavelength ;
– the typical size of the inhomogeneities d;
– the typical size of the whole inhomogeneity domain l.
In the case of infinite periodic media considered above the third length

scale was absent. Therefore, it may be instructive to consider wave propagation
in a body where the periodic arrangement of layers of different materials is
confined within a finite spatial domain.

Fig. 2.7  Length scales in laminate.

To investigate the influence of the size of the inhomogeneity domain, we
compare the shape of the pulse in the homogeneous medium with the
corresponding pulse transmitted through the periodic array with a different
number of distinct layers (Fig. 2.7). We use Ti (  = 4510 kg/m3, c = 5020 m/s)
and Al (  = 2703 kg/m3, c = 5240 m/s) as materials in the distinct layers in the
numerical simulations of linear elastic wave propagation.

We apply a stress pulse, the width  of which corresponds to 30 x ( x is
the space step)

tt
t

155.0cosh
2

2              (2.46)
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at the left end of the domain (Fig. 2.7), and record the resulting pulse at x =
4000 x. The location is indicated by the dashed line in Fig. 2.7. The results are
presented in Figs. 2.8–2.10 (dashed lines). The reference pulse calculated for
homogeneous  media  is  drawn  with  a  solid  line.  As  can be  observed,  if the

Fig. 2.8  Pulse shape at 4000 time steps (d  = 64 x, l  = 1000 x).

Fig. 2.9  Pulse shape at 4000 time steps (d  = 32 x, l  = 1000 x).

Fig. 2.10  Pulse shape at 4000 time steps (d  = 8 x, l  = 1000 x).
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wavelength is less then the size of the inhomogeneity (d ), we have a strong
dispersion of the pulse, i. e., a separation of the wave into components of various
frequencies (Figs. 2.8 and 2.9). This dispersion is not so strong if, vice versa, the
size of the inhomogeneity d is less then the wavelength  (Fig. 2.10). Thus,
waves in laminates demonstrate dispersive behavior, which is governed by the
relations between the characteristic length scales. Taking into account nonlinear
effects, we have seen the soliton-like wave propagation. Both nonlinearity and
dispersion effects are observed experimentally in laminates under shock loading.

2.7 Nonlinear elastic waves in laminates under impact loading

Though the stress response to an impulsive shock loading has been very
well understood for homogeneous materials, the same cannot be said for
heterogeneous systems. In heterogeneous media, scattering due to interfaces
between dissimilar materials plays an important role for shock wave dissipation
and dispersion [25]. Diagnostic experiments for the dynamic behavior of
heterogeneous materials under impact loading are usually carried out using a
plate impact test configuration under a one-dimensional strain state. These
experiments were recently reviewed in [19, 20]. For almost all the experiments,
the stress response has shown a sloped rising part followed by an oscillatory
behavior with respect to a mean value [19, 20]. Such behavior in the periodically
layered systems is consistently exhibited in the systematic experimental work
[46]. The specimens used in the shock compression experiments [46] were
periodically layered two-component composites prepared by repeating a
composite unit as many times as necessary to form a specimen with the desired
thickness (see Fig. 2.11). A buffer layer of the same material as the soft
component of the specimen was used at the other side of the specimen. A
window in contact with the buffer layer was used to prevent the free surface
from serious damage due to unloading from shock wave reflection at the free
surface. Shock compression experiments were conducted by employing a
powder gun loading system, which could accelerate a flat plate flyer to a
velocity in the range of 400 m/s to about 2000 m/s. In order to measure the
particle velocity history at the specimen window surface, a velocity
interferometry system was constructed, and to measure the shock stress history
at selected internal interfaces, the manganin stress technique was adopted. Four
different materials, polycarbonate, 6061-T6 aluminium alloy, 304 stainless steel,
and glass, were chosen as components. The selection of these materials provided
a wide range of combinations of shock wave speeds, acoustic impedance and
strength levels. The influence of multiple reflections of internal interfaces on
shock wave propagation in the layered composites was clearly illustrated by the
shock stress profiles measured by manganin gages. The origin of the observed
structure of the stress waves was attributed to material heterogeneity at the
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interfaces. For high velocity impact loading conditions, it was fully realized that
material nonlinear effects may play a key role in altering the basic structure of
the shock wave. An approximate solution for layered heterogeneous materials
subjected to high velocity plate impact has been developed in [19, 20]. For
laminated systems under shock loading, shock velocity, density and volume
were related to the particle velocity by means of an equation of state. The elastic
analysis was extended to shock response by incorporating the nonlinear effects
through computing the shock velocities of the wave trains and superimposing
them. As pointed out in [46], stress wave propagation through layered media
made of isotropic materials provides an ideal model to investigate the effect of
heterogeneous materials under shock loading, because the length scales, e.g., the
thickness of individual layers, and other measures of heterogeneity, e.g.,
impedance mismatch, are well defined. Since the impact velocity in shock
experiments is sufficiently high, various nonlinear effects may affect the
observed behaviour. That is why we apply numerical simulations of finite-
amplitude nonlinear wave propagation to the study of scattering, dispersion and
attenuation of shock waves in layered heterogeneous materials. The geometry of
the problem follows the experimental configuration described in [46] (Fig.
2.12).

Fig. 2.11  Experimental setting. Reproduced from [46].

Fig. 2.12  Geometry of the problem.



38

We consider the initial-boundary value problem of impact loading of a
heterogeneous medium composed of alternating layers of two different
materials. The impact is provided by a planar flyer of length L, which has an
initial velocity v0. A buffer of the same material as the soft component of the
specimen is used to eliminate the effect of wave reflection at the stress-free
surface. The densities of the two materials are different, and the materials’
response to compression is characterized by the distinct stress-strain relations

( ). Compressional waves propagating in the direction of the layering are
modelled by the one-dimensional hyperbolic system of conservation laws (2.1) –
(2.2). Initially, stress and strain are zero inside the flyer, the specimen, and the
buffer, but the initial velocity of the flyer is nonzero:

Lxvxv 0,0, 0           (2.47)

where L is the size of the flyer. Both left and right boundaries are stress-free.
Instead of an equation of state like the one used in [19, 20], we apply a simpler
nonlinear stress-strain relation ( ) for each material (2.43) (cf. [38]):

Bc 12            (2.48)

where, as previously,  is the density, c is the conventional longitudinal wave
speed, and B is a parameter of nonlinearity, the values and signs of which are
supposed to be different for hard and soft materials. We apply the same
numerical scheme as in the previous example. The results of the numerical
simulations compared with experimental data [46] are presented in the next
section.

2.7.1 Comparison with experimental data

Figure 2.13 shows the measured and calculated stress time history in the
composite, which consists of 8 units of polycarbonate, each 0.74 mm thick, and
of 8 units of stainless steel, each 0.37 mm thick. The material properties of the
components are extracted from [46]: the density  =1190 kg/cm3 and the sound
velocity c=1957 m/s for the polycarbonate;  =7890 kg/cm3 and c=5744 m/s for
the stainless steel. The stress time histories correspond to the distance 0.76 mm
from the impact face. Calculations are performed for the flyer velocity 561 m/s
and the flyer thickness 2.87 mm.
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Fig. 2.13  Comparison of shock stress time histories corresponding to the experiment
112501 [46]. Reproduced from [11].

The results of the numerical calculations depend crucially on the choice of
the parameter of nonlinearity B. We choose this parameter from the condition to
match the numerical simulations to the experimental results. Time histories of
particle velocity for the same experiment are shown in Fig. 2.14. It should be
noted that the particle velocity time histories correspond to the boundary
between the specimen and the buffer. As one can see, both stress and particle
velocity time histories are well reproduced by the nonlinear model with the same
values of the nonlinearity parameter B.

Fig. 2.14  Comparison of particle velocity time histories corresponding to the
experiment 112501 [4639]. Reproduced from [11].

As it is pointed out in [46], the influence of multiple reflections of internal
interfaces on shock wave propagation in the layered composites is clearly
illustrated by the shock stress time histories measured by manganin gages.
Therefore, we focus our attention on the comparison of the stress time histories.
Figure 2.15 shows the stress time histories in the composite, which consists of
16 units of polycarbonate, each 0.37 mm thick, and of 16 units of stainless steel,
each 0.19 mm thick. The stress time histories correspond to the distance 3.44
mm from the impact face. Calculations are performed for the flyer velocity 1043
m/s and the flyer thickness 2.87 mm. The nonlinearity parameter B is chosen
here to be 2.80 for polycarbonate and zero for stainless steel. Additionally, the
stress time history corresponding to the linear elastic solution (i. e., the
nonlinearity parameter is zero for both components) is shown. It can be seen that
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the stress time history computed by means of the considered nonlinear model is
very close to the experimental one. It reproduces three main peaks and decreases
with distortion, as it is observed in the experiment [46].

Fig. 2.15  Comparison of shock stress time histories corresponding to the experiment
110501 [46]. Reproduced from [11].

In Fig. 2.16 the same comparison is presented for the same composite as in
Figure 2.15, only the flyer thickness is different (5.63mm). This means that the
shock energy is approximately twice as high as that in the previous case. The
nonlinearity parameter B is also increased to 4.03 for polycarbonate and remains
zero for stainless steel. As a result all 6 experimentally observed peaks are
reproduced well.

Fig. 2.16  Comparison of shock stress time histories corresponding to the experiment
110502 [46]. Reproduced from [11].



41

In Fig. 2.17 the comparison of stress time histories is presented for the
composite consisting of 160.37 mm thick units of polycarbonate and 160.20 mm
thick units of D-263 glass. The material properties of D-263 glass are [46]: the
density =2510 kg/cm3 and the sound velocity c = 5703 m/s. The distance
between the measurement point and the impact face is 3.41 mm. Corresponding
flyer velocity is 1079 m/s and the flyer thickness is 2.87 mm. The nonlinearity
parameter B is chosen to be equal 5.025 for polycarbonate and zero for D-263
glass. Again, the stress time history corresponding to the linear elastic solution
(i. e., the nonlinearity parameter is zero for both components) is shown. As one
can see, the stress time history corresponding to the nonlinear model reproduces
all 5 peaks with the same amplitude as observed experimentally.

Fig. 2.17  Comparison of shock stress time histories corresponding to the experiment
112301 [46]. Reproduced from [11].

As it can be seen, the agreement between the results of the calculations and
the experiments is achieved by the adjustment of the nonlinearity parameter B. It
follows that the nonlinear behaviour of the soft material is affected not only by
the energy of the impact, but also by the scattering induced by internal
interfaces. It should be noted that the influence of the nonlinearity is not
necessarily small. In the numerical simulations, which match with the
experiments, the increase of the actual sound velocity of polycarbonate follows.
It may be up to two times higher in comparison to the linear case. This
conclusion is really surprising, but supported by the stress time histories. Thus,
the application of a nonlinear stress-strain relation for materials in numerical
simulations of the plate impact problem of a layered heterogeneous medium
shows that a good agreement between computations and experiments can be
obtained by adjusting the values of the parameter of nonlinearity [11]. In the
numerical simulations of the finite-amplitude shock wave propagation in
heterogeneous composites, the flyer size and velocity, the impedance mismatch
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of hard and soft materials, as well as the number and size of layers in a specimen
were the same as in the experiments [46]. Moreover, a nonlinear behaviour of
materials was also taken into consideration. This means that combining
scattering effects induced by internal interfaces and physical nonlinearity in
material behaviour into one nonlinear parameter, provides the possibility to
reproduce the shock response in heterogeneous media observed experimentally.
In this context, the parameter B is actually influenced by (i) the physical
nonlinearity of the soft material and (ii) the mismatch of the elasticity properties
of soft and hard materials. The mismatch effect is similar to the type of
nonlinearity characteristic to materials with different moduli of elasticity for
tension and compression. The mismatch effect manifests itself due to wave
scattering at the internal interfaces, and, therefore, depends on the structure of a
specimen. The variation of the parameter of nonlinearity confirms the statement
that the nonlinear wave propagation is highly affected by the interaction of the
wave with the heterogeneous substructure of a solid [46]. It should be noted that
layered media do not exhaust all possible substructures of heterogeneous
materials. Another example of a heterogeneous substructure is provided by
functionally graded materials.

2.8 Waves in functionally graded materials

Functionally graded materials (FGMs) are composed of two or more phases
that are fabricated so that their compositions vary more or less continuously in
some spatial direction and are characterized by nonlinear gradients that result in
graded properties. Traditional composites are homogeneous mixtures, and
therefore they involve a compromise between the desirable properties of the
component materials. Since significant proportions of an FGM contain the pure
form of each component, the need for compromise is eliminated. The properties
of both components can be fully utilized. For example, the toughness of a metal
can be mated with the refractoriness of a ceramic, without any compromise in
the toughness of the metal side or the refractoriness of the ceramic side.
Comprehensive reviews of current FGM research may be found in the papers
[28] and [37], and in the book [42]. Studies of the evolution of stresses and
displacements in FGMs subjected to quasistatic loading [42] show that the
utilization of structures and geometry of a graded interface between two
dissimilar layers can reduce stresses significantly. Such an effect is also
important in the case of dynamical loading, where energy-absorbing applications
are of special interest. We consider the one-dimensional problem in
elastodynamics for an FGM slab in which material properties vary only in the
thickness direction. It is assumed that the slab is isotropic and inhomogeneous
with the following fairly general properties [21]:
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where  is the mass density, l is the thickness, a, m, and n are arbitrary real
constants with a > 1, while E0 and 0 are the elastic constant and density at x =
0. The elastic constant E0 is determined under the assumption that yy = zz and
the slab is fully constrained at infinity. It can thus be shown that
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with E(x) and (x) being the Young modulus and the Poisson ratio of the
inhomogeneous material. It is assumed that the slab is at rest for t  0, therefore,
the following initial conditions are valid:

00,,0,0 xtv                  (2.51)

The boundary condition at x = 0 is

0,00, txv   (“fixed” boundary)                (2.52)

At x = l, the slab is subjected to a stress pulse given by

0,, 0 ttftlxx                 (2.53)

where the constant 0 is the magnitude of the pulse, the function f describes its
time profile, and without any loss in generality, it is assumed that |f|  1.
Following [21], we consider an FGM slab that consists of nickel and zirconia.
The thickness of the slab is l = 5 mm. On one surface the medium is pure nickel
and on the other surface pure zirconia, while the material properties E0(x) and
(x) vary smoothly in thickness direction. A pressure pulse defined by

000, ttHtHtftlxx           (2.54)

is applied to the surface x = l and the boundary x = 0 is “fixed”. Here H is the
Heaviside function. The pulse duration is assumed to be t0 = 0.2 s. The
properties of the constituent materials used are given in Table 2.1 [21].



44

Table 2.1 Properties of materials

The material parameters for the FGMs used are [21]: a = 0.12354, m =
1.8866, and n = 3.8866. The stress is calculated up to 12 s (the propagation

time of the plane wave through the thickness l = 5 mm is approximately 0.77 s
in pure ZrO2 and 0.88 s in Ni).

Fig. 2.18  Variation of stress with time in the middle of the slab. Reproduced from [12].

Numerical simulations were performed by means of the same algorithm as
above. The comparison of the results of the numerical simulation and of the
analytical solution [21] for the time dependence of the normalized stress xx/ 0 at
the location x/l = 1/2 is shown in Fig. 2.18. As one can see, it is difficult to make
a distinction between analytical and numerical results. This means that the
applied algorithm is well suited for the simulation of wave propagation in FGM.
A nonlinear behaviour for the same materials with the nonlinearity parameter A
= 0.19 is shown in Figure 2.19. For the comparison, calculations were performed
with the value 0.9 of the Courant number both in the linear and nonlinear case.
The amplitude amplification and pulse shape distortion in comparison with the
linear case is clearly observed. In addition, the velocity of a pulse in the
nonlinear material is increased.

2.9 Concluding remarks

As we have seen, linear and non-linear wave propagation in media with
rapidly varying properties as well as in functionally graded materials can be
successfully simulated by means of the modification of the wave-propagation
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algorithm based on the non-equilibrium jump relation for true inhomogeneities.
It should be emphasized that the used jump relation expresses the continuity of
genuine unknown fields at the boundaries between computational cells. The
applied algorithm is conservative, stable up to Courant number equal to 1, high-
order accurate, and thermodynamically consistent. However, the main advantage
of the presented modification of the wave-propagation algorithm is its
applicability to the simulation of moving discontinuities. This property is related
to the formulation of the algorithm in terms of excess quantities. To apply the
algorithm to moving singularities, we simply should change the non-equilibrium
jump relation for true inhomogeneities to another nonequilibrium jump relation
valid for quasi-inhomogeneities.

Fig. 2.19  Variation of stress with time in the middle of the slab. Nonlinear case.
Reproduced from [12].



46

3 ELECTROMAGNETIC WAVE PROPAGATION THROUGH
INHOMOGENEOUS MATERIAL LAYERS

We use Maxwell’s equations in a sourceless, inhomogeneous medium with
continuous permeability µ (r) and permittivity  (r) to study the wave
propagation. The general form of the wave equation is derived and by virtue of
some physical assumptions, including µ and  as functions of z, the equation has
been simpli ed. Finally by introducing a smooth step dielectric variable we
solve the wave equation in the corresponding medium which is in conform with
the well known results. Exact double-layer solution in analytic form has been
given in terms of the Heun functions.

3.1 Introduction

Having the electric permittivity of a system to be an isotropic and
continuous spatial function has numerous applications in chemistry, biophysics
and electronics [47–53]. As an example, in heavy doped regions the dielectric
constant changes with the density of impurity and so with the position. Such a
region can be found in bipolar transistors, p  n junctions and solar cells [48]. It
is also common that permittivity is assumed to be an isotropic spatial function
that changes continuously in solvent region that allows us to formulate a
computational scheme [49]. Other inhomogeneous medium can be seen in a
biological membrane, like a lipid bilayer surrounded by water. For this system
permittivity changes from a large value in the surrounding water to a lower
value in the bilayer [50]. Also in electric double layers (EDL) due to ion
accumulation and hydration in the region we face with permittivity variation,
with effects on electric potential and interaction pressure between surfaces [51].
The main concern in such studies is the behavior of a non-uniform mixed
medium (a chemical solution or a p  n junction) upon an external static electric

eld using the Poisson-Boltzmann equation. This differential equation (linear or
non-linear form) can describe the electrostatic effects extensively, ranging from
a bimolecular system [52] to an electrolyte solution [53]. The most regular form
of this equation can be written as

i B

i
iif Tk

)r(qzexp)r(qzcrrr                 (3.1)

In this equation  (r) is the variable dielectric,  (r) is the electrostatic
potential and f (r) represents the charge density of the medium. Further, zi and
ci  show the charge and the concentration of ions, T is the temperature, B is the
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Boltzmann constant and  (r) is a factor that depends on the accessibility of a
position to ions in the medium.

In the present work, we study the wave propagation inside inhomogeneous
materials with the electric permittivity (r) and the magnetic permeability µ (r)
as some isotropic and continuous spatial functions. Without external sources
(i.e. free =  0,  Jfree =  0) the wave equation for the electric component of the
electromagnetic wave (EMW) propagating in the medium with  = (r)  and µ =
µ(r) is found to be

EEE
t
EE ~~~..~
2

2
2                  (3.2)

in which ln~  and ln~ . A similar equation can be written for magnetic
component of the EMW but we shall nd B using one of the Maxwell’s
equation. A general approach toward the solution for Eq. (3.2) may not be
possible due to the complicated form of the right hand side of the equation but
by some simpli cations we shall nd exact analytical solution for this wave-type
equation. There are some attempts to consider propagation of the
electromagnetic waves in the context of the general equation given in (3.2). For
the case that  and µ are constant our equation reduces to the standard wave-
equation which can be found in every electromagnetic book. R Diamant et al
have considered this problem in number of papers [54–58]. In their papers, R
Diamant et al assume that µ = µ0 and the results are mainly numeric. Although
having numerical solution has the worth in its own right, herein we are
interested to obtain exact analytical solutions for the tangent hyperbolic potential
in the azimuthal direction. For single layer our solution is expressed in
hypergeometric functions while the double layer case in terms of the rare Heun
functions. It is our belief that taking different pro les yield also exact solutions
expressible in terms of known mathematical functions. In obtaining exact
solutions we abide by the constraint condition µ  =  µ0 =constant, through our
inhomogenous layers. We shall assume further that the  and µ vary only in one
direction which is also the direction of propagation. This direction throughout
the paper will be z direction.

Organization of the paper is as follows. In Sec. 3.2 we nd the form of the
wave equation in a general system of coordinates and through some
speci cations we simplify the wave equation. In Sec. 3.3 we introduce the
smooth step dielectric constant and solve the wave equation accordingly. Sec.
3.4 solves the problem of smooth double layers. Our conclusion is presented in
Sec. 3.5.
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3.2 The wave equation

We start with the sourceless ( free = 0,  Jfree = 0) Maxwell’s equations in a
medium with variable permittivity and permeability µ which are given by

,0.B ,0.D
t
BE    and

t
DH (3.3)

Herein D =  is the displacement vector, E is the electric eld, BH 1  is

the auxiliary magnetic eld and B is the magnetic eld. To obtain Eq. (3.2) from
the Maxwell’s equations (3.3) we start from Faraday’s law and we act  × from
the left i.e.,

t
BE , which yields
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and equivalently
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Next we rearrange the terms to get
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Finally one nds
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          (3.7)

which is nothing but Eq. (3.2). We comment that in nding Eq. (3.7) we have
used the mathematical formula: AA.A 2  and

BAABB.AA.BB.A  and ln~  and ln~ . Upon
taking into account that in our study  = (z) and µ  =  µ(z) the general wave
equation (3.2) becomes



49

,ˆ~~ˆ~.~
2

2
2 EkkEE

zt
E              (3.8)

in which a prime ‘ denotes
dz
d . Our further simpli cation is to consider that the

electric and magnetic components of the EMW vary in z direction only. This
assumption is due to the symmetry of the medium which is physically
acceptable. Our latter equation then reduces e ectively into the following
1 dimensional three equations for the electric components
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Next we consider

tiezEtrE )(),( (3.12)

in which  is the angular frequency of the wave. A substitution in (3.9) and
(3.10) yields:
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for i  = x,  y. To have the third equation (i.e. Eq. (3.11)) satis ed we set Ez = 0
(i.e. no longitudinal component) which is equivalent with the propagation of the
wave in z direction. Having symmetry with respect to x and y one can always
rotate the system of coordinates in z direction such that )(zE aligns with one of
the coordinates (say x). Hence we are left with only one equation in x direction
which is expressed as
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and the other two components of the electric field are zero i.e.,
ti

x ezExtrE )(ˆ),( . To do further investigation one must know the form of  and
 in terms of z. For instance, with  = 0 = cont. and  = 0 = nt. one finds
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which admits
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where
c

k  and the plane wave is propagating in ±z direction. Our nal remark

in this section is on the form of the wave equation: if one considers µ’ =  0 it
reduces to the form of the standard wave equation, but owing to the form of

= (z) its solution di ers from the standard wave equation.

3.3  Smooth step dielectric constant

As an example let’s consider  =  Km 0 = cons. and  =  Ke (z) 0, where
Ke(z) stands for a smooth function of z given by [57]

,)tanh(1
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)( 2
2 azKKzK e               (3.17)

in which a is a positive real constant, K = K2 - K1, K2 = limz Ke(z) and K1 =
limz  - Ke(z). The wave equation (3.13) becomes
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which after de ning the following new parameters
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and considering a new variable
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together with a rede nition of the electric eld

,)( FzE iv
x                 (3.21)

it turns (with
d
d' ) into
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Having singularities at  = 0 and  = 1 suggests to replace further

GF 1               (3.23)

which after some manipulation and choices
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it reduces to the following Hypergeometric di erential equation (HDE) [59]
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Comparing with the standard form of the Hypergeometric DE
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one nds

,
2
1 222 kvikvaa
a

           (3.28)



52

,
2
1 222 kvikvaa
a

           (3.29)
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The general solution for the above HDE can be written as

;2;1,1;;, 1
21 FCFCG (3.31)

in which C1 and C2 are two integration constants. Going to the original variables
now, the general solution for the Electric eld is given by
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where )1(11 and 1
22 )1( . Let us consider that the wave comes

from z = and goes toward z = + . Also we recall that limz Ke(z)=K2=cons.

which implies that ivzzKK
c
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xz eezE m 2~)(lim . Once z  +  it is clear that
= e 2az 0, and upon knowing that F ( , ; ; 0) = 1, makes the limit of the

electric eld to be
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This suggests that for this choice we must set 0~
2C , which casts the

solution into
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Herein we consider the amplitude of the transmitted wave as E02.
The limit of z  (and consequently ) can be found once we

apply the following properties for the Hypergeometric functions [60]
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which upon (3.32), one nds
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Now one can show that
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which nally yields
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Note that

0201
)( EE (3.42)

is the amplitude of the transmitted wave for z  and

0201
)(' EE                (3.43)

is the amplitude of the re ected wave for z . Once more we comment that
E02, is the amplitude of the transmitted wave while E01 and E’01 are  the
amplitudes  of   the incident  and  re ected  waves,  respectively.   Having   these
de nitions  together  with   the above equations  one  obtains   the re ection  and
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Fig. 3.1: A plot of )(Re zEx  in terms of z together with Ke (z) for certain values of the
parameters. The smooth changes in the dielectric constant and amplitude of the electric eld

are clear.

transmission coe cients of the wave as
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As one observes R and T depend on ,  and  which are complex
parameters. This means that R and T are complex numbers too. In a particular
case in which ,  and  are given one can calculate the value of the Gamma
functions and accordingly R and T are obtained. Irrespective to the value of the
physical parameters, there exist always a complex number assigned to R and T.
In the limit of a sharp step dielectric i.e., a  one nds
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where n1 and n2 are the optical indices of the spaces at z < 0 and z > 0,
respectively [61]. In Fig. 3.1 we plot )(Re zEx  in terms of z together with Ke(z)
for certain values of parameters. The smooth change in the dielectric constant
and amplitude of the electric eld are clear.

To complete our solution we rewrite the electric eld of a plane wave
solution which propagates in positive z direction,
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together with the magnetic eld which can be found by applying the same
Maxwell’s equation as we started with i.e.,
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BE . Furthermore we need

also to use [16]
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3.4 Smooth double layers

Another application of the general equation is to nd the EMW passing
through a double layer thick shell. For this let us consider Km = const. with

.tanhtanh
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Here a is a constant which in the limit a , L becomes the thickness of a
at double layer dielectric of dielectric constant K2 located inside another

medium of dielectric constant K1. Next, we rewrite the wave equation (3.13) in
this matter:
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in which  and  are de ned in (3.19). We follow a similar change of variable
given by (3.21) which modi es the latter equation as
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in which  = exp(2aL). Now, we replace E ( ) = H ( ) with  = i /2a to nd
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which is a Heun di erential equation [63] of the form
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in which  =  +  -  -  + 1 with a general solution

w (z) = C1 Heun G (p, q, , , , , z) + C2z1- HeunG (p, q - (p  + ) (  - 1),
 -  + 1,  -  + 1, 2 - , , z).            (3.56)

Herein C1 and C2 are two integration constants. Following the general
solution we nd the nal solution of the wave equation as
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Upon considering HeunG (p, q, , , , ,  0)  =  1, one easily nds that
)exp()exp(lim 21

0
ikzCikzCEz  which after assuming that the wave starts

from z =  and propagates toward z = +  one must set C2 = 0 and C1 = E03.
These, therefore, imply
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where E03 is the amplitude of the electric eld at the limit z  + . Fig. 3.2
displays the continuous passage of EMW through medium of the double-layers
located at z = 0 and z = 4.

Fig. 3.2: The incoming EMW from z < 0 encounters with the rst layer at z = 0. Re(Ex(z)) has
similar structure after crossing the second layer at z = 4. In between, 0 < z < 4, the oscillatory

behaviour evidently changes.

3.5 Conclusion

In conclusion we have considered media with variable permeability and
permittivity varying with z direction, alone. The general form of the wave
equation in such a non-uniform medium is presented. Some simpli cations have
been considered such as,  and µ are only functions of z which is also the
direction of the propagation of the possible EMW. In such a framework we have
used the sourceless Maxwell’s equations to nd a wave equation for the
propagation of the EMW. We solved the wave equation for a smooth-step,
variable dielectric given the constant permeability. In the limits we obtain the
well known re ection and transmission coefficients of the plane waves in
normal incidence on the interface plane between two dielectrics. Our results
have been presented analytically and schematically. Studying this interesting
problem further with more layers is our future plan. The applications of such
extremal theories may not be so clear yet but we believe that with the fast
developments of the new detecting methods of cancerous cells or organs in
biomedical optics, such detailed theories will contribute to have more accurate
results. Finally, in the present work we have solved the smooth double layer
problem in terms of the Heun’s functions.
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4. IMPURITY EFFECTS ON THE BAND STRUCTURE OF ONE-
DIMENSIONAL PHOTONIC CRYSTALS: EXPERIMENT AND THEORY

We study the effects of single impurities on the transmission in microwave
realizations of the photonic Kronig–Penney model, consisting of arrays of
Teflon pieces alternating with air spacings in a microwave guide. As only the
first propagating mode is considered, the system is essentially one-dimensional
(1D) obeying the Helmholtz equation. We derive analytical closed form
expressions from which the band structure, frequency of defect modes and band
profiles can be determined. These agree very well with experimental data for all
types of single defects considered (e.g. interstitial and substitutional) and show
that our experimental set-up serves to explore some of the phenomena occurring
in more sophisticated experiments. Conversely, based on the understanding
provided by our formulae, information about the unknown impurity can be
determined by simply observing certain features in the experimental data for the
transmission. Further, our results are directly applicable to the closely related
quantum 1D Kronig–Penney model.

4.1 Introduction

Research on photonic crystals, theoretical and experimental, has been
sustained at a high intensity for several years, ever since the publications of
Yablonovitch [64] and John [65] in 1987. One interest for this research is the
potentially very high number of applications in optoelectronics (see, e.g.,
chapter VII of [66]). A substantial part of these studies concerns the study of
impurities or defects in one-, two- or three-dimensional (1D, 2D or 3D) photonic
crystals.

Impurities or defects in photonic crystals may sometimes be unwanted but
may also be extremely useful. For example, impurity states lying in a complete
photonic band gap can be used for a waveguide and thus be an essential part of
optical devices [67]. By introducing defects periodically in a perfect photonic
array, coupled cavity waveguides are formed. The coupling of the cavity modes
creates impurity bands which have potential applications for the design of high-
efficiency waveguides and waveguide bends [68, 69]. It is important to mention
that defects can be introduced in a controlled manner in photonic array
experiments, see e.g. [70]. There are promising theoretical results [81] that point
defects, in particular a substitutional defect in 3D crystals formed by a lattice of
air spheres on a silicon background, may be used as microcavities for localizing
light at a given point. Whence we appreciate the technological, as well as
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academic, importance of understanding the effects of various types of defects or
impurities.

There are several calculational methods for the treatment of impurities in
photonic crystals. These are based on plane wave expansion of the fields [72];
finite-difference timedomain algorithms [70, 73]; variational methods [71]; R-
matrix methods [74]; transfer-matrix methods [75], combined, if necessary, with
finite element methods; super-cell [76], Greenfunction, and tight-binding
methods (see e.g. [68]). Eigenfrequencies and eigenfunctions of defects can also
be calculated via the method of Sakoda [77] based on the numerical simulation
of the excitation process of the defect mode by a virtual oscillation dipole
moment, in conjunction with the finite-time domain algorithm.

On the other hand, for electronic periodic systems the calculation of
impurity states dates back to the mid-50s with the introduction of effective mass
theory [78, 79] Useful modern methods for the calculation of impurity levels are
the super-cell tight-binding methods [80], which are applicable to shallow, deep
and intermediate impurity levels [81].

In this work, we investigate experimentally and theoretically the effect of
single defects or impurities in the transmission of the electromagnetic field
through arrays formed by Teflon pieces alternating with air spacings. A closely
related system to ours has been studied by Pradhan and Watson [82] who looked
for effects of isolated impurities in a system formed by an array of coaxial
connectors.

It is well known that point defects can produce localized states in the gaps
[66, 77]. The first experimental observation in photonics was made by McCall et
al [83]. Can we observe thesein our experiment? How else do impurities
manifest themselves in the transmission curves? In this paper, we investigate
these questions for various types of single defects. We compare experimental
results with those obtained by the transfer matrix calculations, equation (4.13),
and point out the most prominent and typical transport features.

One purpose of this paper is to show that our experimental set-up can be
used as a testbed to study some of the phenomena occurring in more
sophisticated (and expensive) photonic or electronic experimental arrangements.
The second purpose is to show that our analytical expressions, derived in section
4 for the photonic Kronig–Penney model with single defects, are very helpful in
elucidating the various features in the band structure; in particular, the
frequencies of the defect modes and band profiles observed in the experiments.

We remark that since our system is described by the 1D Helmholtz
equation our results are directly applicable also to 1D semiconductor (electronic)
crystals formed, e.g., by sequences of quantum dots. Effects of irregularities
such as an additional scatterer or a quantum dot displaced from its regular
position have been the focus of many investigations, especially since these were
observed experimentally by Kouwenhoven et al [84] in the case of electronic
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transport in heterostructures and by McCall et al [83] in the case of photonic
crystals.

4.2. Experimental set-up and the model

The experimental set-up is shown in figure 4.1. It consists of a brass ring
where a microwave guide is cut out, in which several Teflon pieces, two carbon
absorbers and an antenna are inserted. Another antenna is fixed on the top plate
(not shown in the figure) covering the waveguide. The antennas are connected to
a network analyzer that allows the measurement of all matrix elements of the
scattering matrix. The absorbers are used to eliminate reflection at the ends of
the array and hence mimic a 1D scattering system with open ends. This circular
waveguide has been used, with metallic screws instead of Teflon pieces, to study
the microwave realization of the Hofstadter butterfly [85] and transport
properties of 1D on-site correlated disorder potentials [86].

Fig. 4.1. Experimental set-up. Left: overview of the waveguide. Right: enlargement of
the part close to the electric dipole antenna and the two carbon absorbers. The top brass plate
covering the waveguide is not shown. Thewaveguide has a total diameter of 78 cm, a depth A
= 1 cm and a width B = 2 cm. The frequency range of the first propagating mode is from 7.5
to 15 GHz. The length of the Teflon pieces shown is d0 = 4 cm and their index of refraction is
n = p2.08. In this picture, the spacing between all Teflon pieces is d = 4 cm.

In our experiment, the cut-off frequency for the lowest mode is
fmin=c/2B 7.5 GHz and the second mode opens at 15 GHz. All results presented
in this paper are restricted to the regime of the first propagating mode. Thus the
system is effectively 1D. Since the perimeter of the ring ( 234 cm) is much
larger than the maximum wavelength used in our experiments (2 <  < 4 cm),
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our theoretical model assumes, as an approximation, a linear set-up (see figure
4.2).

Fig. 4.2. The photonic Kronig–Penney model. The gray blocks are the idealized Teflon
pieces of length d’, the air spacing is d. an and bn are the amplitudes of the wavefunction in

the air spacing to the right of the nth Teflon piece.

For the lowest TE mode (Ex = 0) at f < 15 GHz the y-component of the
electric field Eyis also zero and the x component is
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The wavefunction (z) obeys the Helmholtz equation
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and nr  is the position-dependent index of refraction. In the case the
Teflon pieces are periodically spaced our system is the electromagnetic
counterpart of the quantum 1D Kronig–Penney model.

We use the transfer matrix approach to calculate the transmission. Since
both antennas are placed in the air, our transfer matrix should connect the wave
function amplitudes from air to air. Referring to figure 4.2, the transfer matrix Q
for a single cell connects the amplitudes (an, bn) and (an+1, bn+1):
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and k (k’) denotes the wavevector in air (Teflon pieces) (cf equation (4.2)). The
transfer matrix elements for a single cell are
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Due to preservation of flow and time reversibility it yields Q11 = Q22*, Q12
= Q21* and det(Q) = 1. The elements Qij are the same as in the quantum 1D
model of a square potential well, but with Ek 2 , 02' VEk  and V0 > 0.
From (4.2) k’ > k; thus, the Teflon piece acts as a well (V0 < 0) in quantum
mechanics, except that in the photonic array the ‘depth’ increases with
frequency.

The microwave vector network analyzers measure the full scattering matrix
S defined by
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In terms of the Q matrix elements, the S matrix reads
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The transmission T through a single cell is given by
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with Q12 and Q22 given by equations (4.4) and (4.5) for a single cell.
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Expression (4.9) together with equation (4.5) shows immediately that a
single Teflon piece becomes completely transparent at frequencies obeying the
relation

,'' mdk ,...3,2,1m              (4.10)

We shall refer to these frequencies as 1-Teflon resonances.
For an array of N equally spaced cells without any impurities or defects, we

need to evaluate Q to the Nth power; a numerical process that can be easily
performed. However, it is more illustrative to use the Cayley–Hamilton theorem
of linear algebra to get [87]–[89]
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          (4.11)

where  is the Bloch phase corresponding to the infinitely periodic array:

).sin()''sin()cos()''cos(cos 11 kddkkddkQ         (4.12)

Note that T = 1 not only when Q12 = 0 (i. e. at the 1-Teflon resonances) but
also whenever N  = ±n , n = 1, 2, . . . , N 1. The latter gives rise to N 1 peaks
with T = 1 in each transmission band since  shifts through  [87]–[90].
According to the above condition, the system of N = 2 Teflon pieces separated
by air becomes transparent when  = /2, which in turn implies TrQ = 0.  We
call these the two cell resonances emphasizing that it is not just two Teflon
pieces next to each other but separated by an air spacing. A little thought reveals
that the N 1 oscillations are centered around the two cell resonance frequency
(see also [89]).

Luna-Acosta et al [88] treat the case of the regular Kronig–Penney model
(i.e. periodic and no defects) where it is shown that equation (4.11) reproduces
most details of the experimental transmission data as a function of frequency for
all kinds of periodic arrays considered. Since we are concerned here with the
effects of the impurities, we show for comparison the theoretical and
experimental results for the transmission amplitude |S12| for an array of 16
equally spaced cells, with Teflon pieces of width d’ = 4.0 cm and air spacing of
width d = 4.0 cm, see figure 4.3(a).
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Fig. 4.3. Interstitial impurities for a 16 cell array with d = d’ = 4 cm. Dotted (solid) lines
are the experimental (theoretical) curves. The shaded regions mark the forbidden gaps, given
by the condition 2 < 1 (a) pure (impurity-free) array; (b) small Teflon piece (3.16 cm)
inserted in the center between the 3rd and 4th regular Teflon pieces, (c) small Teflon piece
(3.16 cm) inserted in the center between the 8th and 9th regular Teflon pieces. The crosses
(circles) mark the frequency values for the 1-Teflon-resonances (two cell resonance), see text.

