УДК 551.468.4-574.4

Ю.С. Тучковенко

ТРЕХМЕРНАЯ МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ЭВТРОФИКАЦИИ ПРИБРЕЖНЫХ МОРСКИХ АКВАТОРИЙ

Дано описание математической структуры трехмерной модели эвтрофикации прибрежных морских акваторий, методов калибрации ее параметров. Приведены результаты использования модели для выбора путей решения задачи улучшения экологического состояния вод бухты Картахена (Колумбия).

Ключевым критерием экосистемным качества водной среды акваторий показателем эвтрофицированных морских И их ассимиляционной емкости является внутригодовая динамика содержания растворенного в морской воде кислорода (процент насыщения). Именно эта является интегральным показателем характеристика соотношения интенсивностей процессов продуцирования и разложения органического вещества, а также влияния на них гидрометеорологического режима исследуемой акватории. Кроме того, уменьшение содержания кислорода в воде ниже некоторого критического порога (≈ 1 мл/л) приводит к гибели аэробных гидробионтов и изменению характера химико - биологических процессов, протекающих в морской среде. Морская среда полностью утрачивает свой рекреационный потенциал и качество ее становится неприемлемым по санитарно - гигиеническим показателям.

Поскольку содержание кислорода в морской воде определяется множеством противоположно направленных химико-биологических процессов, имеющих различную интенсивность, определяемую условиями среды обитания, то планирование и прогноз эффективности различных природоохранных мероприятий, направленных на уменьшение эвтрофикации морских акваторий и улучшение их кислородного режима, невозможен без привлечения математических моделей.

В данной работе рассматривается одна из моделей такого типа, которая была разработана и аппробирована для решения проблемы эвтрофикации в бухте Картахена (Колумбия).

Бухта Картахена (Cartagena) расположена на колумбийском побережье Карибского моря в квадрате с координатами 10°26' - 10°16' с.ш. и 75°30'-75°35′ с.ш. (рис.1). Бухта имеет следующие морфологические максимальная протяженность в меридиональном характеристики: направлении составляет ≈ 16 км, в широтном - 9 км, площадь водной поверхности ≈ 82 км², средняя глубина 16 м, максимальная 26 м. Бухта состоит из двух частей: Внешней бухты, которая связана с Карибским морем двумя проливами, и Внутренней бухты, расположенной на севере и имеющей связь с морем только через Внешнюю бухту. На берегах Внутренней бухты расположен исторически известный город - порт Картахена, 40 % неочищенных хозяйственно-бытовых стоков которого

сбрасывается в бухту. Кроме того, восточное побережье Внешней бухты является индустриальной зоной города Картахена, в которой находятся 29 промышленных предприятий. Имея суммарный расход $\approx 1.42 \cdot 10^6 \text{ м}^3/\text{сут}$, атропогенные источники ежедневно поставляют в воды бухты ≈ 2.57 тонны минеральных форм азота, 0.48 тонны минерального фосфора и 22.2 тонны мертвого органического вещества (по *БПК*₅).

Р и с. 1. Схема бухты Картахена с расположением антропогенных источников загрязнения

В южную часть Внешней бухты поступают пресные воды из канала Dique, соединяющего бухту с рекой Магдалена. Этот канал имеет искусственное происхождение. Расход канала Dique изменяется в течение года от 55 м³/с в сухой сезон года (февраль – апрель) до 250 м³/с в сезон дождей (сентябрь – октябрь). Влияние канала на гидрохимический режим бухты двояко. С одной стороны канал является мощным поставщиком минеральных форм азота и фосфора, а также минеральной взвеси, которая определяет прозрачность вод бухты. С другой стороны, под влиянием пресного стока канала, в бухте формируется мощный приповерхностный (0 – 4 м) пикноклин, который препятствует вертикальному водообмену поверхностных и придонных слоев. В результате, загрязняющие вещества, выносимые с водами канала, распространяются на акватории бухты в пределах поверхностного распресненного слоя, который одновременно является фотическим.

Глубина проливов, соединяющих бухту с морем, составляет в основном 0.5 – 3 м. Исключение представляет навигационный канал в южном проливе, который имеет ширину 100 м и глубину 30 м. Поскольку максимальные глубины в самой бухте Картахена достигают 26 м, то гидродинамическая промывка морскими водами придонных слоев бухты затруднена. Обновлению вод бухты в результате горизонтальной адвекции чистых морских вод способствует наличие приливных колебаний уровня моря на открытой морской границе. Важно отметить, что морские воды имеют большую плотность (за счет повышенной солености), чем распресненные воды бухты, и поэтому после прохождения мелководных проливов как бы стекают по дну в более глубокие части бухты, обновляя воды придонного слоя.

Ветровой режим бухты характеризуется преобладанием сильных (со среднесуточной скоростью до 8 м/с) северо-восточных ветров пассатного происхождения в сухой период года (январь – май) и слабых (до 3 м/с) ветров в сезон дождей (август – ноябрь).

В сезон дождей, когда расход канала Dique максимален, а вертикальный турбулентный обмен вследствие отсутствия ветров минимален, в приповерхностном слое бухты формируется резкий который препятствует газообмену пикноклин. массо- и межли поверхностным и придонным слоями. Биогенные вещества, поступающие как с водами канала Dique, так и из антропогенных источников, распространяются в пределах поверхностного распресненного слоя. На акватории бухты продуктивность большей части фитопланктона лимитируется освещенностью вследствие малой прозрачности вод. Однако вблизи проливов, где прозрачность вод увеличивается вследствие гравитационного осаждения взвеси и разбавления чистыми морскими водами, наблюдаются локальные вспышки продуктивности фитопланктона. Создаваемое в результате фотосинтеза фитопланктона органическое вещество автохтонного происхождения под действием силы тяжести опускается В более глубокие слои, где, отмирая, подвергается биохимическому разложению бактериями. На окисление мертвого органического вещества и нитрификацию расходуется растворенный в морской воде кислород. Морфологические особенности бассейна (мелкие проливы в сочетании большой глубиной бухты), слабый вертикальный турбулентный обмен вод и отсутствие фотосинтетической продукции кислорода ниже пикноклина приводят к тому, что в придонных слоях воды развивается дефицит кислорода (рис. 2). Аэробные гидрохимические условия на большей части придонного слоя акватории бухты сменяются на анаэробные, что влечет за собой гибель аэробных организмов, замедление процессов биохимического разложения мертвого органического вещества и, как следствие, накопление неразложившейся органики в придонных слоях.

Р и с. 2. Содержание кислорода (мл/л) в придонном слое бухты Картахена в сухой (а) и влажный (б) сезоны года

После окончания