For the experimental and theoretical curves to agree as well, it was
necessary to define some effective length for the length of the Teflon pieces and
the air spacings. That is, since the actual waveguide is circular, the Teflon pieces
and air spacings are not rectangular pieces but slightly curved with the larger
side being exactly 5% larger than the shorter side. (The 4 cm Teflon pieces and
the air spacings referred to above actually mean that the shorter side is 4 cm
whereas the larger one is 4.2 cm.) It turned out that the best fit could be obtained
with an effective length of 4.08 cm, i.e. 2% larger than its shorter side. We
emphasize that this is the only fitting parameter in our calculations and
moreover it is the same for all calculations presented here. Throughout the
paper, whenever we quote the width of a Teflon piece or an air spacing we mean
the shorter side of it and in the numerical calculations we use their
corresponding effective length.

We remark that our model does not consider the absorption of the signal.
However, comparison of the experimental and theoretical data shows that the
band structure (gaps and band profiles) is not affected by the absorption except
for the attenuation of the transmission, which is about constant throughout the
frequency range (the experimental transmission is about five times weaker).
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Thus, absorption in our experiment does not destroy coherent phenomena like
the band structure (see also [86]).

In figure 4.3 and all subsequent transmission plots the frequency values of
the 1-Teflon and two cell resonances are marked by crosses and circles,
respectively. Different types of bands are formed depending on the position of
the Teflon resonances relative to the two cell resonances [88]. In these and all
forthcoming transmission plots we mark with shaded strips the gap regions,
defined by the condition that the eigenvalues ± of the transfer matrix Q are real.
Since ,12  where ,11Q  forbidden gaps occur whenever 2 > 1.

Given the good agreement between experimental transmission data and the
photonic Kronig–Penney model, implied by equation (4.11), we proceed to
discuss the effects of impurities in the photonic Kronig–Penney model.

4.3. Impurity effects in the transmission

Different types of defects or impurities can be realized in our experimental
set-up with just air and Teflon segments and can be represented by one of the
two general sketches shown in figure 4.4. The upper sketch illustrates a general
interstitial impurity: an extra piece of Teflon of width b placed somewhere in the
air spacing between two pieces of Teflon. The rest of the arrangement remains
unaltered; the perpendicular dotted lines mark the boundaries of the unit cell
along the pure crystal. By the definition of a point defect, the interstitial
impurity breaks the periodicity only locally. Hence, the length of the extra piece
of Teflon should be less than or equal to the air spacing. If the width b is larger
than this, then the boundaries of the regular cells would be displaced from their
original positions and consequently periodicity would be globally broken (it
becomes an extended defect, e.g. a topological defect [91, 92]). In this paper, we
donot consider topological defects.

Fig. 4.4. Sketch of impurity arrangements. In the upper part an interstitial and in the
lower part a substitutional impurity is shown. In the case of the substitutional N1 + N2 = N 3,
whereas in the case of the interstitial N1 + N2 = N 2, whereN is the total number of unit cells
of the perfect crystal.
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As shown in the upper sketch there are N1 unit cells periodically arranged
to the left of point x1, each described by the matrix Q, then periodicity is
interrupted by the impurity at point x1 and again recovered at point x2.  To  the
right of point x2 there are N2 cells periodically arranged. The total transfer matrix
going from the left end of the array to the right end of the array can bewritten as

,12 N
imp

N
tot QQQQ           (4.13)

where Qimp is the transfer matrix connecting the amplitudes of the wavefunction
at x1 with those at point x2. Specifically,

,22 dabcdimp MDDMMDDQ              (4.14)

where Di (i = d/2, a, and c) is the transfer matrix corresponding to an air spacing
of length i . M is the transfer matrix for the regular size Teflon piece and Mb that
of the Teflon piece of length b. Note that N1 + N2 = N 2, where N is the total
number of unit cells (and Teflon pieces) of the perfect crystal.

The general case of a single substitutional impurity is shown in the lower
sketch of figure 4.4. The substitutional impurity has a length b, shown here
longer than the regular size Teflon piece, but it could be of any length and/or of
a different dielectric material. Quick inspection shows that the form of the
impurity matrix is the same, but the values of the lengths a, b and c are different
and now N1 + N2 = N 3.

Thus, we have a straightforward numerical scheme to calculate the
transmission amplitude in the presence of an impurity: for a given impurity
arrangement we compute equation (4.13).

In figure 4.3(b), we show the case when an extra Teflon piece of smaller
length (than the length of the default Teflon piece) is inserted in the center of the
air spacing between the 3rd and 4th regular Teflon pieces, thus N1 = 2, N2 = 12.
Figure 4.3(c) shows the case of the same type of impurity but located in the air
spacing between the 8th and 9th regular Teflon pieces, thus N1 = N2 = 7.  Note
the good agreement between the transfer matrix calculations and the main
features of the experimental data.

Inspection of the plots of figure 4.3 reveals that the impurity affects the
transmission in two ways: (i) The bands develop different profiles (compared to
the pure array, figure 4.3(a)). (ii) Peaks appear in most of the gaps in figure
4.3(b) coinciding in frequency with those of figure 4.3(c). Such a coincidence is
expected since the impurity in both arrays occupies the same relative position
within the cell (in the center of the air spacing) but in a different cell.

In figure 4.3(b) the band profiles look like a superposition of slow and fast
oscillations. In figure 4.3(c) the oscillations are larger and only of one type. In
both figures 4.3(b) and (c), bands containing 1-Teflon resonances (see the 2nd,
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4th and 6th bands) are less affected by the impurity. Note also that the intensity
of the peaks is greater when the impurity is placed near the center of the array,
figure 4.3(c), than when it is placed near the end of the array, figure 4.3(b). This
feature was invariably found in all our experiments.

Figure 4.5 shows the experimental and theoretical curves for three types of
substitutional impurities. Figure 4.5(a) pertains to the case when a Teflon is
removed from the array, i.e. a vacancy. Specifically, the 8th Teflon is removed.
In figure 4.5(b) the 8th regular size Teflon piece is substituted by a smaller,
whereas in (c) it is substituted by a larger one. Note that while the defect is in
the same numbered cell within the array, the band profiles, the frequencies and
intensities of the peaks are different for each case since the defects are different.

Fig.4.5. Three types of substitutional impurities in an 16 cell array (d = d0 = 4 cm).
Dotted (solid) lines are the experimental (theoretical) curves. In (a) the 8th  Teflon
piece was removed corresponding to a vacancy. In (b) and (c) it was replaced by a

smaller (larger) size Teflon of length d0 = 3.16 cm (d0 = 6.32 cm),
respectively.

A single point defect can produce multiple impurity levels within a band, as
has been observed, e.g. by Yablonovitch et al [93] in a 3D photonic array with a
donor-like impurity. Note that figure 4.5(c) also shows two spikes in most of the
gaps.

Shallow impurities in semiconductors, associated with long-range binding,
typically show up as spikes near the band edges, whereas deep impurities
typically lie near the center of the gap [81]. However, figure 4.5 shows that a
single impurity may produce spikes near the center of the gap or near the band
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edges. Thus we see that the above characterization of the impurity as either deep
or shallow is not always applicable.

Although our numerical procedure is seen to reproduce quite well the main
features of the experimental data, it does not serve to explain their origin. For
this purpose we develop a scheme in the next section which provides us with a
general understanding of the direct relation between the number of slow and
large or fast and small oscillations and the position of the impurities in the array.
We will also show how to determine the frequency position of the impurities.

4.4. Analysis of the effects of the impurities

We express the transfer matrix Q in terms of its diagonal representation .
Inserting Q = P P 1 into equation (4.14) to get

,112 PQPQ NN
tot                  (4.15)

Where

,~ 1 PQPQ imp              (4.16)
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Note that Q~  is the impurity matrix in the representation of the diagonal

basis of Q. This ‘rotated impurity matrix’ contains information about the
coupling of the impurity to the host material through the elements of the
transformation matrix P.

From the definition of Qtot and using the representation of P given above
we get after some algebra useful expressions for the matrix elements of Qtot:
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The terms 11
~Q  and 12

~Q  are obtained from 22
~Q  and 21

~Q , respectively, by
exchanging + with  everywhere. As in the case of a single scatterer, it is also
true that the complex conjugate of Qtot,11 (Qtot,12) is Qtot,22 (Qtot,21). This property
is not obeyed by the elements of the rotated impurity matrix. On the other hand,
because equation (4.16) is a unitary transformation,

Tr(Q~ ) = Tr(Qimp) and det(Q~ ) = det(Qimp).
Setting N1 + N2 = N, Q~ 11 = Q~ 22 and Q~ 12 = Q~ 21 = 0 in equation (4.16) and

using T = 1/|Qtot,22|, we recover equation (4.11) that is valid only for the pure
array.

4.4.1. Band oscillations

To analyze the effects of the impurity on the band profiles it is convenient,
since T = |Qtot,22| 1, to study in detail the element Qtot,22 given by equation (4.17).
In the bands the eigenvalues are complex,  = +* and of modulus one, so we
can (when considering the absolute value of Qtot,22) ignore from our analysis the
factor 21 NN  in front of expression (4.17). We now discuss the quantities f± and
Q~ ij. The functions f± do not contain any information on the impurity: they
depend only on ± and Q11, characterizing the periodic array. f± are real and
smooth (almost flat) functions within the bands, diverging as 211  at the
band edges. More important for our analysis is to note that f+ and f  take
alternate roles in consecutive bands. Namely, | f+|  is  larger than | f | in the first
and all odd-numbered bands, while the opposite is true in the second and all
even-numbered bands.

The quantities Q~ ij are also typically very smooth functions within the
bands, diverging like 211  at the band edges, and are all roughly of the
same magnitude, except for Q~ 21 which diverges at the Teflon resonance (but
note that f+ = 0 at Teflon resonances).

With this information about the f± and Q~ ij it is expected that in the odd-
numbered bands, where terms containing f  can be ignored to first order, the first
two terms in equation (4.17) give the main contribution to Qtot,22. Specifically,

12
2111

2
~~ NQQfT  should yield N2 oscillations (recall that  shifts through

 in each band). Figure 4.6(a) shows this term and also
1

11

~Qf  as a function of
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frequency for the case of an interstitial impurity centered between the third and
fourth Teflon pieces (the case corresponding to figure 4.3(b)). For the moment
let us concentrate on the first and third transmission bands. The term | f+Q~ 11| 1

(dashed curve in (a)) gives the zero-order approximation to the transmission
band. According to the notation of figure 4.4 it follows that N1 = 2 and N2 = 12.
The 12 oscillations can be counted in figure 4.4(a) in the plot of

12
2111

2
~~ NQQf . Moreover, since

12
2111

2
~~ NQQf  gives the dominant

contribution in the odd-numbered bands, the 12 oscillations should also be
observed in the total transmission. Indeed this is the case, as is shown by the
dashed curve in figure 4.6(b). This plot also shows that the total transmission
curve oscillates about a slowly oscillating curve (thick solid line) with two
maxima. This slowly oscillating curve is in fact given by

12
1211

1
~~ NQfQf

with N1 = 2 as pointed out above. Finally the last term in equation (4.17) gives
an additional N1 + N2 oscillations of smaller amplitude, which provides small
corrections (not readily visible in the plot).

Fig.4.6. Band oscillations due to impurities. (a) and (b) correspond to an interstitial impurity
centered in the air spacing between the third and the fourth regular size Teflon pieces,
whereas in (c) it is displaced. | f+ 11

~Q | 1 (dashed) and
12

2111
2

~~ NQfQf  (solid) are shown

in (a). In (b) and (c) | Q~ tot,22| 1 (dashed) and
12

1211
1

~~ NQfQf  (solid) are shown.
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As figure 4.6(b) shows, the term
12

1211
1

~~ NQfQf  does not agree at all
with the average curve of the transmission in the gaps nor in the even numbered
bands. This is because our discussion has been limited to the bands, where the
eigenvalues are complex, and of modulus one, whereas in the gaps the
eigenvalues are real, and hence the factor 21 NN  in (4.17) cannot be ignored (in
the next section we shall consider in detail the gap regions). There is no
agreement in the even-numbered bands either because there the dominant terms
are those containing the form factor f , namely, the sum 22

1222
~~ NQQf . This

can be readily seen by factoring in equation (4.17) the term 21 NN to get
.~~~~ )(2

11
2

21
2

122222,
211221 NNNNNN

tot QfQfQfQfQ . Written in this form,
it is clear that the same arguments used for the odd-numbered bands work for
the even-numbered bands but with f  and f+ interchanged. Explicitly, the
dominant term in the even-numbered bands is 22

2122
~~ NQQf , giving rise

again to N2 = 12 oscillations. The second-order term, producing the N1 =  2
oscillations, is 12

2122
~~ NQfQf .

Thus, the number of slow and fast oscillations appearing in the profiles of
the transmission bands can be read off directly from equation (4.17). Assuming
for the moment that N2 > N1, the band profiles should show N2 fast oscillations
about a curve with N1 slow oscillations. This is exactly what we have noticed in
our experimental and numerical transmission curves, see e.g. figure 4.3(b),
corresponding to an interstitial impurity with (N1, N2) = (2, 12), respectively.

On the other hand, if N1 = N2, then the profile should show only N1
oscillations of larger amplitude than in the case above (N2 N1). The
experiments confirm this, as is illustrated in figure 4.3(c), where N1 = N2 =  7.
Finally, if N1 is close but not exactly equal to N2 then the oscillation pattern
becomes more complicated, with irregular (incomplete) oscillations and with no
distinctive modulation pattern, as exemplified by the plots of figure 4.5, where
N1 = 6 and N2 = 8.

Thus, given some experimental curves for the transmission, one can
determine where along the array there is a single impurity by simply observing
the pattern and number of oscillations. Note, however, that due to time reversal
symmetry it is not possible to deduce on which side of the array to count the N1
cells. At the very least, the form of the profile indicates the presence of impurity
or defect, and whether it is located near the ends or near the center of the array.

It is important to remark that the above conclusions hold as long as the
elements ijQ~ do not have oscillations of their own as is the case of the interstitial
impurities discussed above. For certain other types of defects the elements ijQ~ do
have some structure and consequently the type of profiles discussed above
becomes somewhat distorted. An extreme example occurs when a smaller
Teflon piece is placed off-center between two regular size Teflon pieces, that is,
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a displaced interstitial impurity. Specifically, the ijQ~ show a strong frequency
dependence (e.g. 11

~Q  and 21
~Q  each have three extrema in their real and imaginary

parts in each band). For example, figure 4.6(c) shows the total transmission and
12

1211
1

~~ NQfQf  for an interstitial impurity placed off-center between the 3rd
and 4th regular size Teflon pieces. This defect is described by the upper sketch
of figure 4.4 with N1 = 2 and N2 =  12  with N = 16. Note that the term

12
1211

1
~~ NQfQf  correctly gives the average curve of the band profile but now

there are three slow oscillations and 14 fast oscillations, instead of 2 and 12
oscillations, respectively.

4.4.2. Impurity states

We now analyze the appearance of the peaks in the gaps, the well-known
signal for the presence of an impurity. Without limiting in any way the
conclusions to be drawn here, let us consider the d = d’ =  4  cm  array,  the
example we have been using, and let us label the gaps. Gap one is in the
frequency range 7.7–8.1 GHz, see e.g. figure 4.7; gap two in the range 8.6–8.9
GHz, and so on.

Fig. 4.7. Impurity states. In both plots the transmission amplitude 1/|Qtot,22| is shown (solid).
In (a) the dashed line corresponds to 22

~Q  and in (b) to 11
~Q . All parameters are the same as in

figure 4.3(c), except that now the impurity is between the 7th and 8th regular size Teflon
pieces, thus N1 = 6 and N2 = 8.

Recall that in the gaps the eigenvalues are real, therefore, we rewrite
equation (4.17) as
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,~~~~
2212211122,

2121 NNNNNN
tot QfQfQfQfQ                  (4.20)

where N = N1 + N2. Now, for the transmission to produce a sharp peak in the
gaps, Qtot,22 must be small in a very narrow range of frequencies. Note that

+ =1, with  and + alternatingly being the larger one in each gap. In the
even-numbered gaps (where + > 1 > ) the dominant term in Qtot,22 is the first
term in equation (4.20), and it will be large (corresponding to a negligible
transmission) unless it happens that 11

~Q  is very small or zero. Similarly, in the
odd-numbered gaps (where  > 1 > +), the dominant term is the last one and it
will also be a large number unless 22

~Q  happens to be very small. To illustrate
this general observation, in figure 4.7 we consider the case of an interstitial
impurity placed in the air spacing of the 8th cell in a 16-cell array (thus, N1 = 6,
N2 = 8). In figure 4.7(a), we show the transmission amplitude 1/|Qtot,22| and also
the term | 22

~Q |. In contrast, in (b) the term | 11
~Q | is shown, together with 1/|Qtot,22|.

Observe in figure 4.7(a) that whenever 22
~Q  goes sharply to zero in the odd-

numbered gaps (  > 1), there is an impurity state at the same frequency. 22
~Q

also goes to zero sharply in the even-numbered gaps ( + > 1) but here there is no
coincidence with the impurity states, in agreement with our argument of the
previous paragraph. Similarly, figure 4.7(b) shows that there is an impurity state
in the even-numbered gaps at the frequency values where 11

~Q  goes to zero. Thus,
our simple argument above really works in determining the position of the
impurity states: an impurity state occurs in odd-numbered gaps at the
frequencies where 22

~Q is zero and in the even-numbered gaps where 11
~Q is zero.

A similar case was already shown in figure 4.3(c) except that N1 = N2 = 7 and
thus band profiles are different but peak positions are the same, where we see an
excellent agreement with experiment concerning the location of the peaks.

Single impurity states are known to decay exponentially away from the site
of the impurity. One then may expect that the intensity of the peak should be
stronger the closer the impurity is to either of the ends of the array. However
close inspection of formula (4.20) indicates that this is not the case. That is,
exactly at the impurity state frequency, say when 11

~Q  is zero in an even-
numbered band, the first term in (4.20) is zero and the leading terms are

1212
1221

~~ NNNN QfQf . The inverse of its absolute value gives to a good
approximation the intensity of the peak. For simplicity, let us consider first the
case 1221

~~ QfQf  which is valid only for ‘symmetric impurities’, i.e. when the
distance a equals the distance c (see figure 4.4). Note that 1212 NNNN as  a
function of N2 N1 is symmetric about its minimum N2 N1 = 0. Thus, recalling
that the transmission is the reciprocal of |Qtot,22|, we conclude that the intensity of
the impurity state should be stronger the closer the impurity is to the center of
the array. It is strongest when N2 = N1, i.e. when the impurity or defect is at the
center of the array.
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The above argument assumed that the impurity is symmetric. If it is not the
case, then it can be shown that the minimum of 1212

1221
~~ NNNN QfQf  does not

occur when the impurity is at the center (N1 = N2) but at a distance N1 N2 that
is proportional to the logarithm of 2112

~~ QfQf . Since this ratio is not large, the
highest intensity peak still occurs when the impurity is close to the center of the
array. This was verified in all our experiments and can be seen clearly by
comparing figures 4.3(b) and (c). We emphasize that this effect is independent
of the type of the periodic potential and type of impurity in a 1D periodic array.
In fact, the same behavior was noted in an experiment with a coaxial connector
photonic crystal [82] where, however, no explanation was given.

As we have seen, the intensity of the peaks always decreases as the number
N of cells increases. However, an important conclusion, drawn from a detailed
examination of equation (4.20) as a function of +, for fixed N, is the following:
the decrement in the peak intensity as N increases is weaker the farther the
impurity state is from the center of the transmission band. This was confirmed
by our experimental and theoretical results and it is in agreement with the
generally accepted idea that shallow states near the band edges are the shallow
levels, associated with long range potentials, in contrast with the deep levels
lying near the center of the band (see, e.g., [81]).

4.5. Conclusions

We analyzed the effects on the transmission of single impurities in an array
of regularly spaced pieces of Teflon in a microwave guide, described by a 1D
photonic Kronig–Penney model. We performed a series of experiments with
point defects of various types; namely, interstitial, substitutional and vacancies,
and showed that a single impurity affects the transmission in two ways. One is
the well-known appearance of localized states in the gaps; the second, to our
knowledge not discussed so far in the literature, is the appearance of fast and
slow oscillations in the band profiles. Our transfer matrix calculations correctly
predicted these features. Experiments with other types of single impurities, e.g.
displaced interstitial and displaced substitutional impurities, not reported here,
were also found to be equally well described by our model. The transfer matrix
calculations (being purely numerical) agree very well with the experimental
data, but they provide no insight for the understanding of the various features
observed. Thus, as an important contribution, we derived an exact closed form
expression for the transmission amplitude that is useful in elucidating the effects
of a single impurity on the band profiles, the impurity levels and their intensity.
This expression involves elements of the transfer matrix Q of the regular cells in
the array and of the transfer matrix Q~  of the impurity. Since this matrix is
written in the representation that diagonalizes the transfer matrix of the regular
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cells, Q~  contains information about the impurity and its coupling with the host
environment.We found that the set of impurity levels is given by the zeroes of
the diagonal elements of Q~ . Further, it was shown that the intensity of the
impurity states in the gaps depends on two factors, namely, the off-diagonal
elements of Q~  and the distance of the impurity from the center of the array. The
closer the impurity is to either of the ends of the array, the lower the intensity of
its level, and vice versa. It was also shown that the numbers of fast and slow
oscillations in the bands give direct information about the position of the
impurity, relative to the center of the array.

We note that the agreement between the experimental results and analytical
calculations gives us confidence to treat the inverse problem. That is, we can
extract information about the unknown defect from the inspection of the band
profiles and the localized defect modes. Our method is an alternative approach
to the tight-binding and Green’s functions methods, for 1D systems, with the
advantage that it is simpler and elucidating. Although the experimental
realization here is in the microwave regime, the model and the results are
equally valid for higher scales of frequency corresponding to light experiments.
We remark that we can apply our formalism in a straightforward manner to any
kind of regular array with single defects once we have determined the particular
transfer matrices for the regular cell and for the impurity.

We emphasize that the formulae (4.17)–(4.20) and the procedure for
determining the position and intensity of impurity states and features of the band
profiles for the photonic Kronig–Penney model are exactly the same as for the
electronic Kronig–Penney model (with square barriers) for energies above the
barrier. This is so since their transfer matrix elements are identical and the
difference is only in the definition of the longitudinal wavevector. Hence our
procedure is useful for analyzing the effects of impurities, either in the transport
of charged particles in 1D periodic arrays of electronic potentials (e.g.
heterostructures) or in the transmission of electromagnetic waves in 1D photonic
arrays.

Finally, the fact that our experimental and theoretical results agree very
well give us confidence to treat various other types of specific arrangements
with the goal of realizing them in other experimental set-ups as photonic
devices. We would like to stress that this is by no means self evident. The
observed transmission patterns are the result of a complicated interplay of
interferences from all structures within the waveguide, and it is well known that
interferences are extremely sensitive to perturbations, in particular in the
presence of absorption. The present work has shown that we can rely on the
experiment in this respect. Thus our experimental setup can be used as a
preliminary—and low cost—study of a particular Kronig–Penney model to be
implemented later in more sophisticated and expensive microscopic photonic
realizations, which might have real applications.



76

5 ASYMPTOTIC ENERGY PROFILE OF A WAVEPACKET IN
DISORDERED CHAINS

We investigate the long time behavior of a wavepacket initially localized at
a single site n0 in translationally invariant harmonic and anharmonic chains with
random interactions. In the harmonic case, the energy pro le ten  averaged
on time and disorder decays for large |n  n0| as  a  power  law

0nnCten  where  = 5/2 and 3/2 for initial displacement and
momentum excitations, respectively. The prefactor C depends on the probability
distribution of the harmonic coupling constants and diverges in the limit of weak
disorder. As a consequence, the moments tmv  of the energy distribution
averaged with respect to disorder diverge in time as t ( ) for  2, where  =  +
1  for  >  1. Molecular dynamics simulations yield good agreement with
these theoretical predictions. Therefore, in this system, the second moment of
the wavepacket diverges as a function of time despite the wavepacket is not
spreading. Thus, this only criteria often considered earlier as proving the
spreading of a wave packet, cannot be considered as sufficient in any model.
The anharmonic case is investigated numerically. It is found for intermediate
disorder, that the tail of the energy pro le becomes very close to those of the
harmonic case. For weak and strong disorder, our results suggest that the
crossover to the harmonic behavior occurs at much larger |n  n0| and larger
time.

5.1 Introduction

There has been large activity for many years in the study of the temporal
evolution of an initially localized energy excitation in various nonlinear systems,
e.g. the discrete, nonlinear Schrödinger equation (DNLS) [94–98], Fermi-Pasta-
Ulam (FPU) [99–103] and Klein-Gordon (KG) model [98, 104] with both
uniform and random couplings. In the latter case, the main interest is in the
interplay of anharmonicity (nonlinearity) and disorder which is not yet fully
understood. For harmonic one-dimensional disordered systems, all eigenmodes
(called Anderson modes) of the in nite system are known to be localized and
form a complete basis. Then a wave packet at time t = 0 will remain localized at
any time as a linear superposition of Anderson modes of the in nite chain.
Whether or not this behavior changes qualitatively by introduction of
anharmonicity is highly debated and controversial (see Refs. [96, 97,104] and
references therein).

Since an analytical treatment of the time evolution of anharmonic systems
with disorder is extremely difficult, most investigations have been done by
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molecular dynamics simulations. In the numerical studies, one typically follows
the wavepacket dynamics by monitoring quantities like the participation ratio
P(t) (a measure the localization at time t), and the time-dependent moments
m (t) of the local energy en(t) (see the de nitions below). All this measurements
are hampered by statistical errors as well as nite size and nite time effects.
Even very long calculation times of, say, 108 microscopic time units (of order
picoseconds) may not be entirely conclusive. Indeed, one can never be sure
whether the spreading of a wavepacket is complete or only partial in the in nite-
time limit. This issues are intimately related to the spontaneous self-trapping of
energy (for example in the form of discrete breathers) which is generic in most
nonlinear systems.

Independently on complete or incomplete spreading, one might expect that
the evolution of the wavepacket tails should yield relevant information on the
spreading process itself. In such regions, the typical displacement becomes small
enough such that linear approximation of the forces becomes valid. This
motivates the investigation of the harmonic chain, as a rst necessary step for an
insight of the nonlinear case. Despite the apparent simplicity of such a case there
are still issues that have not been fully discussed in the literature. Let us brie y
review some of the main results known for this case. Without disorder all
eigenstates are extended and it is well-known (see e.g. Ref. [106], and references
therein) that

)t(mv ~ )v(t                (5.1)

with (2) = 2, i.e. the energy spreading is ballistic (note that  is not necessarily
an integer). Introducing disorder and/or anharmonicities, this energy transport is
changed and may be superdiffusive ( (2) > 1), diffusive ( (2) = 1) or
subdiffusive ( (2) < 1), or it could become logarithmic or disappear ( (2) = 0).
If the initial excitation is at site zero with amplitude u0(0), then the disorder
averaged propagator tun is one of the basic quantities. Although tu0 or
t  is known analytically for different classes of disorder [108], much less is
known for n 0. Approximatinghe Anderson modes by plane waves with
exponentially decaying amplitudes, it has been shown in Ref. [100] that

n
)ctn(

exp
)n(

)t(un
0

2

21 42
1                  (5.2)

for |n|  and t . Here, c is the sound velocity and 0  a  measure of  the
localization length. Eq. (5.2) shows for t  there are two humps which
propagate ballistically at the sound velocity c, but with an amplitude which
decays as t1 . Within its co-moving frame, these humps spread as for normal
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diffusion. Another approach for calculating )t(un  is  to  use  a  scaling
hypothesis [108]

)),(n(F)(u~)u~n 0        0            (5.3)

for the Laplace transform of )(un  for  0. A similar Ansatz can be made
for )t(un  [110–112]. Here, ( ) denotes a localization length.

In this paper we investigate the energy pro le )t(en  averaged on time
and disorder of a wavepacket originating an initially localized excitation. We
demonstrate that it asymptotically decays as a power law in space. Thus, the
wavepacket remains localized only weakly while its moments appear to diverge
in time. This result, which, to the best of our knowledge, has not been reported
previously, must be taken into account expecially when attacking more difficult
nonlinear case. Indead, some numerical results for the anharmonic chain (a FPU
model) will be critically analyzed on the basis of the results on the harmonic
one.

The outline of our paper is as follows. In Section 5.2 we will introduce the
harmonic model, rephrase some of its well-known properties, de ne the local
energy en(t) and give some information on our numerical approach. A virial
theorem for the time averaged local kinetic and potential energy will be proven
in Section 5.3 It will be applied in this section for the analytical calculation of
the time and disorder average of en(t). The corresponding analytical result will
be compared with the numerical one. Furthermore we will investigate the
moments m (t) of the local energy )t(en .  The in uence of  anharmonicity on
en(t) will be numerically studied in Section 5.4, and the nal Section 5.5
contains a summary and some conclusions.

5.2 The disordered harmonic chain

5.2.1 Property of the Anderson modes

As motivated above we investigate the classical dynamics of a disordered
harmonic chain with lattice constant a which is invariant under translations. Its
classical Hamiltonian reads:

n
nnn

n )uu(K
m

pH 2
1

2

2
1

2
            (5.4)
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Here,  un is the displacement of the particle at site n, pn the corresponding
conjugate momentum, m the particle’s mass, and Kn the random coupling
constants between nearest neighbors. The Kn are independent random variables,
identically distributed with some probability distribution p(K). Stability requires
all Kn to be positive. In our numerical approach, the system is nite with N
particles and with free ends, i.e. K±N/2 =  0. Otherwise, we shall perform
analytical calculations in the thermodynamic limit N  where the choice of
the boundary conditions does not matter. The equations of motions are

).uu(K)uu(Kum nnnnnnn 111              (5.5)

The general solution of Eqs. (5.5) with initial conditions un(0) = un, u n(0)
= u n is given by

)t(utUU)t(u nn 00                                                   (5.6)
where

'n v
v

)v(
'n

)v(
n

v
'n

v
v

)v(
'n

)v(
n'nn tsinQQutcosQQu)t(u

00

1            (5.7)

and ,NuU
n

n0
n

n NuU 0 are the position and velocity, respectively, of the

center of mass of the whole chain.
The eigenmodes )v(

nQ  with eigenfrequency  can be chosen as real with
indices  in a countable set. They satisfy

)v(
nv

)v(
n

)v(
nn

)v(
n

)v(
nn QmQQKQQK 2

111             (5.8)

and the can be normalized, except the unifiorm eigenmode 10 )(
nQ  whith 0=0

which is extended and cannot be normalized for the infinite system. For any size
N of a finite system, the translation invariance of the model implies that

N
Q )(

n
10  is an eigenmode with eigenfrequency 0 =  0. In the limit of an

in nite system, all eigenmodes are localized, except this single zero-frequency
mode which is extended. However, nothing changes in the problem when
choosing the center of mass of the whole system immobile at U0 =  0 with

0 = 0. Though the eigenspectrum is discrete for the in nite system, it is dense.
The corresponding density of states

1

1

1 N

v
vN

)(
N

lim)(g  (5.9)
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is a smooth function which is known [108] to be self-averaging, i.e. it is
independent on the disorder realization with probability one. Moreover, in the
small frequency limit,  0, we have [109, 110]

)K(m
)(g

1

(5.10)

The localized eigenmodes, decay exponentially with a localization length
[109, 110]

a
KK

m)K()( vvv
2

212

18 ,       0v  (5.11)

which diverges at the lower “band” edge at 0 = 0.
Then, if the chain is nite with length L, there is a frequency L such that

the localization length equals the system size, i.e ( L) = L = aN. Consequently,
only the eigenmodes with frequency  > L can be considered as well localized
inside the nite system. while the remaining modes where  < L extend over
the whole nite system.

Their number which is of order of N goes to in nity in the limit of an
in nite system despite their relative weight for N  goes the zero as N1 . As
a result, they still play a role for transport quantities, like the energy diffusion
constant [99, 103, 111] or the thermal conductivity [112]. Actually, those
relatively extended modes behave like acoustic modes whose effective sound
velocity is

a
m

)K(c
11

(5.12)

Although these results were originally proven for a chain with mass
disorder they also hold for our model. Indeed,  letting nnnn Kuuy 1 ,
Eq.(5.5) is mapped onto the eigenequation with mass disorder. This property has
already been used above since the mass average (m) has been replaced by (K-1).

5.2.2  Local energy and local virial theorem

We de ne the local energy:

)t(e)t(e)t(e )pot(
n

)kin(
nn
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with kinetic and potential parts

2

2
)t(um)t(e n

)kin(
n (5.13)

and
)t(u)t(u)t(uK)t(u)t(u)t(uK)t(e nnnnnnnn

)pot(
n 111 2

1
2
1 (5.14)

respectively. Then,
n

)pot(
ne  equals the total potential energy in Eq. (5.4). We

will investigate the energy pro le for a displacement excitation:

0
0 n,nn A)(u , 00 )(pn                (5.15)

and a momentum excitation:
00 )(un ,

0n,nn Bp                 (5.16)

For calculating numerically {un(t)} we considered the example of a uniform
and uncorrelated distribution of random couplings Kn with probability
distribution

otherwise

RkKkif,
)R(k)K(p

0
1

1
                (5.17)

where of course R 1.
To explore the role of different disorder strengths we xed k = 1 and took

different R. The choice of units is such that m = 1 and a = 1. Note that with this

particular choices the effective sound velocity, Eq. (5.12), is
Rln

Rc 1 .

Microcanonical simulations were performed for typically N=8192 particles
with fourth order symplectic algorithm [113], with typical time step 5×10 3 or
less. Although the choice of the initial conditions, Eqs. (5.15) and (5.16), implies
U0 = A/N, 0 = 0 and U0 = 0, 0 = B/N, respectively, these nonzero quantities
are rather small, since A and B are of order one and N»1.

In our numerical experiments, we avoid that the wavepacket reaches the
chain boundaries which may generate spurious nite-size effects (re exions
etc.). Thus, one should restrict the maximum simulation time tsim to be smaller
than tmax ~ N/c  where c is the sound velocity.

We also fixed n0=-N/2+1 for extending the spatial range of our system, so
that one simulates the wavepacket propagation in a semi-infinite medium [101].
Some runs with n0=0 where also performed, yielding similar results. Figure 5.1
shows the numerical pro le en(t = 2000) for a momentum excitation with
B = 2.0. The result for a single realization of the disorder exhibits on the log-log-
representation strong uctuations around an average, decaying linearly.
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Averaging over a large enough number [O(103)] disorder realizations strongly
reduces these fluctuations and supports the linear dependence on |n-n0| on the
log-log scale. In the next Section we demonstrate that this is indeed the case and
compute analytically the exponents associated with such power-lay decay.

The calculation of the time averaged energy pro le will be simpli ed by
means of a local virial theorem, that will be proved below. The well-known
virial theorem [114] relates the time average of the total kinetic energy to the
time average of the virial. The virial [114] involves the gradient of the total
potential energy. If the potential is harmonic this theorem implies equality
between the time averaged total kinetic and total potential energy. In this
subsection we will prove that this relationship also holds for the time averaged
local kinetic and local potential energy, de ned by Eqs. (5.13) and (5.14),
respectively.

The time average of a function f(t) is de ned by

T

T tdtf
T

tf
0

)(1lim)(           (5.18)

Substitution of the general solution un(t) of Eqs. (5.6), (5.7) into Eq. (5.13)
and taking into account

0
2
1
2
1

tcostsin

tsintsin

tcostcos

'vv

'vv'vv

'vv'vv

           (5.19)

Fig. 5.1: (Color online) Energy pro le en(t) at t = 2000 for a momentum excitation with
B = 2.0, N = 8192 particles, R = 4 and for a single realization of disorder (green line) and

averaged over 2 x 103 realizations (black line).
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Note that the sum over  remains discrete and cannot be replaced by an
integral in the limit of an in nite system.

With our de nition Eq. (5.14) of )( pot
ne and using Eq. (5.5), we obtain:

)()(
2

)()( tutumte nn
pot

n                 (5.21)

Substituting un(t) from Eqs. (5.6), (5.7), and since n(t) and n(t) has  to
remain bounded at all times for any initially localized wavepacket (with nite
energy), yields

)()( )()( tete kin
n

pot
n           (5.22)

for all n and arbitrary initial conditions with nite energy in case that the center
of mass has been chosen immobile (U 0 = 0).

5.3 Energy profile: harmonic case

5.3.1 Energy pro le

Without restricting generality we choose m = 1 and a = 1. Let us discuss
rst the case of a displacement excitation for a given disorder realization. In this

case, we obtain from Eqs (5.6) and (5.7) for A = 1 and U0 = 0, U 0 = 0
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and therefore
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Let us discuss rst the qualitative t-dependence of )()( te kin
n . We will explain

how the spectral properties govern its time dependence. Particulary we show
that this quantity which is not averaged over time and/or disorder does not decay
for n  and/or t . Since the eigenspectrum of the in nite random system
is discrete with a countable basis of localized eigenstates )(v

nQ , un(t) has been
expanded in this basis (see Eq. (5.7) and Eq. (5.23)). This expansions is actually
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an absolutely convergent series of cosine functions of time because
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Consequently, un (t) is an almost periodic function in the sense of H. Bohr
[118]. An equivalent de nition for such functions is that for any arbitrarlly small
 > 0, there is a monotone sequence of )( (called pseudoperiods) which is

relatively dense (that is there exists L such that Lpp 1  for any p) and such
that for all p, f(t) is periodic with period p  at the accuracy  that is

)()( tftf p  for any p and  for  all t. As a consequence of this recurrence
property, an almost periodic function cannot go to zero for t  ± . The set of
almost periodic functions, is an algebra, that is linear combinations and products
of almost periodic functions are almost periodic functions, as well.

In our case, the set of eigenfrequencies  is bounded (since the support of
the distribution function p(K) is compact) and thus it is straightforward to show
that the time derivative u n(t) is also an almost periodic function of time, and the
local kinetic energy )()( te kin

n  de ned by Eq. (5.13), as well. )(kin
ne (t)  from  Eq.

(5.24) can be decomposed into a time independent term and remaining time
dependent terms :
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Note  that  for  a nite chain without disorder, i.e. Kn  K, the rst and
second term on the r.h.s of Eq.(5.25) are of order 1/N since the eigenmodes are
plane waves where ./1)( NQ v

n  Then 2)()( )(
0

v
n

v
n QQ  1/N2, and there are only N

such terms. Consequently, they will not contribute to )(kin
ne (t), in the limit N

when the eigenspectrum of the chain becomes absolutely continuous. In that
case )(kin

ne (t) can be represented by an integral which is a Fourier transform of a
smooth function and is obviously not an almost periodic function. It decays to
zero at in nite time as expected from ballistic diffusion. This is not true in case
of disorder, because each term in the series keeps a non vanishing contribution
for the in nite system and )(kin

ne (t)  does not decay to zero at in nite time because
it is almost periodic.

However, in contrast to the ordered chain, )()(
0

v
n

v
n QQ  is not a smooth function

of , in case of disorder. The reason is that when the eigenspectrum is discrete,
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arbitrarily small variations of  may change the location of the corresponding
localized eigenstate by arbitrarily large distances. Thus, these eigenstates { )(v

nQ }
are not continuous functions of  but depend on the disorder realization as well
as )(kin

ne (t) and ne (t) (since they are obtained as discrete series explicitly
involving these eigenstates). The consequence is that those quantities are not
self-averaging, as clearly demonstrated by Fig. 5.1 for )(kin

ne (t).

5.3.2 Disorder averaged pro le

Since )(kin
ne (t) is an almost periodic function of time, it is a stationary

solution. Its time average drops all cosine terms in Eq. (5.25) and keeps only the
constant term, i.e. we get
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An attempt to justify the use of the time averaged quantity will be given
below. )()( te kin

n  and )(ten  still depend on the disorder realization. Therefore it is
reasonable to calculate the corresponding disorder averaged quantities, as well.
Despite they cannot be observed for any single disorder realization, they give
information on the general behavior of the pro les. Then we arrive at
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for the in nite system.
        Note that, in the in nite system, the set of eigenvalues and eigenvectors are
discontinuous functions of the disorder realization. Yet, according to Wegner
[22], the disorder average (F({ )(

nQ })) of an arbitrary function F({ )(
nQ }) of  the

eigenvectors can be well de ned as a smooth function of  as a limit for nite
systems with size N .
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The sum in the integral is restricted to eigenvalues  which belong to an
interval [ ,  + ] of small width  and g( ) is the density of states de ned
by Eq. (5.9).

Then, we obtain from Eq. (5.26):
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Since ),()( )()( tete kin
n

pot
n  for N =  and all realizations of {Kn} the time and

disorder averaged energy pro le is given by

))((2)( )( tete kin
nn                 (5.28)

i.e. the calculation of )(ten is reduced to that of g( ) and the “quadratic”
correlation function ))(( 2)()(

0nn QQ for N .  { )(
nQ } is the solution of the

eigenvalue equation (5.8) with  replaced by .
Before we come to the Eq.(5.25). Making again use of the self-averaging of

the density of states we obtain for the second term on its r.h.s.:

tQQNqd nnN 2cos)))(((lim)(
4
1
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2)()(2

Below, it will be shown that )))(((lim 2)()(
0nnN QQN  is  a nite and smooth

function of . Therefore, the disorder averaged second term will converge to
zero, for t , due to g( ) g0 = const., for  0. The same property  hold
for the disorder average of the square bracket term in Eq. (5.25). With the
density of states g( , ) giving the joint distribution for two eigenfrequencies
the disorder averaged square bracket term becomes a double integral over  and

. Although we do not have a rigorous proof lim ))))(((( )'()'()()(2
00 nnnnN QQQQN

which is part of the integrand should be a finite and smooth function of  and
’. Then, talking the limit N  first, the square bracket term should converge

to zero for t . If this is true that disorder averaged energy profile converges to
an asymptotic profile for t which is consistent with our numerical result.
Indeed, the disorder averaged profile in Fig. 5.1 depends on t only very weakly,
for large t. In that case the asymptotic profile equals the time averaged one.

Now we come back to the “quadratic” correlation function. Due to the
disorder average it will depend only on 0nn . Since the Anderson modes are
exponentially localized one expects that this correlation function decays
exponentially with 0nn . To prove this we first present a crude heuristic
approach by assuming

v

v
v

v
n

nn
Q exp)(            (5.29)
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where the “center of mass” of the Anderson mode  is at n , which is a random
variable, depending on {Kn}. N is a normalization constant. It should be
remarked, that the envelope of an Anderson mode )(v

nQ  decays exponentially, but
not )(v

nQ  itself. Therefore Eq. (5.29) is a crude approximation neglecting sign
changes of )(v

nQ with n. Substituting )(v
nQ  from Eq. (5.29) into the “quadratic”

correlation function and using :

N

n
vv

v

nf
N

nf
1

)(1)(  (5.30)

we get :
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i.e. the “quadratic” correlation function decays exponentially.
For an analytical calculation of the “quadratic” correlation function in

Eq.(5.27) one can use the approach presented in Refs. [115–117]. These authors
prove that the computation of the correlation functions )()(

0nn QQ  and
)(

n
)(

n QQ
0

 for |n - n0|  is reduced to the solution of  an eigenvalue problem
for an integral kernel. As a result, these correlation functions decay
exponentially for large |n  -  n0| with an inverse localization length given by -
ln| max( )|. | max( )| is the largest absolute value of the eigenvalues of kernel. It
is smaller than one. Applying that approach it follows for |n-n0|

)(exp)( 20
2)()(

0
nnQQ nn  (5.32)

with a correlation length 2( ). We note that the eigenvalue problem in form of
an integral equation can only be used to calculate correlation functions of the
Anderson modes and not directly to compute the energy pro le itself. But the
former is needed (see Eq. (5.27)) for the latter.

The correlation lengths (localization lengths) of the correlation functions
calculated in Refs. [115–117] and of the “quadratic” correlation function
Eq.(5.32) are different from each other and different from ( ) (Eq. (5.11)), for

nite . But for  0 they exhibit the same divergence, i.e. it is (see
Eq.(5.11)):

2
22 )( , 0                (5.33)

with a positive constant c2, depending on p(K).
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The pre-exponential factor ( ) can be determined as follows. Assuming
that Eq. (5.32) is valid for all |n  n0|, summation of the l.h.s. and r.h.s. of that
equation and accounting for the normalization

n
nQ 1)( 2)(  for  =

(remember that Qn
(v) has been chosen as real) yields for N :
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NcN
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In the last line, Eq. (5.33) has been applied. With Eqs. (5.32), (5.34) and
(5.27), it follows from Eq. (5.28):
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The asymptotic |n  n0|-dependence is governed by the small-  behavior
of the integrand. From Eq. (5.10) we get

1Kd)(dI)(g , 0 .  (5.36)

Assuming that Egs. (5.33) and (5.36) are valid for all  will not in uence
the asymptotic dependence of )t(en  on |n  n0|. Then we get from   Eq. (5.35)
for the in nite chain and a displacement excitation:
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i.e. the time and disorder averaged energy profile decays as a power law in
|n n0| with an exponent =5/2.

So far we have discussed the energy profile for a displacement excitation.
The corresponding calculation for a momentum excitation is similar. With the
initial condition Eq. (5.16) and B = 1, Eq. (5.7) leads to
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Besides cos t the main difference to u n(t) for a displacement excitation
(see Eq. (5.23)) is the absence of the prefactor  of )v(

n
)v(

n QQ
0

. As a consequence
one obtains
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where 2 in Eq. (5.35) is replaced by one. With the same assumptions as above
we obtain for the in nite chain and a momentum excitation:
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1 nnKc)t(en , 0nn (5.40)

It is not surprising that we nd a power law decay again. The
corresponding exponent is  = 3/2.

Figures 5.2 and 5.3 report the numerical result for the disorder averaged
energy pro le at different large times of a displacement and momentum
excitation, respectively. They clearly demonstrate rst that, the numerical result
of the disorder averaged energy pro le becomes independent of t for t large
enough, and second, that it converges to a power law for large |n n0| with
exponents predicted by the analytical calculation. The tree spikes at the t-
dependent positions n(t) are the phonon fronts propagating with the effective
sound velocity, Eq. (5.12).

Fig. 5.2: (Color online) Energy pro le at three different times averaged over 103

realizations of the disorder with R = 4 for N = 8192 particles and a displacent excitation with
A = 2. The dashed line is the predicted power law decay, Eq. (5.37). The ballistic peaks
propagate at a velocity c = 1.476 in agreement with the value c = 1.471... computed from
Eq. (5.12).

There  is  a nite size effect for N  < , due to the existence of extended
states. For N~

L , (with  being a suitable constant O(1)), it is:
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where  cq. With g( )  g0 for the density of extended states it is easy to
estimate the contribution of those to )t(en  in case of a displacement excitation:

250
3

6
/)ext(

n Ng)t(e                (5.42)

Fig. 5.3: (Color online) Same as Fig. 5.2 but for a momentum excitation with B = 2 and
averaged over 2x103 realizations. The dashed line is the predicted power law, Eq. (5.40).

If 1«|n  n0|«N, then it is 25
0nn~tetetete

)loc(

n

)ext(

n

)loc(

nn .
For |n  n0|  <  N but |n  n0|  =  O(N) there is a crossover value |n  n0|c.o.
depending on , g0 etc. such that
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For N = 8192 this contribution is of order 10 10. The corresponding
contribution for a momentum excitation is

23N~te
)ext(

n , (5.44)

being of order 10-6 for N=8192.
Figure 5.4 compares the energy profiles for different strengths of the

disorder, i.e. for various values of the parameter R. We limited ourselves to the
case of a displacement excitation. The profiles display the same decay law. The
cases with stronger disorder attain the asymptotic profile at smaller distances
since in this case the localization lengths are shorter. As seen from Figure 5.4,
the data are consistent with the expectation that the asymptotic profile is reached
for |n  n0| » min. The values of min given in that figure are a rough estimate of
the shortest localization length obtained by extrapolating the formula (5.11) at

= max=2c, i.e. min= ( max).
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Fig. 5.4: (Color online) Disorder averaged energy profiles at t = 2000 for a displacement
excitation with A = 2 and increasing disorder strengths (top to bottom). Other parameters as in
Fig.5.1. The dashed line indicates the predicted power law Eq. (5.37)

The prefactor of both power laws, Eqs. (5.37) and (5.40) depends on the
disorder as demonstrated by Figure 5.4. It seems reasonable that 2 ( ) for

 0 with a positive parameter , independent on  and the disorder.
Eqs.(5.11) and (5.33), together with this hypothesis, imply:
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Again m = 1 and a = 1 has been used. For the uniform distribution p(K),
Eq. (5.17), (K-1) and (K-2) can easily be calculated. From this we obtain:
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                (5.46)

Note, that c2(R) diverges in the no-disorder-limit R  1+, as it should be
since only extended states exist thereby. Accordingly, ( ) should become
infinite for all .

Introducing c2(R) from the first line of Eq. (5.46) and (K 1)(R)=(lnR)/(R 1)
into the prefactor C(R) of the power laws, Eqs. (5.37) and (5.40), leads to the R-
dependence shown in Fig. 5.5 in case of a displacement and a momentum
excitation, respectively. The unknown parameter  has been adjusted in order to
fit the numerical result for the prefactors. The latter are obtained from the
numerical data in Figures 5.2 and 5.3 extrapolating (en(t))|n n0|  at large |n n0|.
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Fig. 5.5: (Color online) Dependence of the prefactors C(R) on the disorder strength R
for a displacement (A = 2) and momentum (B = 2) excitation: numerical (full circles and
triangles respectively) and analytical result Eqs. (5.37), (5.40) with formula (5.46) (solid
lines). Dash-dotted lines are the expected asymptotic behaviors for R  1+, (R 1) 3 and
(R 1) 1, respectively. The fitting parameter fit is given in the legend.

The numerical and analytical result for the prefactor in case of a
displacement excitation agree satisfactorily, even for the smallest value of R =
1.3. Investigating the profile for even smaller values is hampered for our finite
chain by the increase of the localization length with decreasing (R  1). The
same agreement is also valid in case of the momentum excitation, except for the
two smallest R-values at 1.3 and 1.5. Eq. (5.7) demonstrates that the weight of
the low-lying Anderson modes for a momentum excitation is by a factor 1/ v
higher than for a displacement excitation. Since the localization length increases
with decreasing v, this could be the reason for the “asymmetric” behavior of
C(R) for both kind of excitations. Indeed, we have observed that 23

0
/

n nn)t(e
does not reach a stationary value, for e.g. R = 1.3. The strong deviation of the fit
parameter  for the displacement and momentum excitation may originate also
from this fact.

5.3.3 Moments of the local energy

A customary way to describe wavepacket diffusion is to look at time
evolution of moments of the energy distribution that are defined as
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(the denominator is clearly only a scale factor). Of particular interest for a
statistical characterization are the disorder averaged moments )t(mv . Their
numerical result is shown in Figure 5.6. If one uses the asymptotics Eqs. (5.37),
(5.40) and introduces a cutoff of the sum in the numerator of Eq. (5.47) at the
ballistic distance |n  n0| = ct one obtains

,t)t(m )v(
v .v,

v,v
)v(

10
11             (5.48)

For  =  1 there is a logarithmic divergence of )t(mv  with time. As
demonstrated in Fig. 5.7, the numerical values of ( ) are in excellent agreement
with Eq. (5.48). This also implies that the contribution of the traveling peaks is
not relevant as implicitly assumed in the derivation of Eq. (5.48).

This result is consistent with the values that could be inferred by Datta and
Kundu [103]. Indeed, they predict (2) = 1/2 and (2) = 3/2, respectively, for a
displacement and momentum excitation. Notice that, if one looks only at m2(t)
one would incorrectly conclude that the two cases would correspond to sub- and
superdiffusive behavior respectively. A full analysis of the spectrum of moments
and of the wavefront shape is necessary to assess the real nature of dynamics.

Fig. 6: (Color online) Evolution of moments )t(mv  for v = 0.5, 1, 1.5, 2, 2.5, 3
(bottom to top respectively) for the harmonic chain N = 8192, R = 6. Displacement (a) and
momentum (b) excitation (A = 2 and B = 2 respectively). Averages are over 6 × 103 disorder
realizations.
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5.4 Energy profile: anharmonic case

In this section we will investigate numerically the n-dependence of the
energy pro le averaged over the disorder in the presence of anharmonicity.
Particularly, we will check whether its tails can be described by those of the
harmonic chain. As a model we have chosen the Fermi-Pasta-Ulam (FPU) chain
with cubic nonlinear force
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                (5.49)

It reduces to the harmonic chain for G = 0. For simplicity, we considered
the case of uniform nonlinear coupling G (G = 1 in the following).

The analysis of the previous section shows that the behavior of the
harmonic chain follows all the expected features. Which in uence of the
anharmonicity do we expect? If the initially localized energy would spread
completely it would

Fig. 5.7: (Color online) Comparison between the exponents measured numerically for
momentum and displacement excitations (full circles and squares respectively) and the
analytical result Eq. (5.48), same parameters as in Fig. 5.6. The exponents are evaluated by a
power-law t. Error bars are estimated from the uctuations of the (discrete) logarithmic
derivative  log(m (t))/  log t and are reported only when larger than symbols’ size.

be en(t),  0 for t , for all n. For incomplete spreading, however, (en(t)) for
t large enough should decay byhe power laws Eqs. (5.37) or Eqs. (5.40), again,
and the amplitudes of oscillations at sites far away from site n0 of the initial
excitation should become so small that the harmonic approximation applied to
those tails should become valid.
          A detailed analysis of the effects of nonlinearity goes beyond the scope of
the present work. We thus limited ourselves to the case of FPU with initial
displacement excitation with A = 2. We checked that the energy is about a factor
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of 2 larger with respect to the G = 0 case meaning that the nonlinear part of the
potential is sizeable. We consible the usual definition of )( pot

n where ,1 iii uuK i
= n-1, n Eq. (5.14) is replaced by )( 1

'
iii uuV  with .4/2/)( 42 GxxKxV ii  As for

the harmonic case, we performed the average over disorder at three different
times.

The average energy pro les for three different disorder strengths are
reported in Fig. 5.8. The pro les still show a pretty slow decay, reminiscent of
the harmonic case. From Fig. 5.8 we rst observe that the convergence of (en(t))
to a limiting profile at t=  becomes slower for larger disorder strength R, i.e. for
shorter localization lengths. Second, whereas the profile for R=4 and there
larger time t=6000 can be satisfactorily fitted by the power law Eg. 5.37, this is
less obvious for R=2 and R=8. For R=2 and 10000nn  the profile is
practically time independent for t 2000 . But in contrast to the harmonic case
(see Fig. 5.2) it does not reveal the asymptotic power law 2/5

0nn , although the
data suggest that this may happen for 30000nn . For R=8 the profile
follows that power law for 1000100 0nn , i.e. for about a decade, but
deviates for 10000nn . However, comparing this profile for the three
different values for t hints that the range of the power law decay may increase
with increasing t. In addition, the profiles display some form of weak
“broadening” of the tails indicating that some energy is indeed slowly
propagating.
         As a consequence, the disorder averaged moments (m (t)) do not display a
convincing scaling with time. Even for statistically accurate data as the one in
Fig. 5.8, the effective exponents (as measured for example by the logarithmic
derivatives of (m (t)) display sizeable oscillations which are well outside the
range of the statistical   of the statistical uctuations (see Fig 5.9). Similar results
are obtained for momenta of different order (not reported).

We may thus argue that, at least in the considered parameter range, the
nonlinear case has a core which remain almost localized (in a similar way as the
harmonic case) but in addition there must be a small propagating component.
The fraction of such propagating component increases upon increasing the
energy and/or nonlinearity. As a consequence, with the data at hand it is
impossible to draw de nite conclusions on the nature of the spreading process.

5.5 Summary and conclusions

The relaxation of an initially localized excitation in a translationally
invariant chain of particles has been studied for harmonic and anharmonic
nearest neighbor couplings. The main focus has been on the energy profile
(en(t)), the moments (m (t)), both averaged over the disorder, and the relation
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between the asymptotic t-dependence of (m (t)) with the asymptotic n-
dependence of )t(en . As far as we know, this has neither been explored for the
anharmonic

Fig. 5.8: (Color online) FPU model: Disordered-average energy pro le at three different
times averaged over 103 realizations of the disorder and for different disorder strengths R.
Chain of N = 8192 particles with displacement excitation A = 2. For comparison, the predicted
power law decay for the harmonic chain, Eq. (5.37), is also drawn (dashed lines).

Fig. 5.9: (Color online) FPU model: Evolution of ))(( 2 tm  for R = 2, 4, 8 (top to bottom
respectively) same parameters as in Fig. 5.8. The inset reports the (discrete) logarithmic
derivative  log ))(( 2 tm  /  log t of the data versus log t. For comparison, the value for the
harmonic chain (2) = 1/2 is also drawn (dashed horizontal line).

nor for the harmonic case due to the lack of analytical knowledge of )t(en  for
|n  n0| .
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For the harmonic model we succeeded to determine analytically the
disorder and time averaged energy pro le )t(en  displacement and a momentum
excitation at site n0 and initial time t = 0. Whereas en(t) is a quasiperiodic
function which does not converg for t we have argued that )t(en converges

for t . In that case )t(en  given the limiting profile averaged over the
discorder. The analytical calculation yields a power law decay

0)())(( nnRCten            (5.50)

for 1<< |n  n0|<<  N, in case the system is finite. The exponent  and the
prefactor C(R) depend on the type of excitation. For a displacement and
momentum excitation we have found  = 5/2 and  = 3/2, respectively, in good
agreement with the numerical values. This agreement also holds for the
analytical and numerical results for the R-dependence of C(R),  except  for  the
two smallest values of R in case of a momentum excitation. Accordingly our
assumption 2( )~ ( ) for  0 is supported. From this proportionality it also
follows that C(R) diverges at R = 1, the no-disorder limit. The power law decay,
Eq. (5.50), originates from the gapless excitation spectrum of the Anderson
modes. . It is the consequence of the translational invariance of model (4).
Destruction of this invariance by adding, e.g. an on-site potential like in the KG
model generates an energy gap. The corresponding localization length at the
lowest eigenfrequency will not diverge anymore, and therefore the energy
profile will decay exponentially for |n  n0| . However, we stress that any
lattice model without an external potential has to be invariant under arbitrary
translations. This implies a gapless spectrum which is the origin of the power
law decay of the profile.

The power law decay of )(ten  has remarkable consequences on the
asymptotic t-dependence of the moments. If we use Eq. (5.50) to calculate the
time and disorder averaged -th moment we get for displacement and
momentum excitation:

)t(mv                (5.51)

for all  2; note that, for instance, )(1 tm  is finite for a displacement, but not
for a momentum excitation. The result, Eq. (5.51), implies that the disorder
averaged moment (m  (t)) must diverge with time, although the initial local
energy excitation does not spread completely. This power law divergence of
(m (t)) with time is clearly supported by the numerical result for  2 and  1
for the displacement and momentum excitation, respectively. As a matter of fact,
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consideration of m2(t) alone is not sufficient to conclude that the energy diffuses.
This is one of the main messages of the paper.

The analytically exact result  for )(ten  in case of harmonic interactions
also allows to check how far the tails of an anharmonic chain, where the average
displacements become arbitrary small, can be described by the tails of the
harmonic system Although no definite conclusion can be drawn, we have found
evidence for a crossover of the energy profile of the anharmonic to that of the
harmonic chain. However, for the weakest and strongest strength of disorder this
crossover seems to occur for |n  n0| > 3000 and for t > 6000, respectively. This
may be explained as follows. The localization length 2( ) is large for weak
disorder. Since |n n0|/ 2( ) enters into the calculation of the disorder averaged
profile (see Eq. (5.35)) the asymptotic power laws, Eqs. (5.37) and (5.40), occur
at larger values of |n  n0|. For large disorder, 2( ) is small. But the time scale
for tunneling processes responsible for the energy propagation increases
significantly due to an increase of the potential barriers. Therefore the
convergence to a limiting profile is much slower which is exactly what we
observed (see Fig. 5.7). The increase of the localization length for weak disorder
and the increase of the relevant time scale of relaxation for strong disorder
probably are also the reasons for the absence of a convincing scaling of the
moments (m  (t)). In order to test this, one has to increase both, the number of
particles and the simulation time significantly. Requiring a similar good statistic
of the data this has not been possible so far within the available CPU time. If it
is true that the asymptotic energy profile agrees with that of the harmonic chain
this would imply that the moments (m  (t)) for the anharmonic model for  2
diverge with time, as well, although the energy does not spread completely.

From our results, it is nonetheless clear that the interplay of localized and
almost-extended modes leads to a nontrivial decay of wavepackets amplitudes
and this must be taken into account when dealing with the nonlinear case.

\
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6 TRANSMISSION AND ANDERSON LOCALIZATION IN DISPERSIVE
METAMATERIALS

Comprehensive theoretical and numerical studies of the effects of
dispersion and absorption on the Anderson localization of classical waves in
weakly disordered, one-dimensional stacks composed of dispersive
metamaterials and normal materials are presented. An asymptotic analysis for
studying the effects of dispersion and absorption is developed. It is shown that
the localization of waves in random stacks composed entirely of either
metamaterial or normal dielectric layers is completely suppressed at frequencies
where the magnetic permeability or the dielectric permittivity is zero. In mixed
stacks of alternating layers of normal and metamaterials with disorder present in
either the dielectric permittivity or the magnetic permeability, localization is
substantially suppressed not only at these frequencies but in essentially wider
frequency ranges. When both the permittivity and the permeability are random,
the localization behavior is similar to that in monotype stacks. At the transition
from a double negative metamaterial to a single negative metamaterial, the
transmission length drops dramatically in a manner that might be useful in
optical switching. Polarization effects are also considered and it is shown that
localization is suppressed at the Brewster angle, in a manner dependent on both
the polarization and the nature of the disorder. Theoretical predictions are in
excellent agreement with numerical calculations.

6.1 Introduction

Anderson localization is one of the most fundamental concepts in physics.
Localization of light in random media has been investigated intensively during
the last few decades, with one-dimensional (1D) strong localization receiving
the most comprehensive study. Recently, the emergence of metamaterials - a
new class of artificial materials with negative refractive index - has sparked
considerable interest from researchers and engineers; see, for example,
Refs.121-125. Metamaterials are also referred to as double-negative materials
(DNMs), associated with permittivity and permeability whose real parts are both
negative, in contrast with single-negative materials (SNMs), in which either the
real part of the dielectric permeability or the real part of the magnetic
permittivity is negative.

Since, today, all available metamaterials are manmade, they usually contain
technological imperfections or faults. The first consideration of manufacturing
defects in magnetic metamaterials showed that imperfections could have a
strong impact on propagation. Further studies showed that Anderson localization
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in metamaterials is suppressed, either partially or completely, compared to
localization in conventional materials. A rich vein of new phenomena related to
such suppression has been revealed recently. In one-dimensional stacks
comprising alternating layers of normal and metamaterials, with only thickness
disorder, delocalization can occur at a single frequency at which the of layers
match. Disorder in the dielectric permittivity of the layers (in the absence of
thickness disorder) also gives rise to a startling suppression of localization at
long wavelengths. This suppression is so strong that there is a change in the
functional dependence l~ K of the localization length at long wavelengths. From
the well-known, classical value of  = 2, this exponent increases to a much
larger value, estimated in Ref. 128 as k  6, i.e., the 6 anomaly. In mixed stacks
with weak, long correlated disorder of the layer thicknesses, the frequency
regions corresponding to complete delocalization (pass bands) are essentially
wider than those for conventional right-handed stacks. Complete delocalization
occurs at special frequencies and special angles of incidence corresponding to
the Brewster anomaly.

While further studies confirmed the 6 anomaly, more detailed numerical
calculations for very long stacks showed that the exponent  may increase to
larger values, up to k  8.78, for a stack of approximately 1012 layers. As is
reported in Ref. 130, off-axis incidence, by a a small angle, can affect this
functional dependence. However, the introduction of correlation in the disorder
has little effect. The consideration of layers with different thicknesses, or the
introduction of the layer thickness disorder, in addition to the material
parameters disorder, strongly enhances localization. In Ref. 135 it is shown that
because of specific, nonuniform phase distribution, in the second order of
disorder, localization is completely destroyed for long waves, and that fourth-
order calculations are required. Eventually, in a recent paper, the long-wave
dependence of l ~ 8 was analytically established, showing that the anomaly
which was discovered numerically in Refs. 128 and 133 was actually a 8

anomaly.
Localization in SNMs has also been considered, with it being shown that

the localization length can be smaller than the decay length of the corresponding
periodic structure. The suppression of localization has been reported also in one-
dimensional metamaterial superlattices with thickness disorder.

All metamaterials inherently exhibit dispersion and absorption, and this has
to be taken into account in any realistic study of localization. While the
dispersive effects on localization in normal materials have been considered in
Ref. 138, the corresponding study for metamaterials has only started. The first of
these papers is devoted to light propagation through one-dimensional photonic
disordered quasiperiodic superlattices, composed of alternating layers with
random thicknesses of air and a dispersive metamaterial. In the second one, the
effects of disorder correlations on light propagation and Anderson localization in
one-dimensional dispersive metamaterials are studied.
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Of particular interest are dispersive materials, in which real parts of the
dielectric permittivity or magnetic permeability may vanish at some frequencies.
Structures containing metamaterials with  0 have been studied most
intensively. It has been shown in particular that energy may propagate through
ultranarrow waveguide channels in such structures. It is thus interesting and
important to investigate localization in samples with -near-zero (ENZ), i.e.,
with  0, and in µ-near-zero (MNZ) materials, with µ  0.

In this paper, we examine transport and localization in one-dimensional
disordered systems with different types of dispersive metamaterials, and predict
a new instance of delocalization. We prove theoretically, and through numerical
simulations, that, in systems with  = 0 or µ = 0, the field is delocalized in the
presence of either dielectric permittivity disorder, magnetic permeability
disorder, or thickness disorder. This is in contrast to delocalization at the
Brewster angle that occurs in the presence of solely thickness disorder.

In Sec. 6.2, we describe the theoretical model and present the asymptotic
analysis based on the extension of the approach developed in Ref. 133. The
analysis of delocalization in ENZ or MNZ disordered stacks and the study of
polarization effects are presented in Secs. 6.2.3.1 and 6.2.3.2, respectively.
Numerical simulations and comparisons with the asymptotic predictions are
presented in Sec. 6.3, comprising the characterization of localization in
monotype stacks (Secs. 6.3.1 and 6.3.2) and in mixed alternating stacks
(Sec. 6.3.3).

6.2 Theoretical consideration

6.2.1 Description of the model

We consider a one-dimensional stack which consists of an even number N
of layers. The stack may be either monotype, in which case each layer is either a
metamaterial (A) layer or a normal material (B) layer, or mixed, comprising
alternating A and B layers,  as  shown  in  Fig.  6.1.  All  layers  have  the  same
thickness d = 0.003 m, which is consistent with manufactured metamaterials.

The dielectric permittivity and the magnetic permeability of the
metamaterial layers as functions of a circular frequency f are described by the
Lorentz oscillator model

,1 22

22

fieff
efepff (6.1)
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Fig. 6.1. (Color online) The geometry of the model.  denotes the angle of incidence from free
space.

,1 22

22

fiemff
mfmpff       (6.2)

here fm and fe are the resonance frequencies and is the absorption parameter.
In our model, disorder enters the problem through random resonance
frequencies so that

,1 eef .1 mm mff (6.3)

where fe,m = (fe,m) are the mean resonance frequencies (with the angle brackets
denoting ensemble averaging) and e,m are independent random values
distributed uniformly in the ranges [- Qe,m,Qe,m]. The characteristic frequencies
fmp and fep are nonrandom. Therefore, in lossless media ( = 0), both the
magnetic permeability and the dielectric permittivity vanish with their mean
values, ff and ff , at frequencies f  =  fep and f  =  fmp,
respectively; i.e.,

,0mpmp ff 0epep ff .            (6.4)

Following Refs. 144 and 145, in our numerical calculations we choose the
values of characteristic frequencies fmp = 10.95GHz, fm0 =  = 10.05 GHz, fep =
12.8 GHz, fe0 = fe = 10.3 GHz, and = 10 MHz, which fit the experimental data
given in Ref. 144. That is, we are using a model based on experimentally
measured values for the metamaterial parameters. Then we choose the maximal
widths of the distributions of the random parameters e,m as Qe,m < 5 x 10-3,
corresponding to weak disorder.

We focus our study on the frequency region 10.40 GHz < f < 11.00 GHz. In
the absence of absorption and disorder, for these frequencies the dielectric
permittivity and the magnetic permeability of the metamaterial layers vary over
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the intervals -26.9 <  < -2.9 and -1.64 <  µ  < 0.055. The refractive index is
negative in the frequency range 10.40 GHz < f < fmp = 10.95 GHz, as shown in
the inset of Fig. 6.2. However, at fmp = 10.95 GHz, the magnetic permeability
changes sign and the metamaterial changes from being double negative (DNM)
to single negative (SNM). As we show later, such changes have a profound
effect on the localization properties.

In generic normal dielectric layers with a similar dispersion, the values of
the dielectric permittivity and the magnetic permeability are set to be - *(f) and
-µ*(f), respectively, where (f) and µ(f), are given by Eqs. (6.1) and (6.2) and the
asterisk (*) denotes complex conjugation. In the region
10.40 GHz < f < 10.95 GHz, the refractive index is positive and at higher
frequencies 10.95 GHz < f < 11.00 Ghz the magnetic permittivity becomes
negative and so the material becomes a SNM.

In Sec. 6.3.B  2, we consider a specific model for which the dielectric
permittivity coincides with that of normal material, - *(f), in the range of
frequencies 10.40 GHz < f < 11.00 GHz, while the magnetic permeability
coincides with -µ*(f) only in the region 10.40 GHz <  f  < 10.95 GHz, and at
higher frequencies, 10.95 GHz < f < 11.00 GHz, is equal to µ(f).  As  a
consequence of this exotic choice, the refractive index is positive in the entirety
of the studied frequency region, aside from f = 10.95 GHz at which it vanishes.

6.2.2  Analytical treatment

In what follows, we study the transmission of a plane wave incident on a
random stack from free space, as shown in Fig. 6.1. The plane wave may be
either  s  or p polarized where we adopt the conventional definition for
polarization, in which s and p polarizations refer respectively to the cases where
the electric and magnetic fields are perpendicular to the plane of incidence. Due
to Anderson localization, the transmission coefficient TN of a plane wave
propagating through a sufficiently long stack exponentially decays with its
length Nd. This decay is described by the transmission length lT, measured in
units of the mean thickness d of each layer (for details see Ref. 133), and which
we define as

lT(N) = .
ln NT

N (6.5)

In the limit N , the transmission length lT coincides with the
localization length l:

l = .lim T
N

l



104

Accordingly, in numerical simulations for calculating the localization
length, it is necessary to generate random realizations that are sufficiently long
for the condition N » lT to hold.

In Refs. 128, 136 and 146 an effective method for studying the transport
and localization in random stacks composed of the weakly reflecting layers has
been developed. In the dispersive case considered in the present paper, the
reflection from a layer located in free space is not necessarily weak, in which
instance the method is inapplicable.

However, as localization properties of a random stack are intrinsic
properties of the stack, they cannot, and must not, depend on the material
properties of the exterior medium, i.e., free space in this case. Accordingly, the
localization length can be calculated from

,
ln
2

ln
2

22 limlim
NNnN T

N
T
Nl (6.6)

where N is the transmission coefficient of a stack embedded in an exterior
medium with permittivity and permeability given by the mean values of and ,
respectively. The connection to the outside medium through the “leads” (a
circuit theory term borrowed to describe thin coupling layers) can only change
the coupling conditions to the random stack through the angle of incidence. The
proof of this statement is given in the Appendix to this paper.

Therefore, instead of vacuum, we consider that the layers are embedded in
an effective medium with the dielectric permittivity ff  and magnetic
permeability ff . In such circumstances, the reflection coefficient is
always small and we may apply the method derived in Refs. 128, 133 and 146. It
is important to note that while in the localized regime the input and output media
are of no significance, they do play a crucial role when localization breaks down
(see the following Sec.6.2.C).

Following Refs.128 and 133 we employ the exact recurrence relations for
the total transmission (Tn) and reflection (Rn) coefficients

,
1 1

1

nn

nn
n rR

tTT (6.7)

,
1 1

2
1

nn

nn
nn rR

tRrR   n  2, (6.8)

with the initial conditions T0 = 1 and R0 = 0. Here rn and tn are the reflection and
the transmission coefficients of the single nth layer embedded in the effective
medium with mean dielectric permittivity ff  and magnetic
permeability ff .That is,
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In Eqs.(6.9) and (6.10), n = kd ncos n, n = nn  is the free-space wave
number k = 2 / 0, and the interface Fresnel reflection coefficient n is  given by

,
coscos
coscos

nnbb

nnbb
n zz

zzp (6.11)

The impedances Zb and Zn are

/  polarization,
          Zb=

/ s polarization,                 (6.12)

n /  polarization,
   Zn =              (6.13)

/ s polarization,

The angles b  and n satisfy Snell`s law

,sinsinsin avv bnn ,v                     (6.14)

,
sin

sin
ff

a
b                                               (6.15)

where a  is the external angle of incidence from free space. These expressions
are equally applicable for both normal and metamaterial slabs with the
corresponding choice of the square root branch. Note, however, that for a fixed
angle of incidence a  [from free space (air)], it follows that the angle b is will
vary with frequency, due to dispersion (6.15).

In the limit of weak disorder (|rn|«1), Eqs. (6.7) and (6.8) can be linearized
and written as

 lnTn=lnTn-1+lntn+Rn-1rn,       (6.16)

 Rn=rn+Rn-1t2
n, n  2.                                      (6.17)
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For this case, the localization length has been calculated in Ref. 133 for
monotype-stack (composed of either double-negative metamaterial layers or
normal material layers) samples

,
1

RelnRe1
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n

n
n t

r
t

t
                     (6.18)

And for mixed stacks of alternating normal and metamaterial layers,
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6.2.3  Suppression of localization in disordered stacks

Dispersion affects dramatically the transport properties of the disordered
medium. In particular, the localization can be suppressed either at some angle of
incidence or at a selected frequency, or even in a finite frequency range. The
first two cases are studied below (Secs. 6.2.3.1  and 6.2.3.2 , while the third one
is considered in Sec. 6.3.3.

1. Power decay of the transmission coefficient at normal incidence in the
vicinity of µ- or - near-zero points

The localization length in a lossless, nondispersive, monotype meta- or
normal-material random stack increases in the long-wave region as ~ 2; see
Ref. 133. In the presence of dispersion, the first term in Eq. (6.18) is dominant,
and the long-wave asymptotic of the localization length manifests the same
behavior according to

,2
2

1
2

2
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2

2

22

f
d

l
               (6.20)

in which we have omitted the subscript n.
The distinctive property of dispersive media is that the wavelength (f) in

the medium given by

,0

ff
f

f            (6.21)

is frequency dependent, and can be large even when the wavelength of the
incident signal, 0(f) = 2 /k = c/f, is small.

Accordingly, the inverse localization length
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ffafl 21                                               (6.22)

becomes small not only at low frequencies f  0 but also in the vicinity of µ- or
-zero points. For example, as the frequency approaches the µ-zero point from

below, i.e., f  f-
mp,, in a monotype stack of random metamaterial layers, (f),

for any realization, is proportional to the difference (fmp-f) and the expression for
localization length diverges as (fmp-f)-1. Formally, this divergence can be treated
as delocalization; however, the limiting value 1/l  =  0 means nothing but the
absence of exponential. Moreover, when the localization length becomes larger
than the size of the stack, ballistic transport occurs and the transmission
coefficient is determined by transmission length, (6.5), rather than by the
localization length.

To calculate the transmission coefficient for this case we consider, for the
sake of simplicity, a stack with only  disorder.  Here the transfer matrix of the
nth layer at f = fmp has the form

n

n
nn

1
,

1 n

n

2
n

n
ikd

As a consequence of the easily verified property

,2121 TTT            (6.23)

it follows that the stack transfer metrix T is

1
n

N
n 1

,

where
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ikl      L = Nd.       (6.24)

In a sufficiently long stack, ikL
2
1    and the transmittance 2

11TT

 is given by
.

2
1

1
2fkL

T             (6.25)

Thus, at the frequence fmp, the transmittance of the sample is not an
exponentially decreasing function of the length L (as is typical for 1D Anderson
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localization). It decreases much more slowly, namely, according to the power
law T  L-2 .

There are two physical explanations for the delocalization described above.
First, at a µ-zero point (f = fmp), the  refractive index n vanishes together with
the phase terms n =  kd ncos n across the layer, thereby weakening the
interference, which is the main cause of localization. Second, the effective
wavelength inside the stack tends to infinity when µ  0 and exceeds the stack
length. Obviously, such a wave is insensitive to disorder and therefore cannot be
localized.

In the limit as the frequency approaches the µ-zero frequency, from above,
i.e., f  f+

mp, the medium is single negative and µ  0. For frequencies f not
too close to fmp , the radiation decays exponentially inside the sample due to
tunneling, and in the absence of dissipation the decay rate is

.1
kd

l            (6.26)

Thus, as we approach the µ-zero frequency from the right, the formally
calculated localization length diverges as l  (f - fmp)-1/2, i.e., much more slowly
than for the left-hand limit fr which l  (fmp - f )-1. The transport properties in the
vicinity of the -zero frequency fep can be considered in a similar manner. Waves
are also delocalized in the more exotic case when both dielectric permittivity
and magnetic permeability vanish simultaneously. The vanishing of both µ and
simultaneously can happen at Dirac points in photonic crystals.

The use of off-axis incidence from free space for frequencies for which µ
or  are zero is not an appropriate mechanism for probing the suppression of
localization. In such circumstances, tunneling occurs and the localization
properties of the stack are not “accessible” from free space. Nevertheless,
suppression of localization can be revealed using an internal probe, e.g., by
placing a plane-wave source inside the stack, or by studying the corresponding
Lyapunov exponent. Both approaches show total suppression of localization at
the frequencies at which dielectric permittivity or magnetic permeability vanish.

In such circumstances, each layer which is embedded in a homogeneous
medium with material constants given by the average values of the dielectric
permittivity and magnetic permeability is completely transparent, with this
manifesting the complete suppression of localization. However the
“delocalized” states at the zero-µ or zero-  frequencies are in a sense trivial,
corresponding to fields which do not change along the direction normal to the
layers.
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  2. Brewster anomaly

We now consider another example of the suppression of localization, this
time related to the Brewster anomaly. It has been shown in Ref. 146 that in a
one-dimensional nondispersive mixed stack with only thickness disorder,
delocalization of p-polarized radiation occurs at the Brewster angle of incidence.
At this angle, the Fresnel coefficient  [Eq. (6.11)] and, therefore, the reflection
coefficient [Eq. (6.9)] as well, vanish for any frequency, thus making each layer
completely transparent.

In the presence of dispersion, the same condition  = 0  leads  to  more
intriguing results. In this instance, frequency- dependent angles, at which a layer
with the dielectric permittivity (f) and magnetic permeability µ(f) embedded in
the effective medium with mean dielectric permittivity f  and magnetic
permeability f  becomes transparent, exist not only for p polarization but
also for an s-polarized wave. This means that the Brewster anomaly occurs for
both polarizations, with the corresponding angles, p and s, being determined
by the conditions

,tan 2
p                                          (6.27)

,tan 2
s                                          (6.28)

It can be shown that the right-hand sides of these equations (the Brewster
conditions) always have opposite signs. From Eqs.(6.27) and (6.28) one can find
either the Brewster angle for a given frequency or the Brewster frequency for a
given angle of incidence.

While for a stack with only thickness disorder, the condition  = 0 can be
satisfied for all layers simultaneously, when  and/or µ fluctuate, the conditions
(27) or (28) define the frequency-dependent Brewster angles which are slightly
different for different layers. These angles occupy an interval within which both
homogeneous or mixed stacks are not completely transparent, but have
anomalously large transmission lengths.

When only the dielectric permittivity is disordered and µ = , the Brewster
conditions (27), (28) simplify to

,1tan 2
p                (6.29)

,1tan 2
s               (6.30)
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Hence, in the presence of only permittivity disorder, the Brewster condition
is satisfied only for p polarization. Since the disorder is weak, i.e., , the
Brewster angle of incidence from the effective medium is p /4.. The
corresponding angle from free space, a is related to the Brewster angle p
hrough Snell’s law, and for the given a , the Brewster frequency fp follows from

a
p

a
pp ff sin2

sin
sin                (6.31)

Note that this equation may be satisfied at multiple frequencies depending
on the form of the dispersion.

In the case of only magnetic permeability disorder,  = , the Brewster
conditions (6.27), (6.28) reduce to [compare with Eqs. (6.29) and (6.30)]

,1tan 2
s         (6.32)

,1tan 2
s               (6.33)

and the Brewster anomaly is observed for s polarization at the Brewster
frequency fs given by

sin2
sin
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s

a
ss ff                (6.34)

For disorder in both the permeability and the permittivity, the existence of a
Brewster anomaly angle depends, in accordance with Eqs. (6.27) and (6.28), on
the sign of the quantity / . If > 0 ,  the  Brewster  angle
exists for s polarization, while if < 0, it exists for p polarization. In the case

= 0, the layer and the medium in which it is embedded are impedance
matched, and thus the layer is completely transparent.

6.3 Nunerical results

6.3.1 Metamaterial stack

Along with the analytical calculations a comprehensive numerical study of
the properties of the transmission length as a function of wavelength and angle
of incidence has been carried out. We first consider the case of normal incidence
on a stack of N  = 107 layers, in which we randomize only the dielectric
permittivity (Qm = 0) with Qe = 0.5 x 10—2. Figure 6.2 displays the transmission
length lT as a function of frequency f. The upper curves present the case in which
absorption is neglected, while the lower curves show the effects of absorption.
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The red solid curves and the blue dashed curves display results from numerical
simulations and the theoretical prediction (6.18), respectively. The top curves
represent the genuine localization length for all frequencies except those in the
vicinity of f  &  fmp = 10.95 GHz where the transmission length dramatically
increases.

In the absence of absorption, for frequencies f >10.95 GHz, the
metamaterial transforms from being double negative to single negative (see inset
in Fig. 6.2). The refractive index of the metamaterial layer changes from being
real to being purely imaginary, the random stack becomes opaque, and the
transmission length substantially decreases. Such a drastic change in the
transmission length (by a factor of 105) might be able to be exploited in a
frequency-controlled optical switch.

The theoretical result (6.18) is in excellent agreement with simulation
based on the exact recurrence relations (6.7) and (6.8) across the frequency
interval 10.4 GHz < f < 11.0 GHz.

Fig. 6.2. (Color online) Transmission
length lT vs frequency f at normal
incidence (a =  0)  for  a  metamaterial  stack
without absorption (top curve) and in the
presence of the absorption (bottom curves).
Red solid curves display numerical
simulations while blue dashed curves show
the analytical predictions. Inset: The real
(red solid line) and imaginary (green
dashed line) part of the metamaterial layer
refractive index.

Fig. 6.3. (Color online) Transmission
length lT vs frequency f for a = 30° for a
metamaterial stack: without absorption, p
polarization (top curves), S polarization
(middle curves); in the presence of
absorption (bottom curves). Results for
numerical simulations (red solid curves)
and analytical predictions Eq. (6.18) (blue
dashed curves) are shown.

Transmission length lT vs frequency f at normal incidence (0a =  0)  for  a
metamaterial stack without absorption (top curve) and in the presence of the
absorption (bottom curves). Red solid curves display numerical simulations
while blue dashed curves show the analytical predictions. Inset: The real (red
solid line) and imaginary (green dashed line) part of the metamaterial layer
refractive index.



112

Moreover, the first term in Eq. (6.18), corresponding to the single-
scattering approximation, dominates for all frequencies except in the region
10.4 GHz < f < 10.5 GHz where both terms in Eq. (6.18) are necessary to
describe the localization length. Quite surprisingly, the asymptotic equations
(6.20) and (6.26) are in excellent agreement with the numerical results over the
frequency range 10.9 GHz < f < 11.0 GHz, including in the near vicinity of the
frequency fmp = 10.95 GHz at which µ vanishes.

Absorption substantially influences the transmission length (the lower
curve in Fig. 6.2) and smooths the nonmonotonic behavior of the transmission
length for f  < 10.5 GHz. The small dip at f  10.45 GHz correlates with the
corresponding dip in the transmission length in the absence of absorption. The
most prominent effect of absorption occurs for frequencies just below the µ-zero
frequency fmp = 10.95 GHz. While in the absence of absorption, the stack is
nearly transparent in this region, turning on the absorption reduces the
transmission length by a factor of 102-103 for f  > 10.7 GHz. In contrast, for
frequencies f > 10.95 GHz, the transmission lengths in the presence and absence
of absorption are nearly identical because here the stack is already opaque and
its transmittance is not much affected by an additional small amount of absorp-
tion. Again, the simulations and the theoretical predictions are in excellent
agreement and show that the theoretical form (6.18) accounts accurately for
dissipation.

The transmission length spectrum in the case where both disorders of the
dielectric permittivity and magnetic permeability are present, i.e.,
Qe = Qm = 0.5 x 10-2, is qualitatively similar to that of the single-disorder case
considered above, and so we do not present these results here.

In the case of oblique incidence, polarization effects become important. In
Fig. 6.3, we display the transmission length frequency spectrum for a
homogeneous metamaterial stack with only dielectric permittivity disorder for
the angle of incidence a = 30°. For frequencies f  < 10.55 GHz, the
transmission length is largely independent of the polarization.

Moreover it does not differ from that for normal incidence (compare with
the top curve in Fig.6.2). This is due to the high values of the refractive indices
at these frequencies (| vn | > 4), resulting in almost zero refraction angles (6.14)
for angles of incidence that are not too large.

As noted previously, true delocalization, such as in the presence of only
thickness disorder, cannot occur for material disorder (i.e., permittivity or
permeability disorder). Nevertheless, the transmission length manifests a sharp
maximum at an angle close to the Brewster angle, as commented upon in
Refs.146 and 149. This is indeed apparent in Fig. 6.3 for the frequency
f  10.85 GHz. Because only  fluctuates, the Brewster condition is satisfied
only for p polarization (6.30) at a single frequency fp  10.852 GHz. The
introduction of additional permeability disorder (not shown) reduces the
maximum value of the localization length by two orders of magnitude.
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Comparison of Figs.6.2 and 6.3 shows that the frequency of the maximal
suppression of localization decreases as the angle of incidence increases. At
normal incidence it coincides with the µ-zero frequency fmp while for oblique
incidence at a = 30° it coincides with the Brewster frequency fp for p
polarization.

Absorption strongly diminishes the transmission length. In Fig.6.3, we
display results of numerical simulations of the transmission length for p
polarization (bottom red solid curve) and the corresponding theoretical
prediction (6.18) (blue dashed curve). Both curves are almost identical, with
absorption providing the main contribution to the transmission length, and with
the permittivity disorder having little influence on the transmission length. The
results for S polarization are therefore practically indistinguishable from those
for p polarization.

The transmission properties of a stack with only magnetic permeability
disorder at oblique incidence are similar to those for the case of only dielectric
permittivity disorder. In Fig.6.4 we plot the transmission length as a function of
frequency at the incidence angle a = 30°. The key difference is that there is a
Brewster anomaly for S polarization (top curves in Fig.6.4) while for p
polarization (middle curves in Fig.6.4) the Brewster anomaly is absent. The
effect of absorption (the bottom curves) is also similar to that of the preceding
case.

Fig. 6.4. (Color online) Transmission length lT vs frequency f at a = 30° for a metamaterial
stack with the magnetic permeability disorder: without absorbtion, S polarization (top curve),
p polarization (middle curve); in the presence of the absorbtion (bottom curves). Red solid
curves are simulation results while the blue dashed curves are analytical predictions,
Eq. (6.18).

We finally consider the dependence of the transmission length on the angle
of incidence at a fixed frequency. The results for both polarizations are displayed
in Fig. 6.5. Here we have plotted the transmission length of the stack with only
dielectric permittivity disorder with Qe = 0.5x10-2 at the frequency
f = 10.90 GHz, as a function of the angle of incidence. The upper and middle
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curves correspond to the results for p- and s-polarized waves, respectively, in the
absence of absorption. For s-polarized light, the transmission length decreases
monotonically with increasing angle of incidence, while for p-polarized waves it
increases with increasing angle of incidence. Such behavior reflects the
existence of a Brewster angle for p polarization at the Brewster angle a = 15°.
The red solid curve shows the results of simulations, while the blue dashed line
is the analytic prediction based on Eq.(6.18).

Fig. 6.5. (Color online) Transmission length lT vs angle of incidence for a homogenous
metamaterial stack at f = 10.7 GHz with permittivity disorder: in the absence of absorption—
upper curve and for p polarization; middle curve is for s polarization and in the presence of
absorption; and for both polarizations, lower curves. The solid red lines are the numerical
simulations and the blue dashed lines are the theoretical predictions, Eq. (6.18).

As in the previous cases, in the presence of absorption, the results for both
polarizations are almost identical  ( the lower curves in  Fig  6.5).     For angles

a < 30°,  the transmission length is dominated by absorption, while for   angles
a > 30° tunneling is the dominant mechanism. The results for permeability

disorder (not presented) are very similar to those for permittivity disorder.

6.3.2 Normal-material stacks

1. Standard normal stacks

According to the definitions of Sec. 6.2.1, in a homogeneous normal layer
the dielectric permittivity and the magnetic permeability are defined as - *(f)
and -µ*(f ) ,  respectively, with ( f ) and µ(f ) given by Eqs. (6.1) and (6.2). For
such a layer the refractive index is positive in the region
10.40 GHz < f  <  10.95 GHz. At higher frequencies
10.95 GHz < f  < 11.00 GHz, the magnetic permittivity becomes negative and
we now deal with a SNM. The transmission length in this case manifests exactly
the same behavior as for stacks comprised of metamaterial layers that were
considered in the previous Sec.6.3.1.
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2. Exotic normal stacks

The most unusual features of the transmission length appear in the
vicinities of the µ-zero and/or -zero frequencies and at the Brewster frequency.
In this section, we consider a model, which although being rather artificial,
offers extraordinary transport properties that could be useful for designing
optical switching devices. Within this model, the dielectric permittivity
coincides with that of the normal material, - * ( f) ,  over the entire frequency
range 10.40 GHz < f  <  11.00 GHz, while the magnetic permeability coincides
with that of normal material, -µ*(f ) ,  only in the region
10.40 GHz <  f  <10 .95 GHz, with its values at higher frequencies,
10.95 GHz < f  <  11.00 GHz, being given by Eq.(6.2) (metamaterial). It is easy
to see that the refractive index is always positive and is practically symmetric
[µ(f)  |f - fmp|] about the frequency fmp =10.95 GHz, at which it vanishes. As a
consequence, when this frequency is crossed, the transmission length of a
random stack of such layers manifests an abrupt switching from complete
transparency (at normal incidence) to strong localization (i.e., strong reflection)
at oblique incidence. Therefore, the transmission length, in the case of normal
incidence, must manifest the same symmetry in the vicinity of this frequency.
Note that qualitatively the transmission behavior would have been the same as
observed here if the frequency model for µ  behaved according to the form
µ(f )  (f - fmp)2 rather than µ(f )  |f - fmp|. Note that the former does not violate
the Kramers-Kronig condition and as a consequence the transmission
characteristics depicted below are possible.

Fig. 6.6. (Color online) Transmission length lT vs frequency f at normal incidence for a
homogeneous stack: without absorption (upper curve), and in the presence of absorbtion
(lower curves). The red solid curves are the numerical simulations and the blue dotted lines
are Eq. (6.18).
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The normal incidence transmission length, as a function of wavelength, is
plotted in Fig.6.6 for stacks of N=107 layers with only dielectric permittivity
disorder Q e =  0.5 x 10-2, Q m =  0. The upper and lower curves display l T ( f ) for
lossless and absorbing stacks, respectively. The red solid curves and the dashed
blue curves display, respectively, the results of numerical simulations and the
theoretical prediction (6.18). The upper curves, corresponding to an absence of
absorption, represent the genuine localization length for all frequencies except
for the vicinity of f fmp =  10.95 GHz, where the transmission length
drastically increases. For frequencies f  <  fmp =  10.95 GHz, the transmission
length coincides with that of the normal or metamaterial stack (see Fig.6.2),
while for frequencies f  slightly exceeding the characteristic frequency f mp the
symmetry mentioned above is clearly manifest. Absorption (lower curve in
Fig.6.6) has a similar effect on the transmission length as that shown for
metamaterial stacks.

Fig. 6.7. (Color online) Transmission length lT vs frequency f for s-polarized, off-axis
incidence a = 5° top curve and for a = 30° bottom curve for a normal material stack in the
absence of absorbtion. The red solid curves are numerics and the blue dashed curves are the
theoretical predictions, Eq. (6.18).

We have plotted (see Fig.6.7 top curve) the same curve for an angle of
incidence a =  5°. The corresponding curve demonstrate a deep dip (four orders
of magnitude) in the transmission length over the narrow frequency range
10.93 GHz <  f  <10.97 GHz. The origin of the dip is related to the tunneling
nature of wave propagation at these frequencies.

The width of the strong localization region (where the transmission length
becomes comparatively small) increases with increasing angle of incidence. For

a  =  30° and spolarization, this range is 10.85 GHz <  f  <  11 GHz (lower,
dashed, blue line in Fig.6.7) and corresponds to the tunneling regime. For
frequencies f  <  10.85 GHz, the localization length coincides with the
localization length for a metamaterial stack (see middle curve in Fig.6.2).

The results for p  polarization are similar to those for s polarization (with
the exception that the transmission length has its maximum at =30° at
f  10.85 GHz), and thus we do not present them here.
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6.3.3  Mixed stacks

The case of mixed stacks without thickness disorder is very interesting. It is
shown in Ref.128 that, for a nondispersive mixed stack with fluctuating
refractive indices and constant layer widths, localization of long-wavelength
radiation is strongly suppressed. This suppression manifests itself as the
anomalous, l 6, growth of the localization length in the long-wave region
instead of the usual dependence l 2. To study how dispersion influences this
effect we consider transmission through mixed stacks with only dielectric
permittivity disorder.

In Fig.6.8(a), we plot the transmission length spectrum in the case of
normal incidence, for a small permittivity disorder of Q e =  0.5 x 10-2, and
observe significant (up to four orders of magnitude) suppression of localization
in the frequency region 10.50 GHz <  f  <  10.68 GHz. However, in this case the
localization length grows with increasing frequency, while, in Ref.128 similar
growth has been observed with increasing incident wavelength. This is shown in
Fig.6.8(b) where the same transmission length spectrum is plotted as a function
of free-space wavelength. Thus, the localization length decreases by four orders
of magnitude, manifesting as an enhancement, rather than the suppression, of
localization with increasing wavelength.

Although at first sight these findings are in sharp contrast, both are correct
and physically meaningful. In the model studied in Ref.128 the wavelength of
the incident radiation largely coincided with the wavelength inside each layer. In
the problem that we consider here, these two wavelengths differ substantially.
Accordingly, in Fig 6.8(c), we plot the transmission length as a function of
wavelength within the stack and obtain results which are very similar to those in
Ref.128. To emphasize the similarity with Fig.6.3 in Ref.128 we have plotted the
transmission length spectrum for three different stack lengths: N  =  105,106,107.
It is easily seen that the suppression of localization in the dispersive media is
qualitatively and quantitatively similar to that predicted in Ref.128 Indeed, the
suppression observed there was described by a power law lT

6, with
subsequent more detailed calculations correcting the estimate of this power from
6 to 8.78. The results in Fig.6.8(c) correspond to a power of 8.2. The lower
curves in Figs.6.8(a)-6.8(c) correspond to samples with both types of disorder
Q e  =  Q m  =  0.5 x 10-2 and are very well described by the analytical prediction
(6.19) with l 2.
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Fig. 6.8. (Color online) (a) Transmission length lT vs frequency f for a mixed stack with
N = 107 layers (top dotted blue curve), and only dielectric permittivity disorder. The bottom
curves on all three panels are for a stack with N  = 107 layers with both permittivity and
permeability disorder (the cyan solid curve displays simulation results while the dashed black
curve is for the analytic prediction, Eq. (6.19); (b) is the same as in (a) but plotted as a
function of the free-space wavelength A0 while on panel (c) we plot the transmission length as
a function of the averaged wavelength inside the stack normalized to the thickness of the
layer, for N = 107 layers (blue dotted top curve), N = 106 layers (dashed green curve), and for
N = 105 layers (red solid curve).

Combining the results of this section with those obtained previously, we
may conclude that dielectric permittivity disorder in mixed stacks having
constant layer thickness is not sufficiently strong to localize low-frequency
radiation. To obtain the “typical” long-wavelength behavior of the localization
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length, 2, one has to “switch on” additional disorder-either thickness disorder
as in Refs.128 and 133 or magnetic permeability disorder as in the present work.

The transmission length obtained here remains very large up to the µ-zero
frequency f m p  =  10.95 GHz [Fig. 6.8(a)]. This leads us to hypothesize that
suppression of localization in the model considered here is related to the
vanishing of the effective magnetic permeability at f  =  fmp. In this case, one
should expect a substantial increase of the localization length with increasing
frequency and a sharp peak of the localization length at f  =  fmp. However, the
stack of N=107 layers is too short for this to occur, and thus its localization
regime is bounded from above by the frequency f  = 10.65 GHz. Therefore, we
do not observe the expected peak at f  =  10.95 GHz. However, we do observe
the abrupt drop of the localization length as we approach this frequency from the
right. Thus, we conclude that we are dealing with the same effect of
delocalization at -zero frequency as was observed in monotype samples (see
Fig. 6.2). However, in contrast to the latter case, the corresponding growth of the
localization length begins essentially earlier and occurs substantially faster.

6.4 Conclusion

Transport and localization of classical waves in onedimensional disordered
systems containing dispersive, lossy metamaterials have been studied
analytically and numerically. It has been shown that the field can be delocalized
in onedimensional µ-near-zero or -near-zero media – a new form of
delocalization that occurs in one dimension in the presence of short-correlated
disorder. We have also demonstrated disspersion-induced suppression of
Anderson localization in mixed stacks with either dielectric permittivity or
magnetic permeability disorder. The presence of both forms of disorder,
however, enhances localization. The effects of polarization in the presence of
different forms of disorder have been studied and Brewster anomalies have been
demonstrated at angles (or frequencies) that depend not only on the polarization
of the radiation, but also on the type of disorder. The theoretical predictions are
in excellent agreement with the results of numerical simulations.
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7 PHOTONIC CRYSTALS WITH ANOMALOUS DISPERSION:
UNCONVENTIONAL PROPARGATING MODES IN THE PHOTONIC

BAND GAP

We present an investigation of the optical properties of  photonic crystals
whose constituent materials exhibit anomalous dispersive behavior. In
particular, the anomalous dispersion near resonances may lead to additional
propagating modes in the gap of the undoped system for a localized region of
wave-vector space. Such a system may be realized by infiltrating quantum dots
in polymer suspensions into the pores of two-dimensional high-index photonic
crystals. An evaluation of the absorption lengths associated with these
unconventional modes and corresponding transmission calculations demonstrate
that this effect can be observed in currently accessible structures.

7.1 Introduction

Progress in photonics is closely related to development of optical materials
with tailor-made properties. Photonic crystals (PCs) [149-151] represent a novel
class of man-made optical materials. The judicious design of these two-
dimensional (2D) or three-dimensional (3D) periodic dielectric arrays allows
one to tailor the photonic dispersion relation and the corresponding mode
structure to almost any need. In particular, the flexibility associated with
material composition, lattice periodicity, and symmetry together with the
deliberate creation of defect structures makes PCs the optical analog of an
electronic semiconductor.

The usefulness of PCs and defect structures embedded in them may be
substantially enhanced if the structures exhibit one or more forms of tunability.
This has led a number of authors to propose PC structures whose constituent
materials exhibit tunable properties such as temperature-dependent refractive
indices, [152] strongly dispersive behavior [153] as well as electro[152-154] and
magnetrooptically [155]controllable anisotropies.

In this paper, we consider photonic band structures and absorption lengths
of PCs whose constituent materials exhibit anomalous dispersion. By embedding
these materials into a PC, one may expect to modify the photonic band structure
considerably, if the resonance frequency is tuned to lie close to a photonic band
edge. As we will show, the hybridization of the electromagnetic wave mode
with the local dielectric modes leads to a splitting of the wave mode into three
submodes in a limited region of wave-vector space. Of these three modes, two
are stable and form a bubble shape in the band structure. However, as any
frequency dependence of the effective dielectric constant is necessarily
accompanied by a dissipative component, the question arises as to whether these
bubble modes are overdamped. To answer this question, it requires a full
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treatment of the propagating and absorptive properties of the electromagnetic
wave. As a consequence, we describe a highly efficient on-shell methodology
based on photonic Wannier functions [156] which allows us to solve for the
photonic band structure and absorption lengths associated with complex-valued
and frequency-dependent dielectric constants. We present a careful study of this
problem and conclude that the bubble modes should, indeed, be observable in
currently accessible materials.

The paper is organized as follows. In Sec. 7.2, we define the model system
used in the following sections. The numerical methods for band structure and
attenuation length calculations of PCs with dispersive components are described
and discussed in Sec. 7.3. In Sec. 7.4, we present results for the model system,
discuss the effects of the anomalous dispersion of the constituent materials on
the photonic band structure, and investigate the attenuation length resulting from
the nonzero imaginary part of the dielectric constant. Finally, we summarize our
results in Sec. 7.5.

7.2 Model system

In the following sections, we discuss in detail the case of TM-polarized
radiation in 2D macroporous silicon PCs [157] (square lattice of pores with
lattice constant  in silicon, dielectric constant of silicon Si=12.0, and electric
field polarized parallel to the pore axis), where the pores (radius r/  a = 0.475)
have been infiltrated with a polymer (typical dielectric constant polymer=2.56)

FIG. 7.1. (Color online) Model system of a 2D macroporous silicon PC infiltrated with
quantum dots in a polymer suspension. This PC consists of a 2D macroporous silicon

backbone (dielectric constant Si=12.0) into which a square lattice of pores (radius r/a = 0.45)
has been etched, which subsequently have been filled with a low-index polymer (dielectric

constant polymer=2.56).

that contains a (small) volume fraction of quantum dots. This is schematically
depicted in Fig. 7.1, and we would like to note that similar systems have
recently been realized [158-159], albeit for different purposes. However, we
would like to emphasize that all our arguments are directly applicable to the case

quantum
dots in
polymer

suspension
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of TE-polarized radiation in 2D PCs as well as to the case of 3D PCs if only the
constituent materials exhibit frequency ranges with anomalous dispersion.

In our simplified approach, the quantum dots are modeled through a
(linear) two-level dielectric constant,

22
0

2

1 p
tl      (7. 1)

where 0, p, and y denote, respectively, the resonance frequency, the
oscillator strength, and the linewidth (damping constant). Owing to their small
size of a few nanometers relative to the optical wavelength, we may treat the
admixture of a certain concentration y of quantum dots to the polymer within a
Maxwell-Garnett effective dielectric constant approach [160]. As a
consequence, the effective dielectric constant of this doped polymer that fills the
pores of the macroporous silicon PCs reads

a
a

mporb 1
31             (7.2)

In Fig.7.2, we depict the frequency dependence of the real and imaginary
parts of this effective dielectric constant [Eq. (7.2)] for a resonance frequency

0a/2 c = 0.245, oscillator strength p = 0.8 0, damping constant =0.01 0,
and several realistic values of the concentration . In fact, changing the
concentration y of quantum dots alows a rather simple way

FIG. 7.2. (Color online) Effective dielectric constant of a typical polymer doped with
quantum dots for three different concentrations y. The quantum-dot parameters are given in

the text. The resonance of this Maxwell-Garnett effective dielectric constant is shifted relative
to the resonance frequency of isolated quantum dots (vertical dotted line).

of significantly tuning the pore dielectric constant in the vicinity of the
quantum-dot resonance frequency. As a result of the hybridization of the
quantum-dot modes with the background modes provided by the polymer, this
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resonance is slightly shifted relative to the bare quantum-dot resonance
frequency.

Before proceeding to photonicband structure computations of composite
PC structures, we would like to make two observations. First, while we have
derived the effective dielectric constant porb  of  the  pore  material  for  a
specific and easily realizable model system (see Ref. 160), it should be clear that
its frequency-dependent behavior depicted in Fig. 7.2 is rather generic and can
be obtained via many other routes such as the growth of polar semiconductor
nanocrystals within the pores. Second, the value of the resonance frequency
determines the PC’s photonic bands which experience the effects of the
anomalous dispersion depicted in Fig. 7.2 most strongly. Therefore, the undoped
PC has to be carefully engineered in order to ensure that the corresponding
Bloch functions sample the pores sufficiently well. Analogous considerations
apply to other structures. We will return to this issue in Sec. 7.4.

7.3 Band structure and attenuation length computations

The Maxwell equations for time-harmonic TM-polarized light propagating
in the (x, y) plane of a 2D PC can be reduced to a scalar wave equation for the z-
component E( )of the electric field.

0)(),()(
2

2 rEr
c

rE pc (7.4)

Here,
222

and c denote the 2D Laplacian and the vacuum speed of

light, respectively. The dielectric constant ),(),( Rrr pcpc  contains all the
information about the PC and is periodic with respect to the set ;2211 knanR
(n1,n2) 2Z  of lattice vectors R that are generated by the primitive translations
a1 and a2. For our model system, the PC dielectric constant reads as

,,
Rsiporbsipc Rrrr          (7.5)

where we have introduced the Heaviside function (x).
Equation (7.4) represents a differential equation with periodic coefficients

and, therefore, its solutions obey the Bloch-Floquet theorem,

,rEear kn
jaki

jkn        j=1,2 (7.6)
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In the reduced zone scheme,13 which we adopt here, the Bloch modes rE
kn

are labeled with the composite index (n k ), where n and k, respectively, denote
the band index and the wave vector in the first Brillouin zone (BZ).

In the case of a frequency-independent dielectric constant, rrw pcpc , ,
 Eq. (7.4) can be solved as a standard eigenvalue problem using general purpose
methodologies such as plane wave expansion (PWE) approaches,1415finite-
difference based multigrid methods [164] or advanced finite element
techniques[165]. However, the situation becomes much more complicated for
frequency-dependent dielectric constants which we study in this paper. In this
case, Eq. (7.4) constitutes a nonlinear elliptic eigenvalue problem with Bloch-
boundary conditions and, therefore, solving Eq. (7.4) either requires the usage of
an on-shell methodology, [166-167] which—for a given frequency —allows
one to compute the allowed wave vectors k ( ) or an extension of the standard
band structure methods to nonlinear eigenvalue problems. For instance, the
standard PWE approach has been adapted to treat specific forms of frequency-
dependent dielectric constants, and, recently, it has been reformulated to
facilitate on-shell computations[168] However, the Kramers-Kronig relations—
which are a manifestation of causalite [169] — require that dispersive materials
have to be described through a complex-valued dielectric constant such as those
described in Eqs. (7.1) and (7.2). As a consequence and in order to ensure the
viability of the results, absorption has to be taken into account by all methods of
photonic band structure computations.

In general, there exist two distinct ways how to deal with absorption in
photonic band structure theory. Within the first route, real-valued wave vectors
are maintained so that absorption leads to complex eigenfrequencies [170,172]
From a mathematical point of view, this has the advantage that the Bloch modes
can be normalized. Physically, this corresponds to the situation where the Bloch
modes acquire a finite lifetime, i.e., an initially excited Bloch mode decays as
time progresses. The realization of a corresponding experiment appears to be
rather challenging. The second option is to retain real-valued frequencies and to
associate the effects of absorption with complex-valued wave vectors. As a
result, the Bloch modes resist normalization. On the other hand, an imaginary
part of the wave vector allows one to define a length scale that describes how
waves at a given frequency are attenuated within a PC. This attenuation length
accounts for both the effects of absorption and photonic band gaps. The latter
are also present in the nonabsorbing case. An experimental realization of this
situation would have to be based on studies of the transmission through finite
but sufficiently large PC samples, so that effects related to the PC surfaces (for
instance, in- and outcoupling efficiencies) can be separated from the attenuation
in the bulk PC (Sec. 7.4).

The relation between the two approaches discussed above is nontrivial. For
instance, in the case of complex eigenfre- quencies as functions of real wave
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vectors, it would be necessary to develop an analytical continuation of those
frequencies to complex-valued wave vectors and to search for wave vectors for
which the imaginary part of the frequency vanishes. Since the eigenfrequencies
are, in general, only known numerically, this is a formidable task. Furthermore,
even in the weakly absorbing case, simple perturbation techniques for the
transition from complex frequencies to complex wave vectors fail, [170]
although recent advances [171] suggest that more sophisticated approaches
could improve the situation (see also Ref. 173).

In the following sections, we describe three independent and somewhat
complementary methods that allow one to develop a complete physical picture
of PCs with dispersive constituent materials and apply those methods to our
model problem with anomalous dispersion. First, we present an efficient on-
shell methodology based on photonic Wannier functions that allows one to carry
out band structure and attenuation length calculations for general frequency-
dependent and complex-valued dielectric constants. We then provide a brief
summary of an extension of standard band structure calculation techniques
(initially described in Ref. 173 and subsequently rediscovered in Ref. 175) that
allows one to deal with frequency-dependent but real-valued dielectric
constants. This extension may provide the basis for reasonable approximations
in systems where absorption can be treated perturbatively. [176]Most
importantly, this extension suggests a straightforward geometrical interpretation
and additional intuitive insights into the results obtained from the more general
Wannier function approach. Finally, we demonstrate how attenuation lengths
can be extracted from transmission calculations through finite PC samples.
These calculations are based on a rigorous coupled wave analysis (RCWA)
approach with numerical scattering matrices and allow a direct comparison with
the Wannier function results for infinite PCs.

7.3 A .Wannier function approach

In order to solve Eq. (7.4) within the Wannier function approach, we
decompose the complex-valued PC dielectric constant rwpc ,  into a real-
valued and nondispersive reference part rref  and a complex-valued frequency-
dependent part rrwrw refpc ,, that both retain the lattice
periodicity of the PC. As alluded to above, for the reference system, we can
easily solve the corresponding wave equation,  via standard band structure
computations. Moreover, we have a certain flexibility in choosing the reference
dielectric constant rref .The actual choice of rref should be guided by
physical considerations, such as the range of values, which the PC’s different
constituent material dielectric constants take on over the frequency range of
interest so that the reference dielectric constant is (in some sense) not too far
from the actual system that should be solved. For our model system, the natural
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choice for rref  is the 2D macroporous silicon PC whose pores have been
infiltrated with the undoped polymer.

As a result, Eq. (7.7) provides us with a reference band structure and
corresponding reference Bloch functions rE

kn
0 . These Bloch functions are then

further processed to yield the reference PC’s photonic Wannier functions,

rEkUkedvrW knm nm
Rik

BZ
wsc

kn
02

22
.               (7.8)

Here, VWSC  denotes the volume of the PC’s Wigner-Seitz cell. The unitary
matrices kU nm  have to be determined numerically and facilitate that the
Wannier functions are maximally localized in the unit cell that corresponds to
the lattice vector R _. Owing to the fact that photonic Wannier functions are
essentially the result of a lattice Fourier transform of Bloch functions, they have
encoded into them the entire information of the reference PC’s photonic band
structure and exhibit very useful orthonormality and translational properties,

RRmmRmrefRm rWrrrWd *2             (7.9)

)()( 0 RrWrW mRm                 (7.10)

In Eq. (7.9), the integration extends over all space and mm  denotes the
Kronecker symbol. For details on the actual constructionof photonic Wannier
functions and their usage in the design of functional elements, we refer to Ref.
157. In Figs.7.3 and 7.4, we display, respectively, the photonic band structure
(calculated with the multigrid methos [164] and a selection ofmaximally
localized Wannier functions for the reference PCstructure. The band structure
exhibits a photonic band gap in the frequency range 2/a  [0.233,0.249]
located betweenbands 1 and 2. For the subsequent computations, weemploy the
first 18 Wannier functions.These reference Wannier functions may now be
utilizedfor solving the photonic band structure of the full system with anomalous
dispersion,

0,
2

2 rErr
c

rEV ref            (7.11)

Upon inserting an expansion of the electric field into Wannier functions,
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FIG. 7.3. (Color online) Photonic band structure for TM-polarized radiation propagating
in the reference PC structure. The associated system parameters are listed in the caption of

Fig. 7.1.

,
Rm RmRm RWErE            (7.12)

we obtain—via projecting onto the same basis—a matrix equation for the
unknown amplitudes EmR that in component form reads as

0
, RmRm

mm
RR EM              (7.13)

with the corresponding frequency-dependent system matrix,

mm
RR

mm
RRRRmm

mm
RR AcDM

2

            (7.14)

Here, the entries are constructed from the overlap matrix elements of
Wannier functions with respect to the operators appearing in Eq. (7.11), utilizing
the orthonormality of the Wannier functions [Eq. (158)]. Explicitly, we have

FIG. 7.4. (Color online) A selection of maximally localized Wannier functions for the
reference PC structure. The corresponding photonic band structure is displayed in Fig. 7.3 and

the associated system parameters are listed in the caption of Fig. 7.1



128

,*2 rrWdA Rm
mm
RR            (7.15)

rWrwrrWdA RmRm
mm
RR ,*2              (7.16)

With the help of the translational properties of both the Wannier functions
[Eq. (7.10)] and _ r,  it is straightforward to show that the system matrix
itself exhibits translational symmetries,

mm
RR

mm
aRaR MM

li ,             (7.17)

with respect to both lattice vectors ia , where i=1,2. We are interested in the
Bloch mode solutions of our model system including the material dispersion,
i.e., the Bloch modes rE

kn
 of Eq. (7.11) or its representation within the

Wannier function approach [Eq. (7.13)]. As alluded to above, this may be
facilitated within an on-shell approach. Therefore, we fix the real frequency ,
choose a direction k ˆ in wave-vector space, and determine the allowed complex-
valued magnitudes k of the full wave vector k -kkˆ so that their real parts lie
within the first BZ.

   This is realized through several steps. First, we determine suitable integer
numbers  and  such that the reciprocal  lattice vector 21 babG  is parallel
to k ˆ . As usual, the reciprocal basis vectors , where j=1,2 are defined through
their orthogonality condition ijji ba 2  relative to the real space lattice
vectors ia , with i=1,2.

Second, we define the real space lattice vectors 21 aas  and

12 aas  that define the sides of the computational supercell employed in
the on-shell computations. In addition, we define a set of M lattice vectors lp ,
which consists of the origin 01p  and all the sites lp , with l =2, . . . ,M, inside
the supercell formed by the vectors s  and s . As a consequence, any lattice site

R    of the PC can uniquely be expressed as

,lijl psjsiRR                (7.18)

such that the three integers i, j, and l determine a partitioning of the PC into
supercells. This is illustrated in Fig. 7.5.

This partitioning facilitates a rewriting of Eq. (7.13) as

.,,,0
ˆˆˆ,ˆ,, ˆˆ̂ lmijEM
ljiijl Rmljim

mm
ljiRR               (7.19)
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By construction, the Bloch-Floquet theorem [Eq. (7.6)] stipulates a periodic
boundary condition on the supercell in the direction of s ; i.e., we have

.rEsjrE
knkn

 Therefore, we obtain that
0RmRm EE

ijl
 for all integers j.

Based on the above considerations and upon taking into account Eq. (7.17),
we may rewrite Eq. (7.19) in a matrix form that is suitable for band structure
computations,

FIG. 7.5. (Color online) Illustration of the partitioning of real space in order to facilitate
an on-shell band structure calculation. For a fixed frequency   and direction k̂  in reciprocal

space, we partition the PC into identical rectangular supercells whose sides are given by
21 aas  and 12 aas  , where   and  are integers such that

21 babG is parallel to k̂  . Periodic and Blochboundary conditions are, respectively,
applied along s   and s . For this illustration on a square lattice, we have chosen

a =2 and  =1, so that a supercell contains five unit cells of the PC.

.,0 iM riii
            (7.20)

Here, we have introduced the vectors i   and submatrices Mi according to

lmE Rmi ,,0,                                                 (7.21)

j
mm

RRi llmmMM
ijlijl

,,,,                  (7.22)

In a numerical implementation, we have to truncate these infinite vectors i

and submatrices iM̂ , by taking into account a finite number Nw of bands (or
equivalently Wannier functions), i.e.,  m =1,... , Nw  in Eqs. (7.20)-(7.22), and a
finite number L of coupled supercells, i.e., replacing  in Eqs. (7.20) and (7.22)
by L.

Following the approach of Ref. 157—originally developed for calculations
of waveguide dispersion relations in PC8—we can now rewrite Eq. (7.20) in  a
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transfer-matrix form by defining the composite vectors ., 12.....,11 LiiiF As a
result, we obtain

ii FTF 1              (7.23)
       where the transfer matrix wTT li ,

ˆˆ  has nonzero submatrix entries of
size M * Nw X M * Nw only for

1
1

,1
ˆˆ

LLj MMT   for j=1,2..,2L-1                  (7.24)

1̂~
IjjT for j=1,2..,2L-1                                     (7.25)

Here, we have denoted the M*Nw x M* Nw  unit matrix by 1̂. Finally, the
combination of Eq. 7.23 and the Bloch Floquet theorem [Eq. (7.6)] allows us—
at the given frequency  and for the given direction k̂   — to identify the Bloch
modes with wave vector kkk ˆ as the solutions ,nF  where n =1, . . .
,2L*M* Nw of the transfer-matrix eigenvalue problem,

n
n

n FskiFT expˆ                (7.26)

with the required wave vectors .ˆ Gkkk nn

These solutions exist for all frequencies. In the presence of material
absorption and/or for frequencies inside a stop band in the direction of k̂ , the
wave vector k  will be complex valued. Therefore, this complex dispersion
relation k  contains the full band structure information, i.e., information on
dispersion and attenuation or absorption inside the PCs. The accuracy of this
Wannier function approach can easily be tested with the help of the reference
band structure. In particular, a comparison of the results of Eq. (7.26) with ab
initio computations of the reference band structure allows one to assess the
number of Wannier functions NW and the maximal number of coupled
supercells L required for obtaining accurate results for the full system with
dispersive constituent materials [Eq. (7.11)]. For instance, for wave-vector
directions lying along the -X direction of the model PC, the computational
supercell contains M=1 unit cells. In addition, we require NW=18 Wannier
functions and L=4 coupled supercells, so that the resulting transfer matrices T̂
to be diagonalized are only 144×144 in size in order to obtain converged results.
This is considerably less than what is required with other on-shell methods.

     7.3 B. Extension of standard band structure methods

Standard band structure techniques [162-164] that operate with fixed real-
valued wave vectors k can be extended to deal with the nonlinear eigenvalue
problem of Eq. (7.4) for frequency-dependent real-valued dielectric constants.
This is facilitated by performing computations for a certain set of standard
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eigenvalue problems for frequency-independent dielectric constants and a
subsequent postprocessing of the corresponding data in order to solve the
nonlinear eigenvalue problem via an appropriate fix-point iteration. Specifically,
for our model problem, we identify a frequency range of interest and determine
the associated range of variation of the pore dielectric constant’s real part over
this range. Next, we perform standard band structure computations for a set of
(fictitious) frequency- independent realvalued pore dielectric constants fict ,

which covers this range. As a result, we obtain—for the fixed wave vector k̂—a
series of “frequency lines” ,ficti  which reflect the variation of
eigenfrequencies of the individual bands (indexed through the integer i ) when
this (fictitious) pore dielectric constant fict  varies. Then, we obtain the physical
eigenfrequencies we

FIG. 7.6. (Color online) Geometric illustration of the iterative solution of the nonlinear
eigenvalue problem associated with the band structure of a PC with dispersive constituent

materials. The solid line depicts the frequency dependence of the real part of the model
system’s dielectric constant for a quantum-dot filling ratio of  =0.03.

The values of the other system parameters are given in the text. The dashed
lines display the frequency line ,1 fict   of the first band for three different but

fixed wave vectors k̂ . The intersections of these frequency lines with the graph
of the model system’s dielectric constant (circles) correspond to the iterative
solutions of the nonlinear eigenvalue problem of Eq. (7.4). are looking for by
requiring consistency between these frequency lines and the true real part of the
system’s dielectric constant por . This provides us with the solutions k

of the nonlinear eigenvalue problem for fixed wave vector k̂   .  We may then
repeat the procedure for the next wave vector. We illustrate this fix-point
iteration scheme [177] in Fig. 7.6. The dashed lines depict the variation of the
first frequency line ,1 fict  as a function of the fictitious pore dielectric
constant fict   for three different wave vectors in the vicinity of the X point. Note
that for a more transparent interpretation of the fix-point iteration, we have
assigned the dependent variable fict  to the ordinate. Then, the intersections
(filled circles) of these lines with the frequency-dependent real part of the pore
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dielectric constant por  (solid line) fulfill the consistency condition alluded
to above and, therefore, represent the physical eigenfrequencies of the system.
While this fix-point iteration scheme appears to be somewhat inefficient relative
to on-shell methodologies and does not directly allow one to address the issue of
material absorption[ imaginary part of ,,rpc ], it does provide an elegant
geometric interpretation of the physics of PCs whose constituent materials
exhibit anomalous dispersion. In particular, Fig. 7.6 suggests that over certain
frequency ranges with sufficiently strong anomalous material dispersion, three
distinct solutions ,kn   n=1,2,3 associated with a single frequency line

ficti   may develop. This is in stark contrast to frequencies away from the
resonance where only one solution is allowed. Owing to the facts that for finite
damping, the resonance covers only a finite frequency range and that near a
photonic band edge, only a finite region of wave-vector space is of relevance,
these imply that near a photonic band edge and relative to the undoped reference
system, additional propagating states may develop, which are limited to both a
finite frequency and a finite wave-vector range. This will lead to the formation
of a closed bubblelike object in the photonic band structure diagram of the
undoped system [172] (see Fig. 7.9) and will be further elaborated in Sec. 7.4.

7.4 Finite samples: Scattering-matrix approach

An experimental investigation of PCs usually requires the measurement of
reflectance and transmittance from finitesized samples. The analysis of such
data may substantially benefit from a comparison with corresponding
computations. For instance, reflectance and transmittance computations allow
one to assess the fabricational tolerances of the structures and to assist in their
design [174]. In the present case, we are interested in estimating the impact of
material absorption and whether any effects derived from the photonic band
structure computations alluded to above could be observed experimentally. In
addition, we will demonstrate below that the careful analysis of the length
dependence of the transmittance through finite-sized samples at fixed frequency
allows an alternative route for determining the inverse attenuation length, i.e.,
the imaginary part of the wave vector. The computation of the reflectance and
transmittance from periodic structure is a well-documented subject of diffractive
optics [175-177], where it is often referred to as the RCWA. In the context of
PCs, it is more often known as the scattering-matrix method [178]. For our
subsequent computations, we utilize our own implementation of the
scatteringmatrix method [178] enhanced with the correct Fourier factorization
techniques [176, 179] that significantly improve the convergenceproperties of
the approach.

 In Fig. 7.7, we display the frequency dependence of the transmittance (at
normal incidence) through a finite-sized PC (our model system with quantum-
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dot concentration =0.03) or several values of the sample thickness (measured in
terms of the number of unit cells N). The sample is oriented such that normal
incidence corresponds to propagation along the crystallographic -X direction.
In addition, we have chosenthe surface termination such that we cut right
through the middle of a row of pores of the infinite PC. Clearly, in
ourtransmittance or reflectance computations, we have refrained from filling
these slit open pores with the doped polymer. In addition, we display
complementary reflectance calculations for the same structure in Fig. 7.8 (note,
however, the different scalings of the ordinates in Figs. 7.7 and 7.8).

Taken together, Figs. 7.7 and 7.8 suggest that once the PC sample exceeds
a certain length (about 20 unit cells in our example and considered frequency
range), the in- and outcoupling processes to and from the sample have been
decoupled such that for larger sample sizes, the transmittance is only affected by
the total attenuation within an effectively bulk PC. Consequently, we may
determine the total attenuation length l  of the corresponding bulk PC for a
fixed frequency  by fitting the corresponding length dependence of the
transmittance NT   to an exponential of the form

FIG. 7.7. Frequency dependence of the transmittance at normal incidence for finite-
sized PC samples with different thicknesses (N=1,11,21,31,41,51 unit cells). The PC is

oriented such that normal incidence corresponds to propagation along the -X direction.

The inset demonstrates that once the sample thickness exceeds about 20
unit cells, the transmittance decays approximately exponentially with thickness.
This behavior should be compared with the corresponding reflectance
calculations displayed in Fig. 7.8. For actual calculations of the attenuation
length, sample thicknesses in the range of N=1, . . . ,100 with a step size of N=1
have been analyzed. The PC parameters are given in the text/

lNaCNT /exp . This total attenuation length is connected to the
imaginary part of the complex wave vectors’ modulus in the corresponding
crystallographic k̂ -   via  Im lk 2/1 . For the actual calculations of
the attenuation length via transmittance computations, we have analyzed the
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transmittance values for thicknesses ranging from 1 to 100 unit cells with a step
size of 1.

FIG. 7.8. Frequency dependence of the reflectance at normal incidence for finite-sized
PC samples with different thicknesses (N=11,21,31,41,51 unit cells). The PC is oriented such
that normal incidence corresponds to propagation along the -X direction. Once the sample

thickness exceeds about 20 unit cells, the reflectance values (approximately) become
independent of the sample thickness. This behavior should be compared with the

corresponding transmittance calculations displayed in Fig. 7.7. The PC parameters are given
in the text.

ing from 1 to 100 unit cells with a step size of 1. More precisely, Fig. 8
shows that the reflectance does not change within a 1% margin for frequencies
below  243.02/ c   and above 255.02/ c   for sample thicknesses of
N >10 unit cells. This behavior originates in the absorptive behavior of the
material, which strongly suppresses the Fabry-Perot oscillations that could be
observed for absorption-free systems. Therefore, in these frequency ranges, the
exponential could be fitted to the computed data with N>10. However, for
frequencies in between, this damping out of the Fabry-Perot oscillations is less
effective and the reflectance approaches saturation only for sample thicknesses
of N>20 unit cells. As a consequence, the exponential fit should only be carried
out for the corresponding range of N>20. In order to be consistent, we have
computed the total attenuation length for all frequencies by fitting to the data for
N>20. In addition, we have checked that in those cases for which we could fit to
larger data sets, no discrepancies occur.

7.5 Results

We now apply the computational methods described in Sec. 7.3 to our
model problem in Sec. 7.2. First, the extended band structure approach (Sec. 7.3
B) will be used to derive a physical interpretation of the results. This will be
followed by a fully quantitative analysis through the Wannier function technique
(Sec. 7.3 A) and the scattering-matrix method (Sec. 7.3 C). The latter also
allows one to assess the feasibility of corresponding experiments. We have
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chosen the parameters of our model system such that the resonance of the pore
dielectric constant [Eq. (7.2)] lies inside the photonic band gap of the undoped
system, close to the upper band edge of the first band gap (see Figs. 7.2 and 7.3).
This choice has been guided by the fact that the Bloch modes associated with the
second band near the X point have a significant part of the field inside the pores.
Therefore, these modes are rather sensitive to any modification of the pore
properties. For the time being, we disregard the imaginary part in thepore
dielectric constant and apply the extended band structure method to the problem
with a quantum-dot concentration =0.03. The resulting band structure is
depicted in Fig. 7.9 and shows a significant splitting of the second band into one
continuous band and a bubblelike structure of finite extent in wave-vector space
located partly inside the photonic band gap of the undoped reference system.
Despite the fact that these frequencies appear inside the photonic band gap of
the undoped system, the associated modes represent—in the present case of
ignored material absorption—bona fide extended Bloch modes, as they do obey
the Bloch-Floquet theorem. The occurrence of this bubblelike structure is a
direct consequence of the anomalous dispersion over a finite frequency range
provided by the “energy-dependent” potential rpc ,  which directly translates
into both a finite extent in frequency and wave vector of the bubble. To the best
of our knowledge, this does not have an analogy in electronic crystals, although
a potential function with a nonmonotonic variation in energy would allow a

FIG. 7.9. (Color online) Photonic band structure for the model system with quantum-dot
concentration  =0.03 and when material absorption is ignored (solid lines with symbols). The

anomalous dispersion of the pore dielectric constant near the band edge of the second band
leads to the formation of propagating modes (lines with diamonds) inside the photonic band
gap of the undoped system. For reference, the photonic band structure of the undoped PC is

indicated by dashed lines. The horizontal dotted line again depicts the resonance frequency of
isolated quantum dots.

similar effect to occur. Furthermore, the geometric interpretationof this
effect in terms of a fix-point problem (Sec. 7.3 B) suggests that the effect can
equally well be realized for TE-polarized radiation in 2D PCs as well as in
onedimensional and 3D PCs. While these results of the extended band structure
method provide a physical understanding of the interplay of anomalous material
dispersion and photonic band structures, they do not contain any information
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about the effect of the—by the Kramers-Kronig relations unavoidable—material
absorption. In particular, it is not clear whether this effect could be observed for
realistic experimental parameters. Therefore, we proceed to a complete analysis
of the model system and discuss the frequency-dependent attenuation length. As
alluded to in Sec. III, this may be facilitated both through the Wannier function
method or the scatteringmatrix approach. In Fig. 7.10, we display and compare
the results of all three methods applied to the model system with quantum-dot
concentration  = 0.03 for wave vectors oriented along the crystallographic -X
direction. In the left panel of Fig. 7.10, we compare the real part of the wave
vector’s modulus of the Wannier function approach with the results of the
extended band structure technique. Clearly, the extended band structure method
cannot obtain a wave-vector solution for frequencies in the stop gap. For the
frequencies of the propagating modes, the agreement is very good. Here, we
would like to recall that, in contrast to the extended band structure method, the
Wannier function approach fully includes material absorption. In the middle
panel, we display the imaginary part of the wave vector’s complex magnitude as
obtained from the Wannier function method. In the undoped reference system,
we would expect that this imaginary part is zero for frequencies in the bands,
takes on small val

FIG. 7.10. Color online_ Band structure and attenuation length calculations for the
model system with a quantum-dot concentration  =0.03. In the left panel, Wannier function
(WF) calculations are compared to the extended band structure (extended BS) method. The

Wannier function calculations yield both real and imaginary parts of the wave vector (middle
panel). The latter can be converted into an attenuation length and can be compared with
results from transmittance calculations through finite-sized PCs via the scattering-matrix

method (right panel). The large values of the attenuation length for frequencies close to the
bubble suggest that this effect can be observed experimentally.

ues for frequencies slightly inside the photonic stop band (weak
attenuation) and, finally, takes on large values for frequencies near the center of
the stop gap (strong attenuation). Material absorption would only modify the
actual values but not the qualitative behavior. However, owing to the anomalous
material dispersion, we find very low values of this imaginary part for
frequencies near the bubble. Finally, in the right panel of Fig. 7.10, we convert
these values into attenuation lengths and compare them with the results of
corresponding scattering-matrix computations. Besides a very good agreement
between the two methods, we find that the values of the attenuation length for
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frequencies near the bubble are in excess of ten lattice constants. This suggests
that transmittance experiments on 2D macroporous silicon PCs [157] should be
able to directly observe this (unique) signature of the bubble.

     The shape of the bubblelike structure created inside the photonic band
gap can be controlled through the parameters entering Eq. (7.2). For instance,
different two-level systems with different resonance frequencies, oscillator
strengths, and damping constants could be implanted into appropriate PC
backbones. In these cases, considerations similar to our discussion above about
the overlap of the targeted mode profile with the dopants’ location would have
to be carried out. In the experimental realization via colloidal quantum dots that
we have envisaged, the easiest tuning parameter might be the concentration  of
two-level systems. In Fig. 7.11, we depict the evolution of the bubblelike
structure and the attenuation length of the corresponding modes as the
concentration    increases. The extension of the bubble both in wave-vector
space and in frequency is strongly modified.

FIG. 7.11. (Color online) Right panel: evolution of the bubble (lines with diamonds)
when the concentration   of quantum dots in the model system is increased. The dashed lines

depict the band structure of the undoped PC. Left panel: Wannier function (solid lines) and
scattering-matrix (dashed lines) calculations of the corresponding attenuation lengths.

Higher concentrations  allow a larger wave-vector and frequency range to
be covered. Furthermore, these results suggest an alternative interpretation of the
bubble formation. Starting from a very low concentration of quantum dots, we
observe the onset of a “pinch-off” effect near the band edge. For higher
concentration, the bubble is completely separated (completely pinched off) from
the original band edge so that, effectively, a stop band is formed. Whether or not
this stop band turns into a complete photonic band gap depends on the other
regions of wave-vector space, which are less affected by the anomalous
dispersion. This stop band is, however, somewhat ill defined. This stems from
the fact that the top portion of the bubble, i.e., the flat part of the dispersion
relation, corresponds to the unstable branch of the anomalous dispersion and,
therefore, exhibits rather large values of the imaginary part of the wave vector. It
thus becomes problematic to identify the lower frequency edge of the stop band.
In addition, for other materials that exhibit a two-level resonance structure in
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their dielectric behavior such as systems for which interband transitions are of
importance, there does not exist a simple analog to the change of quantum-dot
concentration. Therefore, we prefer the first interpretation that anomalous
dispersion may lead to additional propagating modes inside the photonic band
gap of the undoped system. At any rate, the resulting tunability of the wave
vector and frequency extent of the bubble structure may be beneficial for
efficient realizations of superprism effects and other super-refractive phenomena
[180].Specifically, it might be advantageous to avoid unwanted diffraction
effects by limiting the available wave vectors, while simultaneously allowing
only narrow frequency bands to couple into the PC. Equally well, one might
conceive a modulator via tunable attenuation.

7.6 Summary

We have investigated photonic band structures for PCs whose constituent
materials exhibit anomalous dispersion. In such systems, anomalous dispersion
leads to the occurrence of unconventional propagating modes in the gap. The
solution of the corresponding nonlinear eigenvalue problem through an iterative
approach allows a simple geometric interpretation of the fact that the limited
frequency range over which anomalous dispersion occurs confines these
additional modes to a limited wave-vector range in the band diagrams. For the
calculation of attenuation lengths associated with these modes, we have
developed an efficient on-shell methodology based on photonic Wannier
functions. The results of this approach agree very well with those from
corresponding transmittance computations and suggest that these modes should
be experimentally observable. PCs that exhibit such effects may be realized by
infiltrating colloidal quantum dots in a polymer suspension suitably engineered
into macroporous silicon PC structures. This technique has been demonstrated
[158,159]. The resulting tunability of PC structures with dispersive components
may lead to an enhanced flexibility in tailoring photonic dispersion relations and
associated phenomenasuch as super-refractive effects.
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8 RADIATIVE TRANSFER IN 1D AND CONNECTUIN TO THE
O’DOHERTY-ANSTEY FORMULA

There is a growing interest in incorporating multiply scattered waves into
modeling the Earth’s interior using radiative transfer. We examine radiative
transfer in a layered medium with general scattering and directional properties
of the source. This allows us to demonstrate in detail the nature of energy
propagation in the presence of strong scattering. At its most basic level, radiative
transfer predicts that, after a distance known as the mean free path, the
wavefield breaks into a coherent, or wave-like part and an incoherent, or
diffusive flow. The dynamic properties of both aspects are linked.

For 1D point scatterers, or thin beds, we derive the equivalence of the
exponential decay of the transmitted wave predicted by the O’Doherty-Anstey
formula with the coherent, or direct, wave obtained from the radiative transfer
equation. The equivalence shows an underlying relationship between mean field
theory and radiative transfer.

Turning to the incoherent wave intensity, we make the well-known
diffusion approximation to the late-time radiative transfer behavior. A finite-
difference simulation of the wave equation with random scatterers corroborates
the theoretical results for the incoherent energy.

8.1 Introduction

Radiative transfer has its origins in the kinetic theory of gases and is
sometimes referred to as the Boltzmann transport equation in honor of its
earliest proponent. In the earth sciences, it first appeared within the context of
light propagation through the atmosphere [198]. Recently, geophysicists have
begun to address the applicability of radiative transfer to multiply-scattered
seismic waves [191, 188, 202].

By squaring a wavefield and averaging over many realizations of random
disorder, the phase information of the underlying wavefield is, for the most part,
lost. What remains is the average intensity, or squared am-plitude. Radiative
transfer is a phenomenological theory for the spatial and temporal evolution of a
wavefield’s average intensity. The theory’s strengths lie in the abil-ity to provide
statistical information about the structure of a medium at scales less than a
wavelength and the description of the decoupling of scattering and absorption
effects for incoherent wave energy.

Here, we give the complete solution of the radia-tive transfer equation in
one dimension (1D) for general directional sources and general scattering. Such
generality is relevant for plane wave propagation in layered media, and recently
became important for describing physical experiments of surface wave
propagation through 1D disordered grooves with a directional source [202]. We



140

derive results from radiative transfer that agree with results from mean field
theory, namely the O’Doherty-Anstey formula. Such an equiva-lence suggests
that radiative transfer is a proper exten-sion of mean field theory (a “variance
field” theory) for the fluctuating, multiply-scattered waves.

At late times, we demonstrate that radiative trans-fer can be simplified even
further by approximating its behavior as the solution to a diffusion equation.
Results of finite-difference simulations of the 1D wave equation with random
scatterers are presented to support the accuracy of this approximation. Using
correct values for the parameters needed to describe the scattering, the average
intensity of the numerical simulations is seen to approach the diffusive limit
with time.

8.2  The radiative transfer equation

The radiative transfer equation can be derived from energy balance
considerations [194, 192, 201]. Heuristically, the equation takes the form:

 [ t + v • ] Intensity = source  loss + gain.            (8.1)

The left-hand side of equation (8.1) is the total time derivative of the
intensity. On the right-hand side, loss and gain mechanisms in addition to
sources determine the dynamic behavior. In the absence of loss or gain, this
equation becomes the advection, or one-way wave, equation. Scattering and
absorption show up as loss mech anisms since both remove energy from the
forward di rection. Only scattering can put energy back into the original
direction of propagation. Hence, scattering and absorption enter equation (8.1)
in fundamentally differ ent ways. This fact leads to the ability to separate their
effects within radiative transfer theory.

Using the same form as equation (8.1), here is a general radiative transfer
equation valid for any dimension:

, , 1 1, , , , , , , ,
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         (8.2)

where I(r, , t) is the intensity, or average squared wavefield, at position r
propagating in direction , v is the group velocity of the average (coherent)
wavefield, nˆ is the unit vector in the direction of propagation, and S(r, , t) is
the angle-resolved source function. The differential scattering cross section,

s/ ’ , describes the exchange of energy traveling from direction  into
direction ’ . The characteristic time between these exchanges is s, the
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scattering mean free time. The total scattering cross section, s, is the energy
exchanged into all directions:

ds
s                                                 (8.3)

We have allowed for attenuation by including the char-acteristic absorption
time a.

Using terminology originally coined by Clausius in 1858, it is common to
define mean free paths for scattering and absorption, ls and la, according to the
relations ls = v s and ls= v a. The scattering mean free path, ls, can be thought of as
the typical distance a wave travels between scatterings. Under most
circumstances, ls  is inversely proportional to the number density of scatterers, ,
and their scattering cross section:

S
S

1                                                 (8.4)

This equation is called the independent scattering approximation (ISA) and
it holds when the scatterers are separated by more than a wavelength. It can be
obtained from a stationary phase argument applied to the average wavefield in
random media [192]. From equation (8.4), S  contains information about the
product of  and s in a way analogous to a wave reflected from an interface
containing information about the acoustic impedance.

8.3 Radiative transfer in 1D

Since in 1D only two directions of propagation exist, a general expression
for the differential scattering cross section, appearing under the integral in
equation (8.2), is:

,180
,

bf
S EE           (8.5)

where Eb and Ef represent amounts of energy back scattered and forward-
scattered divided by the energy of the incident wave. Their sum is equal to the
total scattering cross section:

fbS EE             (8.6)

Hence, in equation (8.2), the differential scattering cross section divided by
the total scattering cross section becomes:
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For the rest of this paper, we denote the ratios Ef /(Eb +Ef ) and Eb/(Eb + Ef
) by F and B respectively. These ratios satisfy B + F = 1. In the case of isotropic
scattering, B = F =1/2 [196].

For a general 1D scatterer, B and F can be related to the total transmission
and reflection coefficients of a thin bed, Tt and Rt [202]
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Note that a thin bed consists of two interfaces, and hence Rt and Tt are not
simple reflection and transmission coefficients. The quantities Rt and Tt can be
related to a geometric summation of the interface reflection and transmission
coefficients via generalized rays [182].

Inserting equation (8.7) into equation (8.2), we obtain:
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where we have used the fact that B + F = 1. Equation (8.9) can be evaluated for
the two possible directions in 1D,  = 0  or 180 . In this paper, we will referto
these directions as right and left, respectively. For simplicity, the total intensity
propagating in direction  = 0 , I(r, 0 , t), will be represented by Ir, I(r, 180 , t)
will be Il, and the source function will be split into Sr and Sl. The coordinate
system is defined such that nˆ(0 ) = 1 and nˆ(180 ) = 1. The two equations that
describe the propagation of right-going and left-going intensities are:
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This system of partial differential equations comprises radiative transfer in
1D and has been derived by other methods [189]. In Appendix A, the system of
partial differential equations is solved for both Ir and Il. For now, we solve for
the total intensity, It = Ir + Il, since this is commonly measured in practice.

Two new quantities emerge from adding and sub-tracting equations (8.10)
and (8.11). In addition to the total intensity, It, the net right-going intensity,
In = Ir  Il, appears. Similarly, the source function can be expressed as its total
and net right-going components: St =  Sr +Sl and Sn =  Sr  Sl. The result of
adding equations (8.10) and (8.11) is:
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Subtracting equations (8.10) and (8.11) yields:
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From these two equations, we derive a single partial differential equation in
terms of what we measure, It, by taking the spatial derivative of equation (8.13):
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But we know from equation (8.12) that:
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Substituting equation (8.15) into equation (8.14) yields a single partial
differential equation in It. Omitting some algebraic manipulation, we obtain:
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Equation (8.16) encapsulates a wealth of information. First of all, in the
absence of a source, the scattering and attenuation show up in both the first and
zeroth order time derivatives of the total intensity. For a medium with no
scattering or attenuation, 011

aS  , we are left with the 1D wave equation.
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Also, in order to solve for the Green’s function of the total intensity, we cannot
simply insert a -source into the homogeneous form of equation (8.16). Instead,
a more complicated combination of the source and its time and spatial
derivatives must be inserted.

8.4 The green’s function of the total intensity

To solve for the Green’s function of the total intensity, we find the Green’s
function of the homogeneous form of equation (8.16) and construct the total
intensity Green’s function from it. First, take an impulsive total source function:

,)( txS t                (8.17)

and a general form for its net right-going component:

,tn cSS                                                   (8.18)

where c [-1,1]. The parameter c allows the radiation pattern of the impulsive
source function to directionally vary from left-going (c = 1), to isotropic (c =
0), to right-going (c = 1), and to any combination in between.

After inserting this source into equation (8.16), we find that the “effective
source”, denoted Se, is a combination of a -function in time, its time derivative,
and its x-derivative:

.112
2 tx

v
ctx

v
tx

vv
BS

aS
e                   (8.19)

This effective source can be constructed from the knowledge of the Green’s
function, P of the homogeneous form of equation (8.16):
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Note that P is not the Green’s function for the total intensity. This equation
is a variation of the telegraph equation, there being a zeroth order derivative
appear-ing due to the presence of attenuation. In Morse and Feshbach (1953),
the Green’s function of the telegraph equation is solved via a spatial Fourier
transform and a Laplace transform over time. Applying the same tech-nique, the
Green’s function of equation (8.20) can be read-ily obtained by generalizing the
solution stated in Morse and Feshbach (1953):
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where u(vt  |x|) is the unit step-function, guaranteeing causality. This Green’s
function only differs from the one for the telegraph equation by the exponential
damping factor due to attenuation. The Green’s function for the total intensity,
denoted It, can  be  expressed  in  terms  of the above Green’s function through
equation (8.19):
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Taking the necessary derivatives of P , we obtain for B  [0, 1] and
c [ 1, 1]:

1

222

222

222
0

11

//exp
2
1),(

xtvBI
xtv

cxvtxtvBIxutuB

xvtcxvtc

vtBvttxI

SSS

aSt

        (8.23)

where I0 and I1 are the modified Bessel functions of the zeroth and first orders.
These should not be confused with the symbols used for the various intensities
(It, Ir, Il, and In). A previous result by Hemmer (1961) is obtained from equation
(8.23) for the case of an isotropic source (c = 0) and isotropic scattering, B=1/2.

The Green’s function for the total intensity can be broken up into two parts.
The term with the -function propagates like a wave and is called the coherent
intensity. The rest of the total intensity is referred to as the incoherent intensity.
It does not propagate ballistically, and, in later sections of this paper, we show
that at late times it propagates diffusively. Also, in Appendix A we show that
each Bessel function represents a different direction of propagation for the
incoherent energy.

An interesting result in equation (8.23) is that the decay of coherent
intensity due to scattering, described by the first exponential term, goes with
distance by the factor ls/B and not ls. This new length scale, determining the
decay of the coherent energy, is called the extinction mean free path, lext. The
fact that lext  ls is unique to 1D [196].
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8.5  The coherent intensity and the O’Doherty - Anstey formula

In the field of exploration geophysics, a well known result for waves
multiply scattered by a 1D layering is that obtained by O’Doherty and Anstey
[195]. The O’Doherty-Anstey formula has subsequently been derived from
mean field theory [183]. One outcome of O’Doherty-Anstey is that the
amplitude of a wave transmitted through a stack of layers decays exponentially
with distance as [199] :

T ~exp xkR~         (8.24)

where kR~  represents the power spectrum of the average reflection coefficient
series normalized by two-way travel distance [183].  From the solution for the
total intensity obtained in the last section, equation (8.23), radiative transfer also
predicts an exponential decay for the transmitted, or coherent, wave with
distance:

T ~exp SxB 2/~                   (8.25)

where the distance x has replaced vt in equation (8.23) since the -function is
only non-zero at x =vt The factor of 1/2 in the exponent of this equation shows
up since radiative transfer predicts decay of the transmitted intensity - the square
of the true transmission oefficient. We investigate the equivalence of these two
theories for the transmission of normally incident waves through assemblages of
weak 1D point scatterers (thin beds). The two theories are equivalent if:

SBkR 2/)(~                 (8.26)

Fig. 8.1. A wave transmitted through a random sequence of thin beds of varying
strength. The thin beds are embedded in a constant background medium.
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Depicted in Fig. 8.1 is the random medium we will consider: a series of
thin layers of varying strength are embedded in a constant velocity background
medium. In the parlance of O’Doherty-Anstey, this would be called a “cyclic”
sequence. It happens to be the type of medium that radiative transfer, and
scattering theory, are geared for. The reflection coefficient series, RC(x), for
such a medium would be a series of delta functions of oscillating plus and minus
sign:

jj
N

j j dhxdxRxRC
1

            (8.27)

where h is the thickness of the beds, Rj and dj represent the reflection coefficient
and location of the j-th bed, respectively, and N is the number of beds.

To calculate R(k), we take the Fourier transform of equation (8.26), square
its magnitude to get the power spectrum, and divide by the two-way travel
distance:

L

dxexRC
kR

kxi

2
)(~

2
2

(8.28)

Note that the Fourier transform is with respect to 2k and not k, similar to a
Born inversion formula in 1D [184]. This is evident from standard references in
the literature [183, 199].

Inserting equation (8.27) into equation (8.28) results in:

2
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)1(

2
1)(~ khikdiN

j j eeR
L

kR j               (8.29)

For thin layers, kh << 1 and a first order Taylor series expansion in h leads
to ikhe ikh 21 2 . Pulling it out of the summation yields:
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1
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2
1)(~ jkdiN

j j eRhk
L

kR              (8.30)

We now use a standard argument from the theory of multiple scattering: if
dj , the spacing of the thin beds, is a random variable, the cross terms in the
square of the summation in equation (8.30) cancel in the average and the
squaring can be brought inside the summation:
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Now, inside the summation, the exponential does not contribute to the
magnitude and we are left with:

222
2

1

22 214
2
1)(~

j

N

j
j RNhk

L
Rhk

L
kR  (8.32)

where
2

jR   is the mean-square of the interface reflection coefficients.

Returning to equation (8.26), to prove that radiative transfer and the
O’Doherty-Anstey formula predict the same exponential decay for the
transmitted wave, we (8.28) set equation (8.32) to:

22221
2 j

S

RNhk
L

B                (8.33)

For (Rayleigh) point scatterers in 1D, the radiation is isotropic. Hence, B =
1/2. Rearranging equation (8.33):

L
NRhk j

S
2228

1                 (8.34)

The quantity N/L is simply the number density of the thin beds, . In the
limit of weak scatterers (such that Rj<<1) 8k2h2

sjR
2

, the scattering cross

section [200]. The presence of weak reflection coefficients is an underlying
assumption in the O’Doherty-Anstey result [183], so that equation (8.34) can
now be rewritten in a familiar form:

S
S

1 (8.35)

This is recognized as equation (8.4), the independent scattering
approximation. Previously, we stated that for this relation to hold, the scatterers
(thin beds) had to be separated by at least a wavelength. Hence, in this model, no
reflections from below the recording depth interfere with the transmitted wave.
All the interference resulting in the exponential decay of the direct wave
originates from peg-leg multiples within the thin beds, not between them (Fig.
8.1). Equation (8.35) demonstrates that, for this model, the exponential decay of
the transmitted wave from O’Doherty-Anstey, or mean-field theory, is
equivalent to that predicted by radiative transfer.

A conceptual diagram of this equivalence is shown in Fig. 8.2. From mean
field theory, both the phase and the amplitude of the transmitted wave can be
obtained; however, the incoherent energy, for which the mean is zero, falls out.
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Figure 8.2. A diagram representing the overlap of mean field theory and radiative
transfer for the amplitude of the trans-mitted wave through a medium like that depicted in

Fig. 8.1.

Similarly, 1D radiative transfer can address the amplitude of the
transmitted wave and the behavior of the incoherent intensity, but phase
information is lost. Both theories agree in their region of overlap, as
demonstrated by the case of random layering we considered here.

8.6 The diffusion approximation in unfinite 1D media

In addition to the coherent intensity, physical insight can be gained on the
incoherent part of the total intensity. The general expression for the Green’s
function for radiative transfer in 1D, equation (8.23), shows that for late times
the coherent term is zero and the incoherent field, defined by a combination of
Bessel functions, approximates the solution to the diffusion equation [192].
Especially in optics, where it is hard to obtain phase information, inferences on
the statistical properties of the medium are often based on this late-time
diffusive behavior [184]. In elastic wave-scattering, the incoherent field is used
to decipher the different mechanisms of attenuation [193]. To derive the
diffusion approximation from equation (8.23), all we need is that vt >> x.
Noting that the zeroth and first modified Bessel functions have the asymptotic
forms:

)exp()2()()( 2
1

10 zzzIzI for z >> 1                (8.36)

we can write equation (8.23) in the late-time limit as:
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In this expression, the delta functions from equation (8.23) have fallen out.
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Organizing terms in equation (8.37), expanding the square root in the
exponential as a Taylor series in the small parameter x/vt, and keeping the
lowest order in x/vt, we get:
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(8.38)

Two of the exponentials cancel in equation (8.38) and, after isolating the
term ,Bi  the late-time limit of the radiative transfer equation can finally be
written:
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In the case of no attenuation a , equation (8.39) can be identified as
the Green’s function for the 1D diffusion equation with the diffusion constant

vBD s 2/ . This implies that the movement of energy at late times has an
effective mean free path different from s or ext . This effective mean free path

is called the transport mean free path, . In 1D, exttr 2
1 , since

Bsext / . Note that the transport mean free path can be determined from the
extinction mean free path without knowledge of the underlying details of the
scattering.

It is common to relate tr  to s  via:

cos1
S

tr  (8.40)

where cos  represents the average scattered energy in all directions weighted
by the cosine of that direction. For isotropic scattering, cos =0 and the two
mean free paths are identical. However, using the general relation cos =F-B
[191] and the fact that F + B = 1, equation (40) can be rewritten:

BBF
SS

tr 21
(8.41)
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which is exactly the relationship we have derived from the diffusion
approximation.

8.7 The diffusion appromaximation in finite 1D media

The above derivation of the diffusion approximation showed how the
solution of the radiative transfer equation approaches that of the diffusion
equation at late times. In this section, we prove that the underlying governing
equation for the total intensity at late times also becomes the diffusion equation.
While the radiative transfer equation cannot be analytically solved for in a finite
geometry, its late time equivalent - the diffusion equation - can be solved with
boundary conditions.

Neglecting absorption a , we can rearrange equation (8.13) as:

x
IvIB

t
I t

n
S

n 2  (8.42)

In the diffusive regime, we assume that [194]:

t
IIB n

n
S

2 (8.43)

meaning that the time rate of change of the right and left-going intensities is
relatively small. Under this condition, equation (8.42) becomes:
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2  (8.44)

Substituting equation (8.44) into equation (8.12) for In yields:
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Under the assumption that v and s do not depend on position, equation
(8.45) takes the form:
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which we recognize as the 1D diffusion equation with the same diffusion

constant tr
s v
B

vD
2

 we obtained in the previous section.
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Now assume there is a boundary at x = 0 where scattering occurs to the
right (positive values of x), but not to the left (negative values of x). Then, at x =
0, there is no intensity coming into the scattering region, i.e. the right-going
intensity is zero. We can express the right-going intensity as the sum of the total
intensity and the net right-going intensity (flux) and set it to zero at x = 0:

0
2
1

2
1

ntr III   at x=0                     (8.47)

Using the approximation we derived in equation (8.44), the In-term can be
replaced by a spatial derivative of It:
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From this equation, we learn that:
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The solution to equation (8.49) states that, near x = 0, It has the form:

tI ~ trx             (8.50)

Extrapolating away from the boundary according to equation (8.50), It=0 at
trx . Hence, the presence of a boundary that radiates energy out of a finite

scattering region can be approximated by a Dirichlet boundary condition a
distance tr outside the scattering region.

Suppose there is a region of length L extending from x = 0 to x = L. Then,
at late times, the Green’s function for the total intensity should obey the
boundary value problem:
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0tI at trx    and Lx tr          (8.51)
where trvD . In 1D, this PDE can be solved by expanding over the modes of
the Laplacian:
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The PDE could have equivalently been solved by the method of images.
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8.8 Numerical simulations

These late-time solutions of the total intensity have been tested with finite-
difference simulations of the wave equation in the presence of random discrete
scatterers. The setup of the numerical experiment is shown in Fig. 8.3. A source
S is excited in the center of a finite 1D random medium, of size L, containing
identical low velocity (1 km/s) thin beds. By “thin” in this experiment, we mean
that their thickness is approximately one-tenth of the dominant wavelength. The
background medium in which they are embedded has a velocity of 2 km/s. A
receiver R is placed just outside the scattering region. The experiment is
repeated for L = 80m, 120m, 160m, 200m, and 240m.

The number of scatterers per unit length is constant for each size of the
scattering region and the number of scatterers per dominant wavelength is 2. All
interfaces are numerically put into welded contact [186] and there is no intrinsic
absorption ( ).  For  each  of  the  five  sizes  of  the  scattering  region,  the
average intensity was obtained by performing the experiment for 20 realizations
of the randomness, squaring each of the 20 wavefields, and adding them. Of
course, in practice we only have one realization of the model, the Earth. By
assuming the Earth to be ergodic at some scale, we can obtain ensemble
averages from earthquake data, seismic exploration, or rock physics [198].

SL

Fig. 8.3. The geometry of the 1D numerical scattering experiments. The source was at
the center of a region with thin random layers and a receiver was positioned above the layers
for each experiment. The size L of the scattering region varied between experiments with the

values 80m, 120m, 160m, 200m, and 240m.

The results are plotted in Fig. 8.4. The average intensities contain a large
direct wave traveling at nearly the background velocity (2 km/s). This is the
coherent intensity. Following the coherent intensity is the incoherent multiply
scattered energy. If, in the averaging process, the wavefields were added
(stacked) before they were squared, the incoherent energy would cancel out and
leave only the coherent intensity. From the moveout of the direct wave, we
know that the group velocity entering the radiative transfer equation, v, is the
background velocity (2 km/s).
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Fig. 8.4 The average intensity measured as a function of time for the 5 experiments.
Note how the direct wave decays due to the scattering with offset.

Fig. 8.5. The maximum of the direct wave (coherent intensity) as a function of offset for
the 5 experiments. Note that this is a log-linear plot. A linear fit to the data gives the
characteristic exponential decay due to scattering - the extinction mean free path, Lext. We
estimate Lext =45.9m.

To fully characterize the scattering in the radiative transfer model, the extinction
mean free path, ext, must be measured. This parameter describes the exponential
decay of the maximum of the coherent intensity with distance. The decay is
depicted in Fig. 8.5. By doing a linear regression on a logarithmic plot, the
characteristic distance over which the direct wave decays exponentially can be
estimated. For this model, .1.29.45ext  In the previous sections, we showed

that trext2
1 . Therefore .0.19.22 mtr Getting an estimate of s would

require knowledge of the degree of back-scattering the individual scatterers
radiated relative to their forward-scattering [203].
        With v and ltr estimated from the numerical results, the theoretical
prediction of equation (8.52) can be compared to the simulated total intensities.
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In Fig. 8.6, the solution of the diffusion equation asymptotically approaches the
numerical  intensities  with  time, as it should.  Note  that the approximation fails

Fig. 8.6. A logarithmic plot of the total intensity of experiment 4, at an offset of 100m
(top) and 120m (bottom) compared with the diffusion approximation, equation (52). At early
times, the analytic solution to the diffusion equation (thick line) differs from the numerical
observations, because the diffusion solution is acausal, and does not account for the coherent
field.

severely for early times since it is acausal. The late time exponential decay is
correctly predicted by the diffusion approximation. Such behavior verifies our
radiative transfer model for late times and hints at the fact that, in 1D systems,
there is an intermediate range of distances where the incoherent intensity can be
described by diffusion instead of localization [201].

8.9 Discussion

In higher dimensions, the radiative transfer equation becomes considerably
more difficult since there are an infinite number of directions to scatter into, as
compared to 2 in 1D [196]. However, even in 1D, the rich character of radiative
transfer is evident. Exponential decay is experienced by the direct wave due to
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scattering and absorption. Aspects of both wave and diffusive behavior emerge
in the average total intensity, and, in the presence of both, a “mesoscopic”
picture of the scattering medium can be formed.

The theory of radiative transfer has its limitations. The most severe is that it
does not include wave interference. As a result of this, there exists a distance
between source and receiver, known as the localization length, past which
radiative transfer is incorrect. Sheng (1995) estimates that in 1D the localization
length is approximately 4 mean free paths. This offers the possibility of an
intermediate range (1 to 4 mean free paths) when radiative transfer holds. Future
work should attempt to find good bounds on this range in practice.

8.10 Conclusions

Radiative transfer is a relative newcomer to the field of exploration
seismology. By formulating the theory in 1D, we have attempted to make the
connection with familiar concepts such as reflection/transmission coefficients,
thin beds, and the O’Doherty-Anstey formula. In the process, new features have
emerged, such as the diffusion approximation and incoherent intensity.

The link between radiative transfer and the O’Doherty-Anstey formula can
be extended beyond the 1D point scatterer approximation we made in this paper.
To do so implies moving into the more complicated Mie scattering regime,
where the wavelength is on the order of the size of the scatterer. Additionally,
we considered a “cyclic” sequence, which radiative transfer and scattering
theory are designed for. It remains to be seen what radiative transfer can do for
“transitional” sequences when the interfaces cannot be grouped into pairs that
define scatterers.
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9 SCATTERING OF WAVES BY IMPURITIES IN PRECOMPRESSED
GRANULAR CHAINS

We study scattering of waves by impurities in strongly precompressed
granular chains. We explore the linear scattering of plane waves and identify a
closed-form expression for the re ection and transmission coe cients for the
scattering of the waves from both a single impurity and a double impurity. For
single-impurity chains, we show that, within the transmission band of the host
granular chain, high-frequency waves are strongly attenuated (such that the
transmission coe cient vanishes as the wavenumber k  ± ), whereas low-
frequency waves are well-transmitted through the impurity. For double-impurity
chains, we identify a resonance — enabling full transmission at a particular
frequency — in a manner that is analogous to the Ramsauer–Townsend (RT)
resonance from quantum physics. We also demonstrate that one can tune the
frequency of the RT resonance to any value in the pass band of the host chain.
We corroborate our theoretical predictions both numerically and experimentally,
and we directly observe complete transmission for frequencies close to the RT
resonance frequency. Finally, we show how this RT resonance can lead to the
existence of re ectionless modes even in granular chains (including disordered
ones) with multiple double impurities.

9.1 Introduction

One-dimensional (1D) granular crystals (i.e., granular chains) consist of
closely packed chains of elastically colliding particles. This setup has been used
as a testbed for the investigation of wave phenomena in chains of strongly
nonlinear oscillators, and the interplay between nonlinearity and discreteness in
granular chains has inspired the exploration of a diverse set of coherent
structures, including traveling waves, breathers, and dispersive shock waves
[204–206]. Granular crystals can be constructed from a wide variety materials of
different types and sizes, so their properties are very tunable, and they thus
provide a versatile type of metamaterial for both fundamental physical
phenomena and applications [204, 205, 207, 208].

Granular crystals have been used for the investigation of numerous
structural and material heterogeneities on nonlinear wave dynamics. This
includes the role of defects [209–212] (including in experimental settings [213,
214]); the scattering from interfaces between two different types of particles
[215 –217]; and wave propagation in decorated and/or tapered chains [218,
219], chains of diatomic and triatomic units [220–227], and quasiperiodic and
random con gurations [228–234]; and much more. One can model strongly
compressed granular chains as a type of Fermi–Pasta–Ulam (FPU) lattice, and
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granular chains have been employed in studies of phenomena such as equipar
tition (see, e.g., [235, 236]).

Granular chains also provide prototypes for numerous potential engineering
applications [228]. A few examples include shock and energy absorbing layers
[216, 230, 238], sound-focusing devices and delay lines [339], actuators [240],
vibration absorption layers [222], sound scramblers [215, 241], and acoustic
switches and logic gates [243].

The study of disordered granular crystals is also becoming increasingly
popular. Important themes in such studies have been transport properties of
wavepackets and solitary waves and the interplay between disorder (especially
in the context of Anderson localization), discreteness, and nonlinearity [231–
234]. These themes are also relevant to a wide variety of other nonlinear lattice
models [243, 244].

To get a handle on disordered granular chains, it is useful to start with a
simpler setting in which one or a few defects occur within an otherwise
homogeneous (“host”) lattice [212]. In this context, scattering due to
inhomogenities is a fundamental consideration when studying wave propagation
in complex media [245, 246]. This is especially important when the scales of the
waves and those of the inhomogeneities (i.e., impurities or defects) are
comparable, as interactions in such situations can lead to very rich dynamics.
Pertinent phenomena include the formation of localized modes [247, 248], Fano
resonances [249, 250], cloaking [251, 252], and many other examples of broad
interest across numerous branches of physics.

In the present paper, we use theory, numerical computations, and
experiments in the linearized and weakly nonlinear regimes to explore the
scattering of a plane wave from a single impurity and a double impurity in a
granular chain. A key nding is that an analog of the well-known Ramsauer–
Townsend (RT) effect can occur in granular chains. An RT resonance is a
prototypical mechanism that enables scattering transparency in quantum
mechanics [253]. In its most recognizable form, it consists of the presence of a
sharp minimum in the electron scattering cross-section at low energies for
scattering with rare gases. The RT effect has been observed experi mentally in
many scenarios involving quantum tunneling, including e –Ar scattering [254]
and positron–Ar scattering [255], e –methane scattering [256], and others.
When used in mechanical systems, the implication of the RT effect is equally
signi cant. One possible application is embedding foreign objects, such as
sensors, in systems so that they induce minimal interference with the existing
structures. This has the potential to be very useful for applications in structural
health monitoring.

The remainder of our paper is organized as follows. In Sec. 9.2, we
introduce the fundamental equations that govern the dynamics of driven granular
crystals. In Sec. 9.3, we solve, in closed form, the linear scattering problems of a
single impurity and a double impurity embedded in a homogeneous (“host”)



159

granular chain. For double impurities, we demonstrate that an effect analogous
to an RT resonance occurs in a well-de ned region of parameter space. We use
both numerical simulations and laboratory experiments to corroborate our
theoretical results. In Sec. 9.4, we discuss and compare the results from our
theory, computations, and experiments. In Sec. 9.5, we use numerical
simulations to explore disordered granular chains, which include a large number
of impurities. We demonstrate numerically that strongly precompressed chains
with multiple impurities can admit solutions that consist of re ectionless modes
(i.e., generalizations of the RT resonances). Finally, in Sec 9.4, we conclude and
o er some directions for future work.

9.2 Driven granular crystals

One can describe a 1D crystal of 2N +1 spherical particles as a chain of
nonlinearly coupled oscillators with Hertzian interactions between each pair of
particles [203–206]. The system is thus modeled using the following equations
of motion:
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where mn is the mass of the nth particle, particle (n  { N, N +1, . . ., N}) un
is the displacement of the nth particle measured from its equilibrium position,
the pairwise interaction parameter An depends on the geometry and elasticity of
particles in the nth and (n  1)th positions [203],
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is the change in displacement between centers of neighboring particles due to
the static load F0, and the bracket [·]+ is de ned as
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We consider a chain that is compressed initially by two plates placed at the
boundaries. This yields the following boundary conditions:

),(
),(

1

1

tu
tu

rN

rN            (9.4)



160

We focus on a situation in which the chain is driven periodically from one
side and the other side is at rest. That is, r(t) = 0 and l(t) = d sin(2 ft), where
d and f, respectively, are the amplitude and frequency of the external driving.

We are interested in chains that are homogeneous except for a few particles
(i.e., impurities) in the bulk. We consider two cases: (i) a single impurity and (ii)
a double impurity (in which the impurities are adjacent particles). The
interaction parameter An can take one of four possible values (depending on the
type of spheres that are in contact). These values are
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where E1,2, 1,2, and r1,2 are, respectively, the elastic modulus, the Poisson ratio,
and the radii of the type-1 and type-2 particles. The particle masses are m1 and
m2. We assume that the mechanical properties of the elastic plates at the
boundaries are the same as for type-1 particles. The radius of an impurity
particle is r2 = r1, where  > 0 is the ratio between the radii of the two types of
spheres. If we assume that type-1 and type 2 particles have identical densities
(i.e., 1 = 2), then  < 1 implies that the impurities are lighter than the particles
in the host homogeneous chain, whereas  > 1 implies that the impurities are
heavier.

9.3 Scattering between liner waves and impurities

Depending on the relative magnitudes of n and |un un+1|, the effective
nonlinearity in Eq. (9.1) can be either strong or weak. In particular, for
sufficiently strong static precompression or sufficiently small-amplitude
vibrations in the crystal, n  >> |un 1  un|, so the nonlinearity is very weak. If
one ignores the nonlinearity entirely, there is a harmonic interaction between the
particles, so the dynamics can be  described by the equation

,)( 1121 nnnnnnnnn uBBuBuBum                   (9.6)
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which corresponds to Eq. (9.1) linearized about the equilibrium state.
Consequently,

3\1
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One can express solutions of Eq. (9.6) in terms of a complete set of
eigenfunctions of the form un = vnei t, where  is the eigenfrequency. It is well-
known that without impurities  – i.e., for a completely homogeneous crystal with
mn = m and Bn =  B – that vn = eikn, so there is a single acoustic branch of
solutions with eigenfrequency

,0cos12 k
m
B             (9.8)

where m is the mass, k is the wave number, and
m
B4  . When impurities are

introduced into a host chain, localized or resonant linear modes can arise
(depending on the characteristics of the impurities [212].) For light impurities
(i.e.,  < 1), one expects localized modes whose frequencies are larger than the
upper bound  of the linear spectrum. For heavy impurities (i.e.,  >  1),  by
contrast, one expects impurity modes with frequencies in the linear spectrum,
and one thus expects resonant modes with extended linear eigenmodes.

9.3.1  Theory

We are interested in studying scattering processes between a plane wave
ei(kn t) and both single impurities and double impurities in the linear regime. In
Fig. 9.1,  we show schematics for chains with single  and  double impurities. We

Fig. 9.1 Schematic of a homogeneous granular chain with (a) one impurity and (b) two
contiguous impurities (i.e., a double impurity). The incident wave is characterized by I , the
reflected wave is characterized by R, and the transmitted wave is characterized by T . We

label the identities of the particles with integers. We calculate the parameters 3/1
0

3/2
ij 2

3B FAij

from the static precompression and the interactions between consecutive particles.
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treat an impurity particle as a perturbation of a host particle: an impurity particle
has radius r2 = r1, where r1 is the radius of a host particle in the chain. We focus
on  (0, 2]. The value of the parameter  determines the mass of an impurity
and the values of the interaction coefficients An between neighboring particles.
For double impurities, we only consider the “symmetric” case in which both
impurities are the same type of particle (and hence have the same radius).
           To solve the scattering problem in the linear regime, it is convenient to
use complex quantities rather than real ones. We write [246]
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which represents an incident plane wave producing re ected and transmitted
waves due to the interaction with the impurity. We thereby de ne a transmission
coefficient |T|2 and a re ection coefficient |R|2. Note that |R|2 +  |T|2 need not
equal 1 because both |T|2 and  |R|2 are based on the norm of the displacement,
which is not a conserved quantity of either Eq. (9.1) or Eq. (9.6). Intuitively, |T|2
and |R|2 are still “complementary” quantities, as a decrease in one is
accompanied by an increase in the other (and vice versa). To have |R|2 +|T|2 = 1
for all parameter values, one would need to instead de ne |R|2 and |T|2 in terms
of the energy density. The total energy is conserved by the dynamics, though it
is much harder to measure experimentally than other quantities (e.g., velocity).
Given Eq. (9.9), the velocity is u n = un. Therefore, if we de ned |T|2 and |R|2
in terms of u n rather than un, we would obtain the same results because u n and
un differ only by the constant factor . We therefore de ne re ection and
transmission coefficients in terms of displacement, which allows us to compare
analytical results directly with not only computations but also laboratory
experiments, for which we compute the coefficients in terms of velocity (see
Secs. 9.3.2 and 9.3.3).

We substitute the ansatz (9.10) into Eq. (9.6) near the impurities and do a
straightforward calculation to obtain the following linear system of equations for
T and R:
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where the subscripts (i) and (ii), respectively, indicate chains with single and
double impurities.

For a single-impurity chain, the parameters in Eq. (9.10) are
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For a double-impurity chain, we follow the same procedure and use the
parameters
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in Eq. (9.10). Note that  has exactly the same expression as before. We obtain
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In Fig. 9.2, we show the reflection and transmission coefficients as
functions of k and . Observe in Figs. 9.2(b) and 9.2(d) that there is a black
region of reflectionless modes that can traverse either a single impurity or a
double impurity almost without modification. For single impurities, the
reflection coefficient |R|2 vanishes only when either = 1 or k = 0. By contrast,
for a double impurity, |R|2 vanishes not only when = 1 and k = 0 but also when

0rkk  for larger than some critical value c. At these resonant values, a
wave can be transmitted completely through the impurities (i.e., there is no
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scattering), and it experiences only a phase shift. Granular crystals thereby admit
an analog of the well-known Ramsauer–Townsend (RT) effect [253], which in
its traditional form consists of the presence of a sharp minimum in the electron
scattering cross-section at low energies for scattering with rare gases (such as
Xe, Kr, and Ar). Hereafter, we use the term “RT resonance” to describe the
resonance at rkk . In our case, one can explicitly write kr in terms of the
physical parameters of the system as

,arccosrk                                                        (9.13)
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In Fig. 9.3, we show kr and the other relevant values of the re ection
coefficient for a double impurity in terms of the parameter . To ensure that kr

 R, we need  [ 1, 1]. In terms of , this implies that the resonant
wavenumber kr exists when c  < . An interesting feature of kr is that it can
be tuned as a function of  to any value in the interval [0, ]. In particular, we

nd that kr =  at  = c and kr  0 as . Consequently, one can tune the
frequency of the RT resonance to any value in the transmission band [0, ] of
the host granular chain.

In the following subsections, we discuss our computational and
experimental results on transmission, and we compare them with our analytical
predictions (obtained using a linear approximation, as we discussed above) for
transmission from Fig. 9.2.

Fig. 9.2: (Color online) (Left) Transmission and (right) re ection coefficients for the
scattering of a plane wave in a chain with impurities as a function of the wavenumber k and
the radius ratio . We show examples for (top) a single impurity and (bottom) a double
impurity. We describe the physical arameters of the particles in the chain in Table I.
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Fig. 9.3: (Color online) Re ection coe cient |R(ii)|2 for the double impurity. The red
dashed curves indicate the points at which the re ection coefficient is exactly 0. The resonant
wavenumber kr is given by Eq. (13). The blue dashed line highlights the critical value c; the
system has a Ramsauer Townsend (RT) resonance at wavenumber k = ±kr for  > c.

Fig. 9.4 (a) Space-time contour plot of particle velocity pro les in a host 63-particle
chain in which a double impurity has been inserted between particles 2 and +1. We use

 = 1.5 and the parameters in Table I for this numerical simulation. Arrows (1) and (2)
indicate the regions that we consider for the calculation of the transmission coefficient. These
regions are not affected by the plane waves that re ect from the left or right walls. We also
show velocity pro les for particles (b) n = 27 and (c) n = +3. The dots indicate the maximum
and minimum peaks of oscillatory velocity pro les, and the domains of (1) and (2) correspond
to the temporal regions marked with (1) and (2) in panel (a).

9.3.2. Numerical simulations

For our numerical computations, we solve Eq. (9.1) directly via a Runge–
Kutta method (using the ode45 function in Matlab). To quantify the transmission
efficiency of the impurity-bearing chains, we analyze velocity pro les of
propagating waves under harmonic excitations, as discussed earlier. In Fig.
9.4(a), we show a space-time contour plot of particle velocities from numerical
simulations. In this case, we consider a double impurity (with  = 1.5)
embedded between particles 2 and +1 [see Fig. 9.1(b)] of a 63-particle chain.
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The sinusoidal perturbation that we apply to the left end of the chain has a
frequency of 4 kHz and an amplitude of 0.35 N. In this scenario, we calculate
the magnitude of the particles’ maximum displacements to be less than 4.59
×10 8 m. The associated oscillations are two orders-of-magnitude smaller than
the static precompression n  1.02×10 6 from F0 = 10 N, so it is reasonable  to
assume that the system is operating near the linear regime.
To quantify transmission e ciency, we measure the velocity pro les at speci c
particles: n = 27 for incident waves and n = +3 for transmitted waves. We
choose these particle locations to allow a sufficiently long spatial interval
between the two nodes in Fig. 9.4(a). The two-sided arrows (1) and (2) indicate
regions over which the motion is not affected by the presence of re ections by
the chain boundaries. In Fig. 9.4(b), we show the velocity pro les of particles n
= 27 (top panel) and n = +3 (bottom panel). The arrows (1) and (2) again
correspond to the temporal domains without interference from wave re ection.

In the temporal plots of velocity pro les, we denote the maxima by vmax,i

and the minima by vmin,i, where i  {1, 2, . . . } is the index of the wave peaks
in the oscillation. As indicated by the dots in Fig. 9.4(b), the values of these
peaks are not constant even in the designated region before the arrival of the
re ected waves. Therefore, we need to extract the steady-state component from
the propagating plane waves. To do this, we calculate the relative error between
a pair of adjacent peaks:

1max,

max,1max,

i

ii
i v

vv
Error            (9.14)

We identify the steady-state component of the waves by nding a wave
packet with a minimal error. The amplitude iA  of the steady-state velocity
component is then

iii vvA min,max,              (9.15)

By calculating iA   for each peak i, we measure the incident wave amplitude
Ainput and transmitted wave amplitude Aoutput [see Fig. 9.4(b)]. Finally, we
quantify the transmission coefficient by calculating the ratio of the transmitted
wave’s velocity amplitude to that of the in cident wave:
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where (as mentioned in Sec. 9.3.A) the subscripts (i) and (ii), respectively,
indicate cases with a single impurity and a double impurity. The transmission
coefficient

~
, which is written in terms of velocity amplitudes, should be

equivalent to the displacement ratios introduced in Eq. (9.10) in the ideal
situation of harmonic responses of the particles. In the next subsection, we will
present our numerical and experimental calculations of ~

(i),(ii).

Fig. 9.5. (Color online). Schematic of the experimental setup for a granular chain with a
single impurity. In the inset, we show an image of the experimental setup.

9.3.3  Experimental setup and diagnostics

We now discuss the results of experiments in granular chains with a single
impurity and a double impurity. In Fig. 9.5, we show a schematic to illustrate
our experimental setup. We consider a granular chain with 65 spheres: there are
64 type-1 spheres and one impurity in the single-impurity chain, and there are 63
type-1 spheres and 2 impurities in the double-impurity chain. Because of
availability limitations, we use distinct materials for type-1 and type-2 particles.
However, their material properties are sufficiently similar (see Table I) so that it
is permissible to treat them as identical materials. As we show in the inset of
Fig. 9.5, we align the type-1 particles by using four stainless steel rods, and the
impurity particle is held in place by an external holder that ensures that its center
is aligned with the other particles in the chain.

To excite the granular chain, we position a piezoelectric actuator on the left
side of the chain in direct contact with particle n = 32. To generate plane waves
in the granular system, we use harmonic excitations with a frequency range from
1.0 to 7.0 kHz with a 200 Hz increment. The right end of the chain is
compressed by the wall with a static precompression of F0 using a spring and
linear-stage system. We visualize the propagation of stress waves by measuring
the velocity pro les of particles via a non-contact laser Doppler vibrometer
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Polytec, OFV-534). See Refs. [257, 258] for the details of this full- field
visualization technique.

Table 9.1 Properties of type-1 and type-2 particles.

 Type-1 Type-2
Material

Elastic modulus
Poisson ratio

Density
Radius

440 C
E1 = 204 GPa

v1 = 0.28
1 = 7.80 g/cm2

r1 = 9.525 mm

AISI 52100
E2 = 210 GPa

v2 = 0.30
2 = 7.81 g/cm2

r2 = r1

Similar to our numerical approach, we measure the transmission
coefficient by estimating the amplitude of the incident (Ainput) and transmitted
(Aoutput) waves. Unlike our numerical simulations, however, the experimental
results are susceptible to noticeable attenuation because of dissipation and slight
particle misalignment. Therefore, we calibrate our experimental results by
normalizing them with respect to the measurement results obtained from a
homogeneous particle chain. The calibrated transmission coefficient is
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Where ,i iiT is the transmission coefficient for singleimpurity and double-

impurity chains based on Eq. (9.16), and 1T   is the transmission coefficient for
a homogeneous chain (i.e., for  = 1).

9.4 Comparison between analytic, numerical, and experimental results

We now compare our analytical results with numerical simulations and
experimental data for the radius ratios  = 0.7 and  = 1.5. In Figs. 6(a) and 6(b),
we show our results for the transmission coefficients for a single-impurity chain.
In Figs. 9.6(c) and 9.6(d),we present our results for a double-impurity chain. In
these plots, black solid curves indicate the analytical predictions from
Eqs. (9.11) and (9.12), blue dots indicate the results of simulations obtained by
solving Eq. (9.1), and red squares give the experimental results after calibration
using Eq. (9.17).

For a single-impurity chain, the transmission coefficient has a decreasing
trend as we increase the excitation frequency. This supports our prediction from
Fig. 9.2(a). The slope of the decrease depends on the mass ratio. When = 0.7,
the decreasing trend is slow at first, but there is a rapid drop near the cutoff
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frequency of 7.25 kHz that we obtained analytically from the formula
m
B4 .

For = 1.5, the decrease has a near-linear trend throughout the frequency pass
band. In Figs. 9.6(a) and 9.6(b), we observe these trends in both numeric and
experiments. However, as we will discuss shortly, there are some differences in
the experiments as compared to the simulations and theoretical predictions.

For a double-impurity chain, we obtain more interesting behavior. When
= 0.7, we observe, broadly speaking, a decrease of transmission efficiency as the
frequency increases; this is reminiscent of the single-impurity chain. However,
for the mass ratio = 1.5, the transmission coefficient has a pronounced double-
peak shape in the frequency pass band. In particular, our analytical results for
transmission predict a resonant mode at an excitation frequency of about 3.0
kHz. This leads to complete transmission of plane waves despite the existence of
impeding double impurities. This “cloaking” mode is notable, and we observe it
in both experiments and numerical simulations [see Fig. 9.6(d)]. However, we
again note that quantitative differences exist despite the numerical corroboration
and the accurate qualitative description of the experiments.

As we have just discussed, our analytical predictions match reasonably well
with the results of our numerical simulations and experimental findings,
especially for frequencies between 1.0 and 4.0 kHz. By comparing analytical
predictions   and   experimental  results  around  3.0  and 4.0 kHz,  however,  we

Fig. 9.6. Transmission of plane waves in a granular chain with impurities. The ratio of
the impurity radius to the host-particle radius is (left)  = 0.7 and (right)  = 1.5. We show
results for chains with (top) a single impurity and (bottom) a double impurity.

observe some discrepancies that are not noticeable when comparing analytical
and numerical calculations. They probably stem from experimental errors, such
as a potential slight misalignment of the external holder and, perhaps more
notably, an intrinsic frequency response of a piezo actuator.
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For higher frequencies, especially between 6.0 and 7.0 kHz, we observe an
especially noticeable discrepancy when comparing the theoretical predictions to
the numerical and experimental results. [For example, see Figs. 9.6(b,c).] We
believe that this arises due to transient waveforms – and speci cally due to wave
localization – in the vicinity of the excitation particle (i.e., at the left end of the
chain). If one excites a granular chain from a stationary state, the propagating
waves include a wide range of frequencies near the excitation frequency. If the
excitation frequency is close to the cutoff frequency, then incident waves whose
frequencies are larger than the cutoff frequency will not propagate but will
instead be localized at the excitation particle in the form of evanescent waves.
Such perturbations result in transient behavior in the form of propagating waves,
often in modulated waveforms in the time domain. This, in turn, affects the
calculation of transmission coefficients in numerical simulations and
experiments. In both cases, we examine the dynamics in subsets of the chains
for small propagation times to avoid the effects of re ection from the right
boundary. See the Appendix for further details.

9.5 Multiple impurities

An interesting application of the RT resonance, which we discussed in Sec.
9.3.A for scattering with a double impurity, is its extension to systems with
multiple double impurities. In particular, it is interesting to examine systems in
which multiple impurities are either periodically or randomly distributed within
a host homogeneous chain. A fascinating question arises: can re ectionless
modes still occur?

When considering multiple impurities in a host granular chain, the
formalism of transfer matrices provides a useful framework to study
transmission of waves through the entire system [259]. Following recent work
by Zakeri et al. [260], we assume stationary plane waves un(t) = wnei t as in
Sec. 9.3.A. Equation (9.7) then leads to
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which generates the modes given a seed {w N,  w N+1}. For  =  0, Eq. (9.19)
reduces to
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Thus, for any distribution of particles in the chain, the seed w N = w N+1 implies
that wn = w N for all n. This explains why the re ection coefficients are exactly
0 at  = k = 0 for both single and double impurities (see Fig. 9.2).
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Fig. 9.7. Schematic of a host homogeneous granular chain with multiple double
impurities. The incident wave is (I), the re ected wave is (R), and the transmitted wave is (T).
We highlight impurities  in solid turquoise boxes, and we indicate the scattering   region with
the dashed box.

FIG. 9.8. (a) Space-time contour plot of the normalized velocity for a homogeneous
hain with N = 200 particles and an excitation frequency of 3.0 kHz. (b) The same plot as in
panel (a), but with ve double impurities located at positions n = 50,n= 72,n= 90,n= 96, and n
= 118. The radius ratio is  = 1.5, and arrows indicate the position of the impurities. Panels
(c)–(e) show the velocity at particle n = 130 for excitation frequencies of (c)
2.0kHz,(d)3.0kHz,and(e)3.8 kHz. The black (large-amplitude) curves are associated with the
homogeneous chain [panel (a)], and the red (smaller-amplitude) curves are associated with the
chain with the impurities [panel (b)].

In the absence of impurities, Eq. (9.18) generates propagating waves for
any  [0, ];  this  is,  at  least  true  in  the  in nite domain, while for a nite
domain, only the wavenumbers conforming to the speci c boundary conditions,
and the associated frequencies get selected. Once we add impurities, the iterative
process to generate such propagating waves is the same until we reach what we
call a “scattering region” (see Fig. 9.7). In this region, multiple scatterings occur
because the presence of impurities has broken discrete translation symmetry,
and successive interferences can then lead to complicated dynamics that depend
on the distribution of impurities. A particular example of this phenomenon was
investigated recently in the context of disordered granular chains [232].
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When the distribution of impurities is such that impurities are well
separated from each other, one can reformulate the transmission problem [given
by Eq. (9.18)] through the entire scattering region as a sequence of transfer
problems from each segment of a granular chain through an impurity to the next
segment. Thus, an incident plane wave wn = Ieikrn with wavenumber k = kr and
amplitude I transforms into T(1)eikrn after a scattering event because no re ected
waves are generated  during the scattering at k = kr. By considering each
impurity, we obtain the sequence Ieikrn T(1)eikrn T(2)eikrn  · · · T(L)eikrn,
where arrows denote the transmission of the wave through the impurities and
T(j), with j  {1, 2, . .  .  ,  L}, denotes the transmitted-wave amplitudes, which
are are given by Eq. (9.12). Consequently, re ectionless modes can be supported
by the chain in the form
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where nj (with j  {1, 2, . . . , L}) represents the position (of the first particle) of
the j th impurity in the host homogeneous chain. For other modes, transmission
through the scattering region depends on the frequency . Based on our
analysisin Sec. 9.2 , we expect that transmission decays rapidly as one
approaches the upper band edge .  By contrast, plane waves slowly attenuate
for frequencies near 0.

To corroborate that these effects arise in strongly precompressed granular
crystals, we numerically integrate Eq. (9.1) using the same parameters as in Sec.
9.3 B, but this time we randomly place double impurities within a scattering
region near the middle of a chain. One can calculate the frequency of the RT
resonance using Eq. (9.13), which in this case gives fr  3.0  kHz.  As  we
predicted, when the system is driven at this frequency, waves experience a phase
shift due to the scattering, but the amplitude is consistently transmitted almost
without modification through the scattering region of the random chains.
However, when we move away from the frequency of the RT resonance, the
transmission decays. We observe this directly by measuring the velocity of a
particle located just after the scattering region. To illustrate this, we compare
(see Fig. 9.8) the temporal evolution of particle velocities in a homogeneous
chain to that in a chain with five randomly-distributed double impurities. In
Figs. 9.8(c) and 9.8(e), we observe attenuation in the magnitude of the velocity
due to the presence of impurities in the chain. In Fig.9.8(d), when the system is
driven at 3.0 kHz, the wave is clearly delayed in the perturbed chain compared
with the homogeneous one, although the magnitude of the velocity is about the
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same for both chains. As predicted, we observe the RT resonance even in
granular chains with multiple double impurities.

9.6 Conclusions

In the presentwork,we examined the scattering ofwaves by single
impurities and double impurities in granular chains.We started by exploring the
linear scattering problem motivated by the context of strongly precompressed
granular chains with either a single impurity or a double impurity. We derived
analytical formulas to show that the scattering is markedly different in the two
scenarios. For single-impurity chains, we showed that the transmission
coefficient |T |2 decays monotonically with k (and hence with the frequency

).We also found that |T |2  0 as one approaches the band-edge frequency of
the host homogeneous chain. By contrast, for a doubleimpurity chain, we
showed that an effect analogous to the Ramsauer–Townsend resonance takes

place at k = kr  [0, ] in a specific region of parameter space. We demonstrated

that one can tune the frequency of this RT resonance to any value within the
transmission band of the host homogeneous chain.

We compared our analytical results to numerical computations and
laboratory experiments, and we obtained good agreement. In our experiments,
we used noncontact laser Doppler vibrometry to obtain a full-field visualization
of plane waves propagating in a granular chain. This allowed us to observe the
RT resonance for double impurities in a granular chain by directly measuring a
transmission coefficient associated with the scattering. We also discussed how
this RT resonance can be responsible for the emergence of reflectionless modes
in systems with multiple (either ordered or disordered) double impurities. We
demonstrated this reflectionless transmission using numerical simulations.

Our study paves the way for a systematic study of the properties of
Ramsauer–Townsend resonances in granular crystals. It is worthwhile to study
such resonances when there are more impurities and for various (ordered or
disordered) distributions of impurities. One possible application of RT
resonances in granular crystals is embedding foreign objects, such as sensors, in
systems so that they induceminimal interference with existing structures. It is
also of considerable interest to explore disordered granular crystals, rather than
merely placing a disordered segment in otherwise homogeneous chains. In 1D
disordered granular crystals, the recent numerical predictions of superdiffusive
transport and other features [29,30] are especially interesting to explore further.
Such efforts are currently in progress.
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10 TRANSPORT OF LOCALIZED WAVES VIA MODES AND
CHANNELS

10.1 Introduction

Suppressed transport and enhanced uctuations of conductance and
transmission are prominent features of random mesoscopic systems in which the
wave is temporally coherent within the sample [261–264]. The associated
breakdowns of particle diffusion and of self-averaging of ux were rst
considered in the context of electronic conduction and for many years thought to
be an exclusively quantum phenomena [261, 264–272]. Independently, however,
wave localization was demonstrated theoretically for radio waves in a
statistically inhomogeneous waveguide [273]. Over time, it became increasingly
apparent that localization and mesoscopic uctuations re ected general wave
properties and might therefore be observed for classical waves as well [263,
273–288]. In particular, the level and transmission eigenchannel descriptions
proposed,respectively, by Thouless [266, 267] and Dorokhov [270, 271] to
describe the scaling of conductance in electronic wires at zero temperature, are
essentially wave descriptions involving the character of quasi-normal modes of
excitation within the sample and speckle patterns of the incident and transmitted

eld. Quasi-normal modes, which we will refer to as modes, are resonances of
an open system. These modes decay at a constant rate due to the combined
effects of leakage from the sample and dissipative processes. Eigenchannels of
the transmission matrix, are obtained by nding the singular values of the eld
transmission matrix and represent linked eld speckle patterns at the input and
output of the sample surfaces. Eigenchannels are linear combinations of phase
coherent channels impinging upon and emerging from the sample. Examples of
such channels may be propagating transverse modes of an empty waveguide, or
transverse momentum states in the leads attached to a resistor. In measurements,
input and output channels are often combinations of source and detectors at
positions on the incident and output planes, respectively. Whereas modes are
biorthogonal eld speckle patterns over the volume of an open sample [299, 300],
eigenchannels are orthogonal eld speckle patterns at the input and output planes
of the sample. When there is no risk of confusion, we will refer to eigenchannels
as channels. Though levels and channels have not been observed directly in
electronic systems, these approaches have served as powerful conceptual guides
for calculating the statistics and scaling of conductance [261].

Recent measurements of spectra of transmitted eld patterns and of the
transmission matrix of microwave radiation propagating through random
multimode waveguides have made it possible to determine the eigenvalues of
modes and channels as well as their speckle patterns in transmission in
mesoscopic samples [301, 302]. These experiments were carried out in a
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multimode copper tube lled with randomly positioned dielectric elements, which
is directly analogous to a resistive wire in the zero-temperature limit, in which
dephasing vanishes. The study of modes and channels promises to provide a
comprehensive description of transport and to clarify long-standing puzzles
regarding steady state and pulsed propagation.

In this chapter, we will discuss studies of wave localization and strong
uctuations of the electromagnetic (EM) eld, intensity, total transmission and
transmittance, also known as the “optical” conductance from the per-spectives
of modes and channels. These approaches are useful in numerous applications.
The mode picture is of particular use in considering emission, random lasing,
and absorption, while the channel framework is indispensable in optical
focusing, imaging and transmission uctuations. We will describe lasing in
disordered liquid crystals [303] and in random stacks of glass cover slips [304]
in which the mode width falls below the typical spacing between modes. The
lasing threshold is then suppressed by the enhancement of the pump intensity
and by the lengthening of the dwell time of emitted light within the sample.
Measuring the transmission matrix allows us to study the uctuations of
transmittance over a random ensemble. The statistics of transmittance can be
described using an intuitive “Coulomb charge” model Measurements of the
transmission matrix make it possible to obtain the statistics of transmission in
single samples at a particular incident frequency [306], which are crucial for
focusing and imaging applications [306, 309]. These statistics, as well as the
contrast in focusing, are given in terms of the par-ticipation number of
transmission eigenvalues and the size of the measured transmission matrix [306,
309].

In the next section (section 10.2), we discuss instructive analogies between
the transport of electrons and classical waves. Spectra of intensity, total
transmission and transmittance are presented based on measurements of eld
transmission coefficients. A modal analysis of spectra of eld speckle patterns
on the output surface of a multimode waveguide and along the length of a single
mode waveguide is described in section 10.3. Pulse propagation in mesoscopic
samples is discussed in terms of the distribution of mode decay rates and the
correlation between modal speckle patterns in transmission. The role of modes
in lasing in nearly periodic liquid crystals and in random slabs is described in
section 10.4. In section 10.5, we describe the statistics of transmission
eigenvalues and their impact on the statistics of transmission for ensembles of
random samples and in single instances of the transmission matrix. The
manipulation of transmission eigenchannels to focus radiation is described in
section 10.6. We conclude in section 10.7 with a discussion of the prospects for
a complete description of transport in terms of modes and channels.
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10.2 Analogies between transport of electrons and classical waves

Anderson [265] showed over 50 years ago that the electron wave function
would not spread throughout a disordered three dimensional crystal once the
ratio of the width of distribution of the random potential at different sites
relative to the coupling between sites passes a threshold value. At lower levels
of disorder, electrons diffuse in the band center but are localized in the tail of the
band. Ioffe and Regel [310] pointed out shortly thereafter that an electron wave
function could not be considered to be properly propagating if it were scattered
after traveling less than a fraction of a wavelength so that for traveling waves,

> 2/  where  is the mean free path. This gives the criterion for localization
in three dimensions, <1, where k is the wave number. Though not explicitly
noted at the time, this criterion for localization applies equally to classical and
quantum waves. In subsequent work, Thouless [266] considered the electronic
state in the system as a whole rather than the strength of scattering within the
medium. He argued that in bounded samples, the weight of electron states at the
boundaries of the sample relative to points in the interior would be a useful
measure of the extension of electron states within the sample. Since localized
states would be peaked within the sample remote from the boundaries, their
energies could be expected to be insensitive even to substantial changes at the
boundary such as are engendered in a periodic system when the boundary
conditions for repeated sections of a random system are changed from periodic
to antiperiodic [266]. When the energy shift is less than the typical spacing
between states, the state is localized within the sample. An associated measure
of electron localization, which relates to the properties of the states and not to
the impact of some hypothetical manipulation of the sample, is the typical width
of an electron level relative to the average spacing between levels. When the
electron wave function is exponentially peaked within the sample, electrons are
remote from the boundary and their escape from the sample is slow. The
linewidth of the level is then smaller than the spacing between neighboring
levels, which is the inverse of the density of states of the sample as a whole.
This indicates that electron localization is achieved when the dimensionless ratio
of the level width to level spacing, the Thouless number, /E E, falls below
unity. Pendry [311] has described the electron localization process as one in
which “electrons can be forced to abandon their predilection for momentum” in
favor  of  space  as  the  de ning characteristic. The inhibition in transport
manifested in localization in space then leads to a lengthened escape from the
sample and narrow linewidth manifested in terms of sharp spikes in energy “one
per electron” [311] as opposed to a continuous spectrum. For diffusing
electrons, the wave function extends throughout the sample. Energy then readily
leaks out of the sample and levels are consequently short lived with line widths
greater than the typical spacing between levels. Thus the electron localization
threshold lies at 1The Thouless number may equally well be de ned for
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classical waves as the ratio of the typical frequency width to the spacing of
quasinormal modes, / where where where is the angular frequency.
The level width is the inverse of the Thouless time Th  in  which a mode leaks
out of the sample. Wave localization is signaled by exponentially long dwell
times for the wave. Such long decay times contribute little to the average
linewidth which could be dominated by spectrally broad modes peaked near the
sample boundary with short decay times. To most meaningfully capture the
dynamics of a mode, it is therefore natural to identify  with the average of the
inverse Thouless time, 101 /1 nTh where ... indicates an average taken

over modes for an ensemble of samples and 0
n is the leakage rate of energy in

the thn mode of the sample [266, 301]. >1 is a universal criterion for
localization in any dimension for any type of wave.

Thouless [266, 267] was concerned with the coupling between adjacent
regions in finite samples and so with the scaling of  as an indicator of the
changing character of the electron states with sample size. However  cannot be
easily measured in electronic systems and has been measured only recently for
classical waves [301]. Using the Einstein relation, which gives the conductivity
in terms of a product of the electron diffusion coeffcient D and the density of
states, which is /1  E divided by the sample volume, Thouless [267] showed
that _ was equal to the conductance G in units of the quantum of
conductance, .gh/e/G 2  Thouless [267] argued therefore that the
dimensionless conductance would scale exponentially for localized waves as
would be expected for .  He  showed  that  the  resistance  of  a  wire  at T  =  0
behaves ohmically [267], with the resistance increasing linearly with length L
and the dimensionless conductance varying as g=N /L, only up to a length
= N , at which  = 1. Here, N is the number of independent channels that

couple to the resistor, N ~ 22 /AkF where A is the cross sectional area of the
sample, Fk is the electron wave number at the Fermi level,  is the electron
mean free path, and  is the localization length. For L< electrons di_use with
residence time within the conductor of Th ~ /L2 D [266, 267]. The level width
would then be E~ / Th ~ D/ 2L , while the level spacing E would scale
inversely with volume of the wire as 1/L. As a result, for L < ,  scales as 1/L.
For L  > , electrons would be localized and  and g would fall exponentially
while the resistance would increase exponentially with L. Abrahams et al. [268]
showed that only above two dimensions is it possible for transport to be diffive
at all length scales. For lower dimensions, localization always sets in as the size
of the sample increases, independent of the scattering strength, so that a
transition between diffive and localized transport can only occur above two
dimension [268].
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The scaling of average conductance and fluctuctuation in conductance may
also be calculated within the framework of random matrix theory [270, 271,
205, 312, 313]. The field in outgoing channel b is related to the field in all

possible incident channels a via the field transmission matrix t, .EtE
N

a
abab

1
Taking the two independent polarization states into account, the number of
propagating modes in the empty waveguide leading to the sample is N=2 A/ 2

where A is the illumination area and  is the wavelength of the incident wave.
Summing over all possible incoming and transmitted channels yields the

transmittance
N

n
n

n

b,a
abtT

1

2

1
[54], where the n are the eigenvalues of the

matrix product tt. The transmission eigenvalues can be found using the singular
value decomposition of the transmission matrix t=U V . Here, U and V are
unitary matrices and  is a diagonal matrix with elements .nn  The
ensemble average of T is equal to the dimensionless conductance, .gT  [315]
Random matrix theory predicts that, for di_usive waves, the transmission

eigenvalue follow the bimodal distribution,
rr

g
12

 [271, 305, 312,

316]. Most of the contributions to T comes from approximately g eigenvalues
that are larger than 1/e, while most of the transmission eigenvalues are close to
zero. The characteristics of these “open” [317] and “closed” channels were first
discussed by Dorokhov [270, 271]. He considered the scaling of each of the
transmission eigenvalues which he expressed in terms of the auxiliary
localization length n. He found that the average spacing between inverse
auxiliary localization lengths of adjacent eigenchannels in a sample made up of
N parallel chains with weak ransverse coupling to neighboring chains was
constant and equal to the inverse of the localization length 1/  [270, 271].

Localization of quantum and classical waves in quasi-one-dimensional
(Q1D)  samples with lengths much greater than the transverse dimensions
occurs at a length at which even the highest transmission eigenvalue 1 falls
below 1/e.  Thus localization will always be achieved as the sample length is
increased in Q1D samples [277]. It is di_cult, however, to localize EM waves in
three-dimensional dielectric materials. As opposed to s-wave scattering
prevalent in electronic systems, EM waves experience p-wave scattering and
cannot be trapped by a confining potential. The scattering cross section only
becomes appreciable once the size of the scattering element becomes
comparable to the wavelength. But once the scattering length is comparable to
the wavelength, the mean free path cannot fall significantly below the scatterer
size and so it is hard to satisfy the Io_e-Regel condition for localization in three
dimensions, k  < 1. For smaller scattering elements such as spheres of radius a,
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the Rayleigh scattering cross section is proportional to 6a  while the density of
spheres is proportional to .a/ 31  As a result, the inverse mean free path for _xed
volume fraction of particles is proportional to 3a . For high particle density and
a « , the sample acts as an effective medium with mean free path ~1/ 3a .It is
therefore not possible to achieve strong scattering with k  < 1 by crowding
together small scattering elements [297]. In ordered structures, however, EM
bands appear and a photonic band gap  (PBG) with vanishing density of states
can be created in appropriate structures with su_ciently strong contrast in
dielectric constant. John [318] has pointed out that disturbing the order in such
structures would create localized states within the frequency range of the band
gap in analogy with the Urbach tail at the edge of the electronic band gap in
semiconductors.

Though it has proven to be more diffcult to localize EM radiation than
electrons in three dimensions, transport of EM radiation can be probed in ways
that are often closer to the theoretical paradigm of Anderson localization than is
the case for electronics. The particles of classical waves do not mutually interact
as do electrons, dephasing is negligible even at room temperature and ensembles
of statistically equivalent random samples can be created. For classical waves,
localization is most easily achieved in low dimensional systems such as masses
on a string [319], single mode optical fibers  [320], single- [321] and multi-
mode waveguides [296], surfaces [286], layered structures [322, 323] and highly
anisotropic samples [324–326], particularly samples in which the longitudinal
structure along the direction of wave propagation is uniform. Anderson
localization can be expected to occur for EM radiation at the edge of the
conduction or pass band in nearly periodic three dimen-sional systems.
Transport near the Anderson threshold has been observed for ultrasound in a
slab of brazed aluminum beads [327].
        An experimentally important difference between classical and quantum
transport is that coherent propagation is the rule for classical waves such as
sound, light and microwave radiation in granular or imperfectly fabricated
structures, whereas electrons are only coherent at ultralow temperatures in
micron-sized samples. For classical waves in static samples, the wave is not
inelastically scattered by the sample so that the wave remains tempo- rally
coherent throughout the sample even as its phase is random in space. In contrast,
mesoscopic features of transport arise in disordered electronic systems only in
samples with dimensions of several microns at ultralow temperatures.
Mesoscopic electronic samples are intermediate in size between the microscopic
atomic scale and the macroscopic scale. Electrons are typically multiply
scattered within conducting samples so their dimensions are larger than the
electron mean free path, which is on the scale of or larger than the microscopic
atomic spacing and electron wavelength. At the same time, electronic samples
are typically smaller than the macroscopic scale on which the wave function is
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no longer coherent. In contrast, monochromatic classical waves are generally
temporally coherent over the average dwell time of the wave within large
samples. It is therefore possible to explore the statistics of mesoscopic
phenomena with classical waves. Such studies may also be instructive regarding
the statistics of transport in electronic mesoscopic samples. Measurements can
also be made in both the frequency and time domains. The impact of weak
localization can be investigated in the time domain by measuring transmission
following an excitation pulse or by Fourier transforming spectra of eld
multiplied by the spectrum of the exciting pulse.

The connection between electronic and classical transport emerges as well
from the equivalence proposed by Landauer [314, 315] of the dimensionless
con-ductance g and the transmittance T, known as the “optical” conductance.
The transmittance is the sum over all incident and outgoing channels of the
transmission coefficient of ux. The phase of electrons arriving from a reservoir
in different channels is randomized over the time of the measurement and the
conductance is related to the incoherent sum of transmission coefficients over all

channels,
N

a
a

N

ba
ba TTTg

11,

.  Measurements  have  been  made  of  the

statistics of transmission coefficients of the eld, bat , intensity, ,2
baba tI and

total transmission,
N

b
baa TT

1

for a single incident channel, a and for the

transmittance, T.
The experimental setup for measurements of microwave transmission in the

Q1D geometry described in this chapter is shown in Fig. 10.1. Measurements

Figure 10.1 Copper sample tube containing a random medium with microwave source
       and detector antennas. Intensity speckle pattern is produced with a single source location.

are carried out in ensembles of random samples contained in a copper tube. The
samples are random mixtures of alumina spheres with diameter of 0.95cm and
index of refraction of n = 3.14 at a volume fraction of 0.068. Source and detector
antennas may be translated over a square grid of points covering the incident
and output surfaces of the sample and rotated between two perpendicular
orientations in the planes of the sample boundaries. Spectra of the eld
transmission coefficient polarized along the length of a short antenna are
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obtained from the measurement of the in- and out-of-phase components of the
eld with use of a vector network analyzer. The intensity for a single

polarization of the wave is the sum of the squares of the in- and out-of-phase
components of the eld. The sum of intensity across the output face for two
perpendicular orientations of the detector antenna gives the total transmission.
The eld speckle pattern for each antenna position on the sample input is
obtained by translating the detection antenna over the output surface. An
example of an intensity speckle pattern formed in transmission is shown at the
output of the sample tube in Fig. 10.1. The tube is rotated and vibrated
momentarily after measurements are completed for each sample con guration to
create a new and stable arrangement of scattering elements. In this way,
measurements are made over a random ensemble of realizations of the sample.
Field spectra can be Fourier transformed to yield the temporal response to
pulsed excitation.
          Spectra of intensity, total transmission and transmittance normalized by
the ensemble average values ,/,/ aaabababa TTsTTs  and TTs / in a single
random con guration in two different frequency ranges are shown in Fig. 10.2.
Fluctuations of relative intensity are noticeably suppressed in the higher
frequency range as the degree of spatial averaging increases. For the ensemble
represented in Fig. 10.2, var (sa) = 0.13 in the high frequency range and 3.88 in
the low frequency range. Since waves are localized for var (sa) >2/3 [296], this
indicates that the wave is localized in the low frequency range.

Fig.10.2 Spectra of transmitted microwave intensity, total transmission, and
transmittance relative to the ensemble average value for each in a single random
con guration. The wave is localized in (a), (c),and (e) and diffusive in (b), (d),and (f).
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It is instructive to consider the spectra in Fig. 10.2 from both the mode and
channel perspectives. When the wave is localized, distinct peaks appear when
the incident radiation is on resonance with a mode. The resonance condition
holds for all source and detector positions and therefore sharp peaks remain even
when transmission is integrated over space. When the wave is diffusive, many
modes contribute to transmission at all frequencies and for all source and
detector positions. The relative coupling strengths of a single polarization
component of the intensity into and out of each of these modes has a negative
exponential distribution and phases of the eld transmission coefficient are
random so that relative uctuations will be suppressed with increased spatial
averaging. From the channel perspective,  many orthogonal transmission
channels contribute to transmission for diffusive waves and the coupling to
channels varies with source and detector positions. Fluctuations in the
incoherent sum of this random jumble of orthogonal eigenchannels are therefore
suppressed upon averaging over space.

This suppresses the variance of transmission by a degree related to the
number of channels that contribute substantially to transmission. This may be
expressed quantitatively in term of the participation number of eigenvalue of the

transmission matrix,
N
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/ . For diffusive waves, var (sa) ~ 1/M and

relative uctuations are enhanced since the number of effective channels M is
smaller than the number of independent channels N. We will see below that for
diffusive waves the spectrum of transmission eigenvalues is rigid so that the
number of transmission eigenvalues above 1/e uctuates by approximately unity
and uctuations of conductance T are of order unity [261,26 4, 317, 329–331].
This results in universal conductance uctuations which are independent of the
sample size for Q1D sample [261, 264].
       The localization transition may be charted in terms of a variety of related
localization parameters, all of which can be measured for classical waves. In
addition to  and the average over a random collection of samples of the
dimensionless conductance, g = T , measurements of fractional uctuations of
intensity or total transmission characterize the nature of the wave in random
systems. In the diffusive limit, the variance of total transmission relative to the
average value of total transmission over a random ensemble of statistically
equivalent samples is inversely proportional to g, var (sa) = 2/3g [263, 290–292,
296]. Since the wave is localized for g < 1, localization occurs when
var (sa) > 2/3. Perhaps the most easily accessible experimental localization
parameter is the variance of fractional intensity, which can be expressed as
var (sab) = 1 + 4/3g [31]. The localization threshold at g = 1 corresponds to
var (sab)=7/3. var (sa) and var(sab) remains useful localization parameters even
for localized waves. Fluctuations are relatively insensitive to absorption as
compared to measurements of absolute transmission [296]. Mesoscopic

uctuations are directly tied to intensity correlation within the sample [280–282,
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284, 322, 323]. The fractional correlation of intensity at two points on the output
surface or between two transmission channels, b and b , is equal to the variance
of relative total transmission,  = sba sb a  = var (sa). It is equal to M 1  in the
diffusive limit, which is enhanced over the value of 1/N that would be expected
if mesoscopic correlation were not present.

The relationships between key localization parameters mentioned above
arise since the nature of propagation in disordered Q1D samples, in which the
wave is thoroughly mixed in the transverse directions, depends only on asingle
dimensionless parameter [268]. For diffusive waves,
 = g = 2/3 var (sa) = 2/3  = 2/3 M 1  The relationships var (sa)  =  and

var (sab) = 2var(sa)+1 hold through the localization transition, but the
relationship between the other variable does not. However, we anticipate these
relationships will change in a manner that can be described in terms of a single
parameter. Other classical wave measurements that indicate the closeness to the
localization threshold are coherent backscattering and the transverse spread of
intensity in steady state or in the time domain. The width of the coherent
backscattering peak gives the transverse spread of the wave on the incident
surface and hence the transport mean free path , from which the value of k can
be found.

10.3 Modes

We nd that the elds at any point in the sample may be expressed as a
superposition of the eld associated with the excitation of all the modes in the
sample. This superposition is a sum of products for each mode of the j
polarization component of the spatial variation of the mode, an,j(r), and the
frequency variation of the mode, which depends only upon the central frequency
of the mode n and its linewidth, n,

n n
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)(,                   (10.1)

The frequency variation of the nth mode n( ) is given by the Fourier
transform of exp( nt/2) cos nt for t > 0. Equation (1) can be t simultaneously
to the eld at a large number of points on the output speckle patterns in a single
con guration since all spectra share a common set of n and n. Armed with the
values of n and n, we nd an,j(r) and hence the speckle pattern for each of the
modes.

The transmission spectrum is determined by the variation with position of
the eld amplitudes |an,j(r)| and phases over the transmitted speckle patterns for
the modes. The contribution of individual modes to transmission can be seen in
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the spectrum of total transmission near the single strong peak at 10.15 GHz
shown in Fig. 10.3 (a) in a random sample of length L =  61  cm.  The
asymmetrical shape for the line in both intensity and total transmission indicates
that more than a single mode contributes to the peak. The modal analysis of the

eld spectra shows that three modes contribute substantially to transmission
over this frequency range. Spectra of the total transmission for the three modes
closest to 10.15 GHz acting independently are plotted in Fig. 10.3(a). The
integrated transmission for the 28th and 29th mode found in the spectrum
starting at 10 GHz are each greater than for the measured peak indicating that
these modes interfere destructively. The intensity and phase patterns for these
two modes are shown in Figs. 10.3b-e. Aside from a difference in the average
value of transmission, the intensity speckle patterns of the two modes are nearly
the same. The distributions of phase shift at 10.15 GHz for the two modes are
also similar except for a constant phase difference between them of  = 1.02
rad. The similarity between the speckle patterns for these overlapping modes
suggests that these modes are formed from coupled resonances within the
sample which overlap spatially and spectrally. We expect that such resonances
peaked at different locations will hybridize to form modes of the system. Such
modes may be close to symmetric and antisymmetric combinations of the two
local resonances. This would produce similar intensity speckle patterns at the
output with a phase shift of ~  rad between the modes. The similarity in the
intensity speckle patterns of these adjacent modes and the uniformity of the
phase shift across the patterns of these modes allows for interference between
modes across the entire speckle pattern. The similarity between modes is most
evident in a sample con guration such that a pair of nearest neighbor modes are
particularly close in frequency. This is a point of anticrossing which arises
because of level repulsion inside the sample [335, 336]. The magnitude of the

eld inside a 1D sample is seen to be the same throughout the sample. Modes
are orthogonal by virtue of a change of phase of  rad along the length of the
sample. At the anticrossing, the elds at the sample output for the two modes are
the same except for a change in phase close to  rad. The Thouless number,
which equals the dimensionless conductance for diffusive waves, provides a key
measure of the dependence of transmission on the underlying characteristics of
modes. The modal decomposition of transmission spectra for the ensemble from
which the con guration is analyzed in Fig. 10.3 is drawn gives  = 0.17 [331].

The statistics of level spacing was rst considered by Wigner [337] in the
context of nuclear levels probed in neutron scattering. He conjectured the
eigenvalues of the Hamiltonian matrix would have the same statistics as the
spacing of eigenvalues of a large random matrix with Gaussian elements.
Agreement was found between the spacing between peaks in the scattering cross
section and Wigner’s surmise for the spacing of eigenvalues of random
Hamiltonian matrices. However, the analysis of spectra of nuclear scattering
cross sections was done in samples with relatively sharp spectral lines. We have
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seen above that even when  < 1, a number of lines may coalesce into a single
peak. A comparison of level spacing statistics in samples with different values
of  modal   overlap   in which the phase of  the scattered wave can be measured

Fig. 10.3 (a) Three modes contribute to the asymmetric peak in the total transmission
spectrum. Modes 28, 29 and 30 are in order of increasing frequency. Intensity speckle
patterns for modes 28 and 29 are shown in (b) and (c) and the corresponding phase patterns
are shown in (d) and (e). (f) The phase in mode 29 is shifted by nearly a constant of 1.02  rad
relative to mode 28. (Ref. [41])

is therefore of interest in forming a picture of the statistics of transmission.
Progressively stronger deviations from the Wigner surmise are found for
decreasing values of .

Fig. 10.4 (a) Spectra of the eld amplitude at each point along a random sample with
spectrally overlapping peaks normalized to the amplitude of the incident eld. (b) Top view
of (a) in logarithmic presentation. (Ref. [61])
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It has not been possible to access the eld distribution within the interior of
multiply scattering three-dimensional samples, but spatial distributes can be
examined in one- and two-dimensional samples [319, 321, 335]. The presence if
both isolated and overlapping modes within the same frequency range has been
observed in measurements of field spectra along the length of slotted single-
mode random waveguides. The waveguides contained randomly positioned
binary dielectric elements and a smaller number of low index Styrofoam
elements. Measurements were carried out in the frequency range of a pseudogap
associated with the first stop band of a periodic structure of consecutive binary
elements. The density of states is particularly low in the frequency range of the
band gap so that < 1. When spectrally isolated lines are found, they are strongly
peaked in space and their intensity spectra at each point in the sample is
Lorentzian with the same width at all points within the sample. When modes
overlap spectrally, however, spectral peaks have complex shapes which vary
with position within the sample and the spatial intensity distribution is multiply
peaked. Mott [338] argued that interactions between closely spaced levels in
some range of energy in which  < 1 would be associated with two or more
centers of localization within the sample. Pendry [339] showed that the
occasional overlap of electronic states would dominate transport since regions in
which the value of the electron wave function is high would not be far from both
the input and output boundaries. Since the wave can then find a ready path
through the sample, such modes are relatively short-lived and spectrally broad.
This enhances the contribution of coupled resonances to transport. Such
multiply peaked and spectrally overlapping excitations within the sample,
termed “necklace states” by Pendry, are important in transmission since they
arise in the localized regime and transport through isolated modes is typically
small and over a narrow linewidth.

The variation in space and frequency of the amplitude of the waves within
the pseudogap in a single random configuration is shown in Fig. 10.4. An
additional ripple is observed in Fig. 10.4(b) in the intensity variation through the
sample, corresponding to a phase shift of  rad, each time the frequency is
tuned though a mode. The decomposition of field spectra inside the waveguide
within the pseudogap into the modes and a background which varies slowly in
frequency is shown in Fig. 10.5. The slowly varying background shown in
Fig. 10.5(a) is the fit of a polynomial in the difference in frequency from a point
in the middle of the spectral range considered. This background is presumably
related to off-resonance excitation of many modes on either side of the band
gap. The mode structure within the single-mode waveguide sample changes
when a spacing is introduced between two parts of the sample and is increased
gradually. A succession of mode hybridizations is observed with increasing
spacing as a single mode tends to shift in frequency until it encounters the next
mode. As the spacing is increased, the mode that had been moving becomes
stationary and the next mode begins to move [336]. Simulations have shown that
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changing the index of a single scatterer leads to mode hybridization in 2D
random systems, in which a single peak may be transformed to multiple peaks
[335].

Fig. 10.5  Decomposition of field pattern in Fig. 4 into a slowly varying
polynomial term and five modes. (Ref. [61])

One-dimensional localization has also been observed in optical
measurements in single-mode optical fibers [320] and in single-mode channels
that guide light within photonic crystals [340-342]. When the structure
bracketing the channel is periodic, the velocity of the wave propagating down
the channel experiences a periodic modulation so that a stop band is created.
When disorder is introduced into the lattice, modes with spatially varying
amplitude along the channel are created. Modes near the edge of the band gap
are long lived and readily localized by disorder. An example of spectra of
vertically scattered light versus frequency for light launched down a channel
through a tapered optical fiber is shown in Fig.10.6. The inset shows the
disordered sample of holes with random departure from circularity in silicon-on-
insulator substrates at a hole filling fraction of  f ~ 0.30.
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Fig. 10.6  Spectrum of wave transmitted to a region within a single-mode photonic
crystal waveguide near  the short wavelength edge of the first  stop band at ~ 1520 nm. The
channel surrounded by irregular holes is  shown  in the inset. (Ref. [80])

The modal decomposition method described above can be applied to
localized waves for which modal overlap is relatively small. The impact of
modes can be seen in the changing decay rate of transmission following pulsed
excitation, even for diffusive waves. The slowing down of the decay rate with
time will become more pronounced in samples in which the wave is more
strongly localized [343, 345]. In the diffusive limit, the transverse extent of the
modes is large and the wave is coupled to its surroundings through a large
number of speckle spots. One expects therefore that the decay rate of all modes
will approach the decay rate of the lowest diffusion mode [346, 347],

2
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1 21 zL/D/  after a time 1 in which higher order modes with decay

rates 2
0

22 21 zn L/Dn/  have largely decayed. Here, n is the order of the
diffusion mode and z0 is the length beyond the boundary of the sample at which
the intensity inside the sample extrapolates to zero. We find that pulsed
transmission deviates increasingly from the diffusion model in nominally
diffusive samples with g > 1 as the value of g decreases and the measured value
of  increases. Strong deviations from pulsed transmission in diffusing samples
far from the localization threshold are observed for microwave radiation, light
and ultrasound [327, 334, 348].

Measurements of pulsed transmission through a random sample of alumina
spheres at low-density in samples of different length and absorption with values
of = 0.09, 0.13, 0.25, and 0.125 are shown in Fig. 10.7 in samples A-D,
respectively [348]. The decay rate of intensity is seen to deviate from the
constant rate of the diffusive limit and is seen in Fig. 10.7 (b) to decreases at a
nearly constant rate.  A linear falloff of the decay rate would be associated with
a Gaussian  distribution  of  decay   rates  for  the  modes  of  the  medium [343].



189

Fig. 10.7 (a) Average pulsed transmitted intensity in samples of alumina spheres with
lengths, L = 61 cm (A), 90 cm (B and D), and 183 cm (C). Sample D is the same as sample B
except for the insertion of a titanium foil inserted along the length of the sample tube D to
increase absorption. (b) Temporal derivative of the intensity logarithm gives the rate  of the
intensity decay due to both leakage out of the sample and absorption. (Ref. [88])

A slightly more rapid decrease of the decay rate is associated with a slower than
Gaussian falloff of the distribution of mode decay rates. The slowing down of
the decay rate at long times reects the survival of more slowly decaying modes
[343, 348]. The distribution of modal decay rates is related to the Laplace
transform of the transmitted pulse intensity.

Sample D is the same as sample B except for the increased absorption due
to a titanium foil inserted along the length of the sample tube. The variation with
time of the decay rate in sample D is the same as that in sample B except for an
additional constant decay rate in sample D due to absorption. This shows that, at
the low level of absorption in these samples, scattering rates are not affected by
absorption and that the effect of absorption simply introduces a multiplicative
exponential decay, which is the same for all trajectories at a given time. Thus the
degree of renormalization of transport due to weak localization involving the
interference of waves following time-reversed trajectories that return to a point
in the medium is not affected by absorption. We note that the fractional
reduction of the decay rate is greater at a given time delay in shorter samples
with higher values of g. This is because the length of trajectories of partial
waves within the medium is the same for all samples at a given delay but the
number of crossings of trajectories is greater when the paths are congined within
a smaller volume.

The temporal variation of transmission can also be described in terms of
the growing impact of weak localization on the dynamic behavior of waves,
which can be expressed via the renormalization of a time-dependent diffusion
constant or mean free path [349]. The decreasing decay rate has also been
explained using a self-consistent local diffusion theory for localization in open
media [350, 351]. The theory uses a one loop self-consistent calculation of an
effective diffusion coefficient that falls with increasing depth inside the sample.
The spatial variation of the local diffusion coefficient reflects the increasing
fraction of returns of wave trajectories to a point with greater depth due to the
lengthened dwell time in the sample. This theory gives excellent agreement with
recent measurements of non-diffusive decay of pulsed ultrasound transmission
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through a sample of aluminum spheres as seen in Fig. 10.8 [327]. The value of g
is just beyond the localization threshold as deter mined from measurements of

Fig. 10.8  Averaged time-dependent transmitted intensity I(t) normalized so that the
peak of the input pulse is unity and centered on t = 0, at representative frequencies in the
localized regimes. The data are fit by the self-consistent theory (solid curve). For comparison,
the dashed line shows the long-time behavior predicted by diffusion theory. (Ref. [67])

var(sba), which is slightly above the value of 7/3 predicted as the localization
threshold. The intensity distribution on the output face of the sample is found to
be multifractal as predicted near the threshold for Anderson localization [343,
352]. However, the value of k  in this sample is  1.5, which would indicate the
wave is diffusive. Measurements of the spread of intensity on the sample output
with increasing time delay show a trend towards an exponential decay of
intensity on the output plane at later times supporting the localization of the
wave. A similar approach to an exponential decay of intensity with transverse
displacement on the sample output from the point of injection of the pulse on the
incident surface has been observed by Sperling et al. [324] in optical
measurements through a slab of titania particles. When k  < 4.5, the variance of
the spatial intensity distribution reaches a peak value and then actually falls.
This is taken as support of localization of the wave at k  >  1.  However,  this
criterion for localization is directly tied to the Thouless criterion for localization
 = 1.

It might also be that at later times, longer lived modes, which are more
confined in space are more heavily represented and dominate the spatial
distribution. Though each of these modes will not spread in time, the modes that
survive with increasing time delay would be the more strongly confined modes
and would lead to a falling variance of the spatial intensity distribution in time.
Such states may be prelocalized with a slower falloff in space than exponential
but still faster than for diffusive waves [353, 354].

The slowing of the spread of the transmitted wave in the transverse
direction can also be seen in transverse localization in samples which are
uniform in the longitudinal direction. This has been observed in a 2D periodic
hexagonal lattice with superimposed random fluctuations [325]. The structured
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sample is created by first illuminating the photorefractive sample with a
hexagonal optical pattern and then with a random speckle pattern of varying
strength. A transition from a diffusive to a localized wave in the transverse plane
is seen in the output plane with the ensemble average of the spatial intensity
distribution changing from a Gaussian to an exponential function centered on
the input beam as the thickness of the sample increases. Since the wave incident
upon the sample, which is uniform along its length, is paraxial, it is not scattered
in the longitudinal direction and travel time through the sample is proportional
to the sample thickness. Transverse localization is also observed in an array of
disordered waveguides lattices [326]. Measurements of pulsed microwave
transmission of more deeply localized waves transmitted through a Q1D sample
of random alumina spheres of thickness approximately 2.5 times the localization
length, are shown in Fig. 10.9 [355]. The impact of absorption was removed
statistically by multiplying

Fig. 10.9 (a) Fit of self-consistent localization theory (SCLT) (dashed curve) at early
times to the average intensity response (solid curve) to a Gaussian pulse with  = 15 MHz in
a sample of length L = 61 cm and the result of classical diffusion theory (dotted curve); (b)
semilogarithmic plot of hI(t)i reaching to longer times; In (a) and (b), the curves are
normalized to the peak value. (Ref. [95])

 the average measured intensity distribution by exp (t/ a) [296, 356]. For times
near the peak of the transmitted pulse, diffusion theory corresponds well with
the measurements of I(t) . For times up to 4 times D = L 2/ 2D, the decay rate of
the lowest diffusion mode, pulsed transmission is in accord with self-consistent
localization theory, but transmission decays more slowly for longer times. This
indicates the inability of this modified diffusion theory to capture the decay of
long-lived localized states. Such states are included in a position-dependent
diffusion theory [357] that is in accord with simulations of the steady-state
intensity profile within random systems [358]. The difference between self-
consistent localization theory and the theory for position-dependent diffusion is
seen to be precisely in the ability of the latter to include the impact of long-lived
resonant states [357, 358].

Destructive interference between neighboring modes together with the
distribution of mode transmission strengths and decay rates can explain the
dynamics of transmission. The average temporal variation of total transmission
due to an incident Gaussian pulse is found from the Fourier transform of the
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product of the field spectrum and the Gaussian pulse. The progressive
suppression of transmission in time by absorption may be removed by
multiplying Ta(t)  by exp (t/ a) to give, T0

a(t)  = Ta(t)  exp(t/ a) [296, 356].
With the influence of absorption upon average transmission removed, decay is
due solely to leakage from the sample. The measured pulsed transmission
corrected for absorption is shown as the solid curve in Fig. 10.10 and is
compared to the incoherent sum of transmission for all modes in the random
ensemble corrected for absorption, )(0 tnTan  shown as the dashed curve in the
Fig. 10.10 )(0 tnTan  is substantially larger than T0

a (t)  at early times, but
converges to T0

a (t)  soon after the peak. Though transmission associated with
individual modes rises with the incident pulse, transmission at early times is
strongly suppressed by the destructive interference of modes with strongly
correlated field speckle patterns such as those shown in Fig. 10.3. At later times,
random frequency differences between modes leads to additional random
phasing between modes and averaged pulsed transmission approaches the
incoherent sum of decaying modes. The decay of T0

 a (t) , shown as the solid
curve in Fig. 10.10, is seen to slow considerably with time delay reflecting a
broad range of modal decay rates.

Measurements by Bertolotti et al. [322] of pulsed infrared transmission
through random layers of porous silicon with different porosity produced by
controlled electrochemical etching of silicon show that the pulse profiles depend
on the degree of spectral overlap of excited modes. As the number of layers
increases, spectra become sharper since propagation of a paraxial beam in the
structure is essentially one dimensional and  falls with sample thickness. When
the pulse excites an isolated resonance peak, the decay rate of the falling edge of

Fig. 10.10  Semilogarithmic plot of the ensemble average of pulsed transmission and the
incoherent sum of transmission due to all modes in the random ensemble. (Ref. [41])
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Fig.10.11 Time-resolved transmission data. In (a)  and  (b) the sample is excited on
resonance with a sharp transmission peak, with small and large linewidths. In (c) a nearly
symmetric pulse shape is observed that exhibits a fast decay time and a relatively large delay,
typical for multiple-resonance necklace states. Sample thickness: 250 layers. Gray curves:
instrumental response (cross correlation between probe and gate), corrected for the delay
introduced by the effective refractive index of the sample. (Ref. [322])

the transmitted pulse is seen in Figs. 11(a) and (b) to be larger for the narrower
spectral peak. The delayed rise in transmission seen in Fig. 10.11(a) suggests,
however, that more than a single mode is involved since the interaction of a
pulse with a single mode would lead to a prompt rof the falling edge of the
transmitted pulse is seen in Figs. 11(a) and (b) to be larger for the narrower
spectral peak. The delayed rise in transmission seen in Fig. 11(a) suggests,
however, that more than a single mode is involved since the interaction of a
pulse with a single mode would lead to a prompt rise in transmission as the
pulse enters the sample, after which intensity decays at a constant rate. When the
spectrum of the exciting pulse overlaps severalise in transmission as the pulse
enters the sample, after which intensity decays at a constant rate. When the
spectrum of the exciting pulse overlaps several spectral lines, a symmetrical
profile for the transmitted pulse is observed, as seen in Fig. 10.11(c). These
spectrally overlapping states form necklace states with a series of intensity peaks
along the sample which provide a path for the wave through the medium. Such
states would be expected to be short-lived.

The relationship of pulsed transmission to the transmission spectrum of
microwave radiation through a sample of random dielectric spheres with  =
0.43 is shown in Fig. 10.12 [355]. The decay is slow when the spectrum of the
pulse overlaps a single narrow mode and fast when two peaks fall within the
spectrum of the incident pulse. In the latter case, the transmitted intensity is
significantly modulated at the frequency difference between the modes.
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Fig. 10.12 (a) Transmitted intensity spectrum in a random sample of L = 40 cm and
Gaussian spectra of incident pulses peaked at the center of the isolated line and overlapping
lines. (b) Intensity responses to the Gaussian incident pulses with spectral functions shown in
(a). (Ref. [95])

In addition to the reduction of the leakage rate with increasing delay
observed in diffusive samples, the variance of relative intensity fluctuations and
the degree of intensity correlation also increase with time delay [359–361]. The
field correlation function with displacement and polarization rotation in pulsed
transmission is the same as in steady state [359]. This reflects the Gaussian
statistics within the speckle pattern of a given sample configuration and time
delay. The intensity correlation function at a given time delay depends on the
square of the field correlation function and the degree of intensity correlation in
the same way as in steady state, but the degree of extended range correlation
k (t) depends on delay time and on the spectral bandwidth of the pulse . The
probability distribution functions of intensity at various delay times have the
same form as for steady state propagation and depend upon a single parameter,
which is the variance of the total transmission relative to its average over the
ensemble, which equals the degree of intensity correlation at that time,
var(sa(t))= (t). The time variation of (t) reflects the number of modes and the
degree of correlation in the speckle pattern of the modes. Since strong
correlation in the speckle patterns of a number of modes tends to produce a
single transmission channel formed from these modes while correlation at any
time is directly related to the number of channels contributing to transmission at
that time, modal speckle correlation tends to increase the degree of intensity
correlation.

 For narrowband excitation, (t) first falls before increasing at later times
since transmission at early times is dominated by a subset of short-lived modes
among all the modes overlapping the spectrum of the pulse that promptly
convey energy to the output [361]. At later times, only the longlived modes
contribute to transmission and so the degree of correlation increases with time.
But at intermediate times, when both short- and longlived modes contribute to
transmission, the number of modes and hence the number of channels
contributing is relatively high. This is inversely proportional to the degree of
correlation so that (t) reaches a minimum.
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Fig. 10.13 Logarithm of time-frequency spectrogram of total transmission plotted in the
x-y plane following the color bar. The central frequency 0 of the incident Gaussian pulse of
linewidth  =50.85 MHz is scanned. Each of the four spectra of total transmission at different
delay times are normalized to the total transmission at that time.

The changing distribution of modes contributing to transmission is seen in
the time-frequency spectrogram for a sample with L =  61  cm  and  =  0.17  in
Fig. 10.13. The spectrogram is formed from measurements of transmission at the
output of a sample for an incident Gaussian pulse with width  of its Gaussian
spectrum as the central frequency of the pulse is tuned. The decay rate of the
peak intensity of the mode at long times when isolated modes emerge in the
time-frequency spectrogram is equal to the linewidth of the mode n to within
experimental error of 10%.

10.4 Lasing in localized modes

 The nature of propagation divides according to the character of the modes
of the medium. For  > 1, transport can be described in terms of diffusing
particles of the wave with transmission falling inversely with sample thickness,
while for  < 1 transport is via tunneling through localized or multipeaked
modes with average transmission falling exponentially. Since the location and
intensity of pump excitation within the sample and the lifetime of emitted
photons within the gain region in which stimulated emission occurs depend
upon the character of modes, lasing characteristics depends crucially upon the
value of .

For  » 1 in random amplifying samples, nonresonant random lasing
occurs. This can be described in terms of the densities of diffusing pump and
emission photons and their coupling to energy levels whose occupation are
described in terms of rate equations [362–364]. Very different behavior arises in
the regime 1, which can arise in strongly scattering but still diffusive samples
which are not more than a few wavelengths thick [105, 106] and in 2D samples
[367], in which the laser beam is tightly focused to create a small excitation
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volume [368, 369]. A small number of spectral peaks may then be observed in
emission. These peaks sharpen up in the presence of gain due to enhanced
stimulated emission in longer lived, spectrally narrow modes [365].

Letokhov [360] considered the lasing threshold in a spherical sample with
uniform gain which is directly analogous to the critical condition for a nuclear
chain reaction. Lasing occurs when on average more than one new photon is
created for each photon that escapes the medium. Lasing was subsequently
considered in granular media and in colloidal samples composed of dielectric
particles in dye solution. Lasing in amplifying colloids reported by Lawandy et
al. [361] is of particular interest since the strength of scattering and
amplification can be controlled independently. A narrowing of emission and a
shortening of the emitted pulse was observed above a threshold in pump power.
A comparison of the emission spectrum in a neat dye solution and in colloidal
solutions is shown in Fig. 10.14. The original studies were carried out in weakly
scattering samples excited over transverse dimensions much greater than the
sample thickness, which itself was not much thicker than the mean free path.
Wiersma et al. [362] suggested that the observations reported could be due to
scattering of light into transverse directions and its subsequent redirection out of
the sample by another scattering event.

Fig. 10.14 (a) Emission spectrum of a 2.5 × 10 3 M solution of R640 perchlorate in
methanol pumped by a 3-mJ (7 ns) pulses at 532 nm. (b) and (c) Emission spectra of the TiO2
particles (2.8 × 1010 cm 3 colloidal dye solution pumped by 2.2 µJ and 3.3 mJ pulses,
respectively. Emission: (b) scaled up 10 times, (c) scaled down 20 times. (Ref. [361])

The lasing  threshold  is  typically not suppressed substantially below the
threshold for amplified stimulated emission in a neat dye solution. Light
penetrates a depth into the sample equal to the absorption length of the pump
radiation 3/aa DL  which is the same as the exponential falloff with
thickness of transmission in diffusing systems with loss [363]. Here 1/ a is  the
absorption rate,  the transport mean free path, aa v  the length of the
trajectory in which the intensity falls to 1/e due to absorption, and v is the
transport velocity [364]. The excitation region illustrated in Fig. 10.15 is near
the boundary so that the typical length of the paths of emitted photons would be
comparable to those of the pump photons of  [365]. But this is the length
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over which stimulated emission occurs in a neat solution. So the lasing threshold
may not be lowered below the value at which appreciable amplified spontaneous
emission occurs in a neat dye solution. The lasing threshold could be lowered by
increasing the residence time inside the medium in samples with a shorter mean
free path at the emission frequency than at the pump frequency or by internal
reflection at the boundary. Above threshold, the optical transition pumped may
be saturated so that absorption is suppressed and the wave can penetrate deeper
into the sample.

The lasing threshold can be dramatically suppressed, however, for localized
waves. When  < 1, the intensity within the sample may grow exponentially
when on resonance with a localized state far from the boundary. The excited
region may then be in the middle of the sample and so emission will be into
modes that overlap the excited mode and are similarly peaked in the middle of
the sample and so are long lived. This was demonstrated in low-threshold lasing
excited  by  a  beam  incident  normally  upon   stacks   of glass cover  slips with

Fig. 10.15  Possible path for a photon emitted and amplified within a dye medium
containing random scatterers. The lighter region indicates the volume pumped by the laser.
(Ref. [365])

thickness of approximately 100 µm and intervening air layers of random
thickness and with Rhodamine 6G dye solution between some of the slides . A
plane wave incident upon parallel layers of random thickness is a one-
dimensional medium and will be localized in the medium. In the present
circumstance, the layers are not perfectly parallel and so light is scattered off the
normal. This leads to a delocalization transition with a crossover at a thickness
at which the transverse spread of an incident ray is equal to the size of the
speckle spots formed. Beyond this thickness, the sample becomes three
dimensional with regard to propagation of the initially normally incident beam.
The spread of the beam is abetted by the thick layers used and could be reduced
dramatically if layers with thickness /4 were used.

Emission spectra excited by a pulsed Nd:YAG laser at 532 nm in a stack
of cover slides with intervening dye solution recorded with a 0.07-nm-resolution
grating spectrometer are shown in Fig. 10.16. The broad emission spectrum of
the neat dye solution in Fig. 10.16(a) is compared with the emission spectrum
from the random stack with interspersed dye layers slightly below and above the
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lasing threshold. Below threshold, the spectrum shows resolution-limited peaks
of the electromagnetic modes of the system. Above threshold, a collimated
emitted beam perpendicular to the sample layers was observed. The lasing
spectrum with baseline shifted up for clarity is shown in Fig. 10.16 (b). An
abrupt change in the output power with increasing pump energy occurs at the
lasing transition seen in the inset in Fig. 10.16(b). Just above threshold, lasing
occurs in a single narrow line (Fig. 10.16(b)), while at higher energies,
multimode lasing was observed (Fig. 10.16(c)) with wavelength and intensity
that vary randomly with the position of the pump beam on the sample surface.
The lasing threshold was low enough so that lasing could be observed with a
chopped continuous wave Argon-ion laser beam at 3W at 514.5 nm.

Fig. 10.16 (a)  Spectra of spontaneous emission in neat solution and of spontaneous
emission and near threshold lasing from Rhodamine 6G placed between layers of a glass slide
stack at different laser pump energies.(b) Lasing in a single line above threshold and (c) in
multiple lines well above threshold. The inset in (b) shows the sharp onset of lasing above
threshold for excitation at a particular portion of the glass stack.

The role of resonance with localized modes at both the pump and emission
wavelengths is seen in the strong correlation of pump transmission and output
laser power. Such strong correlation is opposite to what would be expected for a
nonresonant random laser in which peak emission would correspond to maximal
absorption and so with reduced transmission.

Low-threshold lasing via emission into long-lived modes excited by a
pump laser which penetrates deeply into a sample can be realized in periodic
and nearly periodic structures. For 1D samples or for layered structures in which
the dielectric function is modulated only along a single direction, stop band are
seen in the transmission spectrum perpendicular to layers. This is the case even
when the layers are anisotropic with an orientation that varies with depth. The
states at the edge of the band are long lived and can be excited via emission
from excited states of dopants in the periodic structure or of the structure itself
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when pumped by an external beam falling within the frequency range of the pass
band. A coherent beam perpendicular to the layers then emerges without special
alignment.

In an infinite structure, the group velocity vanishes as the band edge is
approached. This leads to the expectation of a lowered lasing threshold at the
edge of a photonic band gap [366]. But in periodic structures of finite thickness,
states at the band edge are standing Bloch waves with a low number n of anti-
nodes in the medium rather than traveling waves [367]. The intensity of the
wave in each of these states is modulated by an envelope function sin2 n x/L,
where x is the depth into the sample of thickness L. Lasing properties are
determined by the modes with increasingly narrow linewidths and intensity as
the band edge is approached. The width of modes increases as n 2 away from the
band gap.

 Band edge lasing was demonstrated in dye-doped cholesteric liquid
crystals (CLCs) [313]. Lasing from dye-dope CLCs was observed earlier and
attributed to lasing at defect sites in the liquid crystal [368]. Roughly parallel
rod-shaped molecules in CLCs with average local orientation of the long
molecular axis in a direction called the director rotate with increasing depth into
the sample. This periodic helical structure can be either right- or lefthanded. The
indices for light polarized parallel and perpendicular to the director are the
extraordinary and ordinary refractive indices, ne and no, respectively. For
sufficiently thick films, the reflectance of normally incident, circularly polarized
light with the same sign of rotation as the CLC structure is nearly complete
within a band centered at vacuum wavelength c = nP where n = (ne + no)/2 and
P is the pitch of the helix equal to twice the structure period. The reflected light
has the same sign of rotation as the incident beam. The bandwidth is  =

c n/n, where n = ne no. For circularly polarized light of opposite circular
polarization, the wave is freely transmitted. In measurements on dye-doped
cholesteric  liquid crystal (CLC) films,  spontaneous emission is inhibited within

Fig. 10.17 Left and right circularly polarized emission spectra from a right handed dye-
doped CLC sample as well as lasing emission at the shortwavelength edge of the reflection
band. The height of the lasing lines is 50 units. (Ref. [43])
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the band and the density of states is enhanced at the band edge for light
polarized with the same handedness as the chiral structure. Light of opposite
chirality is unaffected by the periodic structure. This makes it possible to make a
direct measurement of the density of photon states by comparing the emission
spectra of oppositely polarized radiation. The observed suppression of the
density of states within the band and the sharp rise at the band edge are shown in
Fig. 10.17 and seen to be in good agreement with the calculated density of states
in a 1D structure. The left circularly polarized (LCP) emission spectrum in this
right handed structure is due to the spontaneous emission of the PM-597 dye.
RCP emission is suppressed in the stop band and peaked at the band edges. The
RCP light seen within the reflection band does not vanish because the emitted
LCP light is converted to RCP light in Fresnel reflection from the surfaces of the
glass sample holder. Multiple lasing lines are seen at the short-wavelength band
edge.

The lasing peaks in Fig. 10.17 do not correspond precisely to the modes of
a perfectly periodic CLC structure. These modes are seen in transmission spectra
in Fig. 10.18 in a dye doped CLC sample which was carefully prepared and
allowed to equilibrate. A comparison between transmission measured with a
tunable narrowband dye laser in a 37-µm thick CLC sample with moderate
absorption and simulations for a periodic system is shown below. The simulated
spectrum is displaced vertically for visibility. In a nondissipative sample, the
resonance transmission of all modes modes reaches unity. In Fig. 10.18,
transmission through modes closest to the band edge is most suppressed by
absorption since these modes are longest lived. Since the modes closest to the
band edge are longest lived in nearly periodic systems, these states are most
susceptible to being localized by disorder. Such localized states are often longer
lived than the corresponding states of a periodic system and so disorder can help
as well as hinder lasing.

Fig.10.18 Comparison of measurements of transmission spectra in dyedoped CLC taken
by Valery Milner in the lower curve with simulations in the upper curve. The linewidth
narrows as the index n of the mode away from the band edge decreases. Differences between
the frequencies of laser lines seen in Fig. 10.17 and frequencies of lines in high quality CLC
samples in this figure are due to disorder in the sample of Fig. 10.17.



201

 Simulations in random amplifying systems show that it is possible to
maximize the lasing intensity at a particular frequency in the spectrum of a
random laser by iteratively feeding back the intensity at a selected frequency to
vary the intensity distribution of the pump beam [369]. The modes of the sample
are not substantially modified in the lasing transition, but the spectral properties
of the modes excited by the pump beam are selected by the spatial profile of the
pump beam. T¨ureci et al. have shown that modes of passive diffusive systems
interact via the gain medium to create a uniform spacing in the laser spectrum
[370]. In contrast, isolated modes of localized lasers interact weakly and emit at
a frequencies pegged to the modes of the passive systems [371]

10.5 Channels

Transmission through a disordered medium is fully determined by the
transmission matrix t .The optical transmission matrix was measured by Popoff
et al. [307] with use of a spatial light modulator (SLM) and an interference
technique to find the amplitude and phase of the optical field. Measuring the
transmission matrix allows one to focus the transmitted light at a desired channel
at the output surface by phase conjugating the transmission matrix [307, 309]. In
this way, the transmitted field from different input channels arrives in phase at
the focal spot and interferes constructively. The presence of a random medium
can increase the number of independent channels that illuminate a point so that
the focused intensity and resolution are enhanced [362–364]. Because of the
enormous number of channels in optical experiments, only a small portion of the
transmission matrix is typically measured. The distribution of the singular
values of the transmission matrix may then follow the quarter circle law which
is characteristic of uncorrelated Gaussian fluctuations of the elements of the
transmission matrix [375, 376]. Measurements of microwave radiation
propagation through random media confined in a waveguide allow us to
measure the field on a grid of points for the source and detector [302]. The
closest spacing between points is approximately the distance at which the field
correlation function vanishes so that the fields at different points on the gird are
only weakly correlated.

The number of independent channels N supported in the empty waveguide
is  66 in the frequency range of 14.7-14.94 GHz in which the wave is diffusive
and  30 from 10-10.24 GHz in which the wave is localized within the sample.
To construct the transmission matrix, N/2 points are selected from each of two
orthogonal polarizations. A representation of intensity patterns in typical
transmission matrices for both diffusive and localized waves at a given
frequency is presented in Fig. 10.19. Each column presents the variation of
intensity across the output surface at points b for a source at points a with two
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orthogonal polarizations. The intensity in each column shown in Fig. 10.19 is
normalized by its maximum value. For localized waves, intensity patterns in
each column are similar indicating that transmission is dominated by a single
channel. In contrast, no clear pattern is seen for diffusive waves since many
channels contribute to the intensity at each point.

Fig. 10.19  Intensity normalized to the peak value in each speckle pattern generated by
sources at positions a are represented in the columns with index of detector position and
polarization b for (a) diffusive and (b) localized waves. (Ref. [46])

In Fig. 10.20, we show a spectrum of the optical transmittance and the
underlying transmission eigenvalues from a single random realization for both
localized and diffusive waves. This confirms that the highest transmission
channel dominates the transmittance for localized waves while several channels
contribute to transmission for diffusive waves. Thus for localized waves, the
incident wave from different channels couples to the same eigenchannel and
excites the same pattern in transmission as seen in Fig. 10.19(b). In contrast, the
transmission patterns for incident waves for different incident channels are the
sums of many orthogonal eigenchannels so that the transmitted patterns are
weakly correlated.

Dorokhov [270, 271] showed that, the spacing between the inverse of the
localization length for adjacent eigenchannels is equal to the inverse of the
localization length of the sample, 111

11 nn

 . For localized waves, this is

equivalent to 01 /1/lnln gLnn , where g0 is the bare conductance that
one would obtain in the absence of wave interference and the transport can be
described in terms of diffusion of particles. In Fig.10.21,

Fig. 10.20  Spectra of the transmittance T and transmission eigenvalues n for  (a)
diffusive sample of L = 23 cm with g=6.9 and (b) localized sample of L = 40 cm with g=0.37.
The black dashed line gives T and the solid lines are spectra of n. (Ref. [302])
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we show that nln  falls linearly with respect to the channel index n for both
diffusive and localized waves. We denote the constant spacing between adjacent
values of nln  as 1/gn, n

nn g/1lnln 1 . This supports the conjecture that
gn is the bare conductance.

Fig. 10.21  Variation of hln ni with channel index n for sample lengths L = 23 (circle),
40 (square) and 61 (triangle) cm for both diffusive (green open symbols) and localized (red
solid symbols) waves fitted, respectively, with black dashed lines.

We expect that the bare conductance should be influenced by the wave
interaction at the sample interface . The wave interaction at the sample boundary
can be described by a diffusion model [329] in which the incident wave is
replaced by an isotropic source at a distance zp from the interface in which the
wave direction is randomized and with a length z0, which is the length beyond
the sample boundary at which the intensity inside the sample extrapolates to
zero. z0 was found by fitting the time of flight distribution of wave through
random media [318, 320]. Once the surface effect is taken into account, the bare
conductance is given as: g = /Lef f , where  is a constant of order of unity and
Leff = L + 2z0 is the effective sample length. The constant value of g´´ Leff seen
in Fig. 10.22 is consistent with g 00 being the bare conductance and gives the
localization length for the samples at two frequency ranges. The absolute values
of the transmittance T and of the underlying transmission eigenvalues n are
obtained by equating gCT  for the most diffusive sample of length
L = 23cm, at which the renormalization of dimensionless conductance due to
wave localization is negligible. The normalization factor C is used to determine
the values of g for other samples.
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Fig. 10.22 The constant products of g´´ Leff for three different lengths for both diffusive
and localized samples give the localization length  in the two frequency ranges. (Ref. [42])

The probability density of ln n of the first few eigenchannels and their
contribution to the overall density ln  is shown in Fig. 10.23 for the most
diffusive sample with g = 6.9. Aside from the fall of the probability distribution
P (ln  )

    Fig. 10.23  Probability density of ln n (lower curves) and the density of ln
             (top dashed curve), P(ln  ) = n P(ln n) for the diffusive sample with g=6.9.

near ln  0, which reflects the restriction 1  1, P(ln  ) is nearly constant with
ripples spaced by 1/g’’. The nearly uniform density P(ln  ) of corresponds to a
probability density P(  )  = P(ln  ) /ln g

d
d  = g/  . This distribution has a

single peak at low values of  , in contrast to the predicted bimodal distribution,
which has a second peak nearly unity [271, 305, 312, 361]. This may reflect the
fundamental difference of measuring the transmission matrix based on scattering
between independent discrete points instead of waveguide modes. In theoretical
calculation in which scattering between waveguide modes is treated, all the
transmitted energy can be captured. However, only a fraction of energy
transmitted through the disordered medium is captured when the TM is
measured on a grid of points. As a result, full information is not available and
the measured distribution of transmission eigenvalues does not accurately
represent the actual distribution in the medium. In particular the bimodal



205

distribution of transmission eigenvalues is not observed. This has been
suggested in recent simulation of a scalar wave propagation in Q1D samples
based on recursive Greens function method. Goetschy and Stone [372] have
recently calculated the impact of degree of control of the transmission channels
on the density of transmission eigenvalues. The matrix t is mapped to t’  = P2tP1,
where P1, P2 are N × M1 and M2 × N matrices which eliminate N  M1 columns
and N  M2 rows, respectively, of the original random matrix t. Therefore, only
M1(M2) channels are under control on the input (output) surface, respectively,
and the degree of control on the input and output surfaces is measured by M1/N
(M2/N). As a result, the density of transmission eigenvalues for diffusive
samples changes from a bimodal distribution to a distribution characteristic of
uncorrelated Gaussian random matrices, when the degree of control is reduced
[302, 307]. Nevertheless, key aspects of the statistics of wave propagation and
the limits of control of the transmitted wave can be explored using
measurements of the transmission matrix.

 Measuring the transmission matrix allows us to explore the statistics of
transmittance, the most spatially averaged mesoscopic quantity. The importance
of sample-to-sample fluctuation of conductance in disordered conductors was
first recognized in conduction mediated by localized states, but fluctuations in
transmission were first observed in the constant variance of fluctuations of
conductance in diffusive samples known as universal conductance fluctuations .
For diffusive waves, for which a number of transmission eigenchannels
contribute substantially to the transmittance, the probability distribution of T is
Gaussian with variance independent of the mean value of T and  of  sample
dimensions. In the localization limit, L/  » 1, in which transmittance T is
dominated by the largest transmission eigenvalues, T 1, the single parameter
scaling (SPS) theory of localization predicts that the probability distribution of
the logarithm of transmittance in 1D samples is a Gaussian function with a
variance equal to the average of its magnitude, var(ln T)= ln T . Therefore, the
scaling of average of conductance and the entire distribution of conductance is
determined by the single parameter | ln T |/L = 1/ . In recent work, the ratio
R var(ln T)/ ln T , is found to approach unity in Q1D samples showing that
propagation in Q1D in this limit is one-dimensional .

In the Q1D geometry, there is no phase transition between localization and
diffusion as L increases for samples with equivalent local disorder. Instead, there
exists a crossover from the diffusive to localized regime. For samples just
beyond the localization threshold, in which only a few transmission
eigenchannels contribute appreciably to the transmittance, numerical simulation
[385–389] and random matrix theory calculation . by Muttalib and W¨olfle
found a one-sided log-normal distribution for the transmittance. The source of
this unusual probability distribution of conductance can be understood with the
aid of the charge model proposed by Stone, Mello, Muttalib, and Pichard [405].
The charge model was first introduced by Dyson [391] to visualize the repulsion
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between eigenvalues of the large random Hamiltonian. In this model,
transmission eigenvalues n are associated with positions of parallel line charges
at xn and their images at xn embedded in a compensating continuous charge
distribution. The transmission eigenvalues are related to the xn via the relation, n
= 1/ cosh2 xn. The repulsion between two parallel lines of charges of the same
sign with potential ln |xi  xj | mimics the interaction between eigenvalues of the
random matrix. The oppositely charged jellium background provides an overall
attractive potential that holds the structure together. The repulsion between
charges for diffusive waves is the origin of universal conductance fluctuation.
For localized waves, the charges are separated by a distance greater than the
screening length due to the background charges so that the “Coulomb”
interaction is screened. The repulsion between the first charge at x1 associated
with the highest transmission eigenvalues 1 and its image placed at x1 provides
ceiling of unity.

We have recently reported microwave measurements of the probability
distribution of the“optical” transmittance T in the crossover from diffusive to
localized waves . A Gaussian distribution is found for diffusive waves and a
nearly log-normal distribution for deeply localized waves. Just beyond the
localization threshold, a one-sided log-normal distribution is observed for an
ensemble with g=0.37. In this ensemble, an exponential decay of P(T) is found
for high values of transmittance as was found in simulations and calculations
[402]. The rapid falloff of P(T) for T > 1 is due to the requirement that two
eigenvalues need to be high in this case. This requires that two charges as well
as their images be close to the origin. The probability for high values of T is
therefore greatly suppressed due to the repulsion between these charges.

 Measurements of the transmission matrix provide the opportunity to
investigate the statistics in single disordered samples as opposed to the statistics
of ensembles of random sample. Such statistics are essential in applications such
as imaging and focusing through a random medium. In the Q1D geometry, in
which the wave is completely mixed within the sample, the statistics of the
intensity relative to the average over the transmitted speckle pattern,

aba

N

b
baba TNTNTT ///

1

, is independent of source or detector positions [403,

404]. Because of the Gaussian distribution of the field in any single speckle
pattern, the probability distribution of relative intensity is
P(NTba/Ta) = exp( NTba/Ta). Since the statistics of relative intensity are
universal, the statistics of the transmission in a sample with transmittance T
would be completely specified by the statistics of total transmission Ta relative
to its average (T /N) within the sample.

 We find in random matrix calculations that the variance of normalized
total transmission within a single instance of a large transmission matrix is equal
to the inverse eigenchannel participation number [306],
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var(NTa/T) = M 1 .            (10.2)

These results can be compared to measurements in samples of small N by
grouping together measurements in collections of samples with similar values of
M. We show in Fig. 10.24 that the average of var(NTa/T) in subsets of samples
with given M 1 is in excellent agreement with Eq. 10.2. var[var(NTa/T)/M 1 ] is
seen in the insert of Fig. 10.24 to be proportional to 1/N indicating that
fluctuations in the variance over different subsets are Gaussian with a variance
that vanishes as N increases.

The central role played by M can be appreciated from the plots shown in
Fig. 10.25 of the statistics for subsets of samples with identical values of M but
drawn from ensembles with different values of g. The distributions P(NTa/T)
obtained for samples with M 1 in the range 0.17 ± 0.01 selected from ensembles
with g=3.9 and 0.17 are seen to coincide in Fig. 10.25(a) and thus to depend
only on M 1. The curve in Fig. 10.25(a) is obtained from an expression for P(sa)
for diffusive waves given in Refs. [290, 291], in terms of a single parameter
g=2/3var(sa) but with the substitution of 2/3M 1 for g. The dependence of
P(NTa/T) on M 1 alone and its independence of T is also demonstrated in Fig.
10.25(b) for M 1 over the range 0.995 ± 0.005 from measurements in samples of

Fig. 10.24  Plot of the var(NTa/T) computed within transmission matrices over a subset
of transmission matrices with specified value of M 1 drawn from random ensembles with
different values of g. The straight line is a plot of var(NTa/T) = M 1 . In the inset, the variance
of V /M 1 is plotted vs. M 1 , where V = var(NTa/T). (Ref. [296])

different length with g=0.37 and 0.17. Since a single channel dominates
transmission in the limit, M 1  1, we have NTa/T =  |v1a|,  where  v1a  is  the
element of the unitary matrix V which couples the incident channel a to the
highest transmission channel. The Gaussian distribution of the elements of V
leads to a negative exponential distribution for the square amplitude of these
elements and similarly to P(NTa/T) = exp( NTa/T), which is the curve plotted in
Fig. 10.25. In Fig. 10.25, we plot the relative intensity distributions P(N2Tba/T)
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corresponding to the same collection of samples as in Fig. 10.25, respectively.
The curves plotted are the intensity distributions obtained by mixing the
distributions for P(NTa/T) shown in Fig. 10.25 with the universal negative
exponential function for the intensity of a single component of polarization.

In addition, we find in microwave measurements in Q1D samples that the
SPS ratio R is equal to average of M weighted by T, MT / T , which approaches
unity for L/  » 1. The statistics of relative transmission within a single
transmission matrix depends only upon the single parameter M while the
transmittance T serves as an overall normalization factor. Therefore, the
statistics of intensity and total transmission over random ensemble is given by
the joint probability distribution of T and M.

Fig. 10.25 (a) P(NTa/T) for subsets of transmission matrices with M 1 = 0.17 ± 0.01
drawn from ensembles of samples with L = 61 cm in two frequency ranges in which the wave
is diffusive (green circles) and localized (red filled circles). The curve is the theoretical
probability distribution of P(sa) in which var(sa) is replaced by M 1 in the expression for
P(NTa/T) in Ref. [30, 31]. (b) P(NTa/T) for M 1 in the range 0.995±0.005 computed for
localized waves in samples of two lengths: L = 40 cm (black circles) and L = 61 cm (red filled
circles). The straight line represents the exponential distribution, exp( NTa/T). (c,d) The
intensity distributions P(N2Tba/T) are plotted under the corresponding distributions of total
transmission in (a) and (b).

10.6  Focusing

Focusing waves through random media was first demonstrated in acoustics
by means of time reversal [405]. The amplitude and phase of the transmitted
signal in time for an incident pulse from a source is picked up by arrays of
transducers. The recorded signal is then played back in time and a pulse emerges
at the location of the source. Recently, Vellekoop and Mosk [406] focused
monochromatic light through opaque media by shaping the incident wavefront.
Employing a genetic algorithm with a feedback from the intensity at the target
point to adjust the phase of the incident wavefront, the intensity at the focus was
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enhanced by three orders of magnitude. The wavefront shaping method has been
extended to focus optical pulses through random media at a spatial target at
selected time delay [407, 408].

 In order to focus a wave at a target channel  once the field transmission
matrix has been measured, one simply conjugates the phase of the incident field
relative to the transmitted field at , yielding at T  for the normalized

incident field. Here, the incident field is normalized by
2

1

N

a
a

T t  so that the

incident power is set to be unity. In this way, the field from different incident
channels a arrives at the target in phase and interfere constructively. Random
matrix calculations confirmed by microwave measurements show that the
contrast between the average intensity at the focal spot I  and the background
intensity bb III /, , depends upon the eigenchannel participation
number M and size of the measured transmission matrix N ,

NM /1/1
1            (10.3)

Fig. 10.26 Contrast in maximal focusing vs. eigenchannel participation number M. The
open circles and squares represent measurements from transmission matrices N = 30 and 66
channels, respectively. The filled triangles give results for N’ × N’ matrices with N’ = 30 for
points selected from a larger matrix with size N = 66. Phase conjugation is applied within the
reduced matrix to achieve maximal focusing. Equation (10.3) is represented by the solid red
and dashed blue curves for N = 30 and 66, respectively. In the limit of N » M, the contrast
given by Eq. (10.3) is equal to M, which is shown in long-dashed black line.

This expression for the contrast is confirmed in measurements shown in
Fig. 10.26. This expression is still valid when the size of measured transmission
matrix N’ is smaller than N and the corresponding M’ is correspondingly smaller
than M. This is demonstrated by constructing a matrix of size N’ = 30 from the
measured transmission matrix of size N = 66 and calculating the contrast by
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phase conjugating the transmission matrix of size N’ . The contrast computed
falls on the curve for N = 30 for different values of M’ .  These results  may be
applied to measurements of the optical transmission matrix in which the size of
the measured matrix N’ is generally much smaller than N. In the limit N » M, the
contrast approaches M.

These results indicate that localized waves cannot be focused via phase
conjugation because the value of M is close to one. This is shown in Fig. 10.27
in which phase conjugation has been applied to focus the transmitted wave at the
center of output surface for both diffusive and localized waves. Only for
diffusive waves does a focal spot emerge from the background. We have
recently demonstrated the use of phase conjugation to focus pulsed transmission
through random media. By phase conjugating a time-dependent transmission
matrix at a selected time delay, a pulse can be focused in space and time [409].

Fig. 10.27  Intensity speckle pattern generated for L = 23 cm for diffusive waves (a) and
for L = 61 cm for localized waves (b) normalized to the average intensity in the respective
patterns. Focusing at the central point at the same frequency as in (a) and (b) via phase
conjugation is displayed in (c) and (d) with 66 and 30 input points, respectively. (Ref. [309])

10.7 Conclusion

In this chapter, we have explored the mode and channel approaches to
waves in random media. We believe that each of these approaches has the
potential to provide a full description of transmission and its relation to the wave
within the sample and that this will be of use in a wide variety of applications.

 In recent work, we have considered four statistical characteristics of modes
that have proven to be particularly promising for explaining steady-state and
pulsed transmission and will be reported elsewhere. These characteristics are the
statistics of the spacing and widths of modes, the degree of correlation in the
speckle patterns of modes, and the mode transmittance. Correlation between
speckle patterns includes correlation between the intensity patterns of modes as
well as the average phase difference and the standard deviation of phase shift
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between these patterns. The mode transmittance represents the transmittance
integrated over frequency for a particular mode and is obtained from a modal
decomposition of the transmission matrix based on measurements of field
transmission spectra between sets of points on the incident and output surfaces.
The analysis of waves into modes is of particular interest in emission and lasing
since it gives the density of states which is a key factor in the emission cross
section as well as the lifetimes of modes. The relationship between modes and
transmission eigenchannels can be elucidated by expressing the transmission
eigenchannels at each frequency as the sum of projections of the eigenchannels
of the transmission matrix for the individual modes upon the transmission
eigenchannel [410]. Precisely exciting a particular mode with a desired spatial
distribution provides promise for control over energy deposition and collection
within random media.

The relationship between modes and transmission eigenchannels can be
seen from the equality of the density of states obtained from the sum of the
contributions of modes and of eigenchannels. The density of quasi-normal
modes or resonances of a region per unit angular frequency, is the sum over

Lorentzian lines, ( ) = 22 )()2/(
2/1

nn

nn  . This is found from the central

frequencies and linewidths determined from a modal decomposition of fields at
any points in the medium. The density of states can also be obtained from the
sum of the contributions of each transmission eigenchannel, which are the
derivatives with angular frequency of the composite phase shift of the

eigenchannel, ( )=
d

dn n1  The phase derivative is the intensity weighted

phase derivative between all channels on the incident and output surfaces [411].

d
d n is the transmission delay time for the nth transmission eigenchannel. When

a complete measurement of the transmission matrix is made,
d
d n is the integral

of intensity inside the sample for the corresponding eigenchannel. The
eigenchannel delay time and the associated intensity integral inside the sample
increases with the transmission eigenvalue n. The density of states may be
accurately measured from the transmission matrix as long as N’ » M.

We have also explored the distribution of transmission eigenvalues and
seen that in a particular transmission matrix, the statistics of relative
transmission depend only upon M. The absolute distribution within a single
matrix then depends upon these two parameters M and T. Thus the distribution
over a random ensemble of all transmission quantities depends only upon the
joint distribution of M and T. This represents a considerable simplification from
the joint distribution of the full set of transmission eigenvalues n. Manipulation
of the incident beam with knowledge of the transmission matrix makes it
possible to achieve maximal focusing in a single transmission matrix with the
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peak intensity depending only upon T and the contrast depending upon the value
of M in the measured matrix and the dimension of this matrix. Knowledge of the
spectrum of both modes and channels may advance control over the wave
projected within and through opaque samples for applications in imaging, and
energy collection and delivery.
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6. APEENDIX: DERIVATION OF EQ. (6.6)

Here we provide an outline of the derivation of Eq.(6.6) and assume that
the disordered stack with N layers is embedded in a homogeneous infinitesimal
medium with material parameters given by and , where  and
µ are given by Eqs. (6.1) and (6.2), respectively. The impedance and refractive
index of the medium are Zb =  and vb =   respectively.

Fig. 6.9. (Color online) The disordered stack is embedded in a homogeneous medium with
averaged material parameters , .

This random stack is sandwiched between two leads connecting the outside
free space and the homogeneous medium (see Fig. 6.9). The right lead
reflection coefficient for left-hand incidence is

            (A1)
and

                                            (A2)

while the transmission coefficient is given by . The front (left)
“lead” reflection and transmission coefficients for incidence from the left side
are given by and , respectively.

The total transmission coefficient TN (a) through such a structure with both
Fresnel “leads” in place can be calculated from

       (A3)

where is the transmission of a random stack with N layers embedded in
homogeneous medium with  and, for plane-wave incidence from the left with
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incident angle , and with . The terms  and  are reflection
coefficients for the random stack for plane-wave incidence from the left/right
sides, while the is the transmission coefficient for incidence from the right.

In the localized regime as N , the transmission coefficient
and therefore the final term in the denominator of Eq. (A3)

vanishes. Accordingly,

                  (A4)

As N , the last four terms in Eq. (A4) are bounded and we deduce

              (A5)

Thus, the localization length for a stack embedded in free space for plane-
wave incidence at an angle is equivalent to calculating the localization length
for a stack of N layers embedded in a medium with the refractive index vb with
plane - wave incidence at an angle . The angles and are related by
Snell’s law [Eq. (6.14)]. From Eq. (A5), we thus deduce the relation in Eq. (6.6).

8. APPENDIX A: THE GREEN’S FUNCTION FOR THE
DIRECTIONAL INTENSITY

Expressions (8.10) and (8.11) show that the 1D radiative transfer equation
can be split into a system of PDEs in terms of the left and right-going intensities.
So far, only the reduced PDE governing the total intensity has been studied. This
is due to the fact that measuring either the left or right-going intensity entails
splitting the wavefield into left and right-going waves. Such a decomposition
requires dense spatial sampling to perform the type of filtering routinely done in
Vertical Seismic Profiling: separating up from down-going waves. Here, we
show that knowledge of the individual left and rightgoing energies can give us
more detailed insight into the incoherent energy.

Assuming that the wavefield has been decomposed into left and right-going
waves, we now solve the system of 2 partial differential equations that comprise
the full radiative transfer equation. To begin, we write equations (8.10) and
(8.11) in matrix form:
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There exists no general theory for solving systems of PDEs as there is for
systems of ODEs. Hence, we proceed by Fourier transforming equation (A1)
over space, solving the system of ODEs, and inverse Fourier transforming back
to spatial coordinates. With the Fourier conventions:

dkekII kx~ dxeIkI ikx~
2
1~      (A3)

equation (A1) becomes a system of 2 ODEs:

.~~)( SIikMN
t
I                       (A4)

For the source function, we again take a general directional point source
with right and left-going components Sr and Sl. Allowing the parameter c to
govern the directivity of the source as we did previously, the source vector is:

21
1 tx

c
c

S                                  (A5)

The solution of the system of ODEs follows that given in standard texts on
differential equations [187]. Here we give the solution in the k domain:
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To get the directional intensities in the spatial domain, we must inverse
Fourier transform equations (A6) and (A7). Two identities are needed for this
inversion:

,
~

dke
k
kIdkekIix ikxilx                        (A8)

and from the theory of Bessel functions [187]:
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 After inverting the Fourier transform, we obtain for the right-going
intensity:
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and for the left-going intensity:
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These equations for the two intensities show that the two Bessel functions
that make up the incoherent intensity are sensitive to different aspects of the
source radiation pattern. For instance, if the source were unidirectional, c = 1
or c = 1 and the zero order Bessel function would come from one direction and
the first order Bessel from the other. It can also be verified that adding equations
(A10) and (A11) gives the total intensity, equation (8.23). In the absence of
phase information, perhaps the directional intensities can yield important
information about spatial variations in the material properties.

9. APPENDIX: EXPERIMENTAL VERIFICATIONS OF WAVE
LOCALIZATION

To examine the wave localization that we mentioned in Sec. 9.4, we
perform experiments to visualize full-field velocity profiles of all particles in a
chain. In Fig. 9, we show space-time contour plots of velocity profiles for (top
row) a single-impurity chain with  = 1.5 and (bottom row) a double-impurity
chain with  = 0.7. We use excitation frequencies of (left panel) 2.0 kHz and
(right panel) 6.0 kHz. The experimental results in Fig. 9.9 require measurements
of the motion of individual particles followed by synchronization of all
measured data, because the laser Doppler vibrometer scopes only a single
particle’s motion at a time. In each case, after we collect all data, we normalize
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the measured values of particles’ velocities with respect to the maximum
velocity component.

As we indicate with the arrows in the right panels of Fig. 9.9, we observe
localization in our single-impurity and double-impurity experiments when the
excitation frequency is 6.0 kHz. We do not find such a distinctive localization
for the 2.0 kHz excitation [see Figs. 9.9(a) and 9.9(c)]. Again, as explained in
Sec. 9.4, this is due to the inevitable perturbation of “beyond-cutoff frequency”
components of stress waves in experiments when we excite the system near the
cutoff

Fig. 9.9: (Color online) Space-time contour plot of normalized velocity for experiments
with (top) a single-impurity chain with  = 1.5 and (bottom) a double-impurity chain with

 = 0.7. In each case, we normalize the measured velocities with respect to the maximum
velocity. We use excitation frequencies of (left) 2 kHz and (right) 6 kHz. The arrows point to
incidents of wave localization.

frequency. Incident waves whose frequencies are close to the cutoff frequency
cause this perturbation even when the static load F0 is large enough or the
excitation amplitude is small enough to remain near the linear regime of the
granular chain. This wave localization contributes to the discrepancy between
experiment and theory near 6.0 kHz in Fig.9.6. In our numerical simulations, we
also observe wave localization at the edge of the chain, and we thereby obtain a
dip in our transmission data near 6.0 kHz that appears systematically for
different values of and different chain lengths.
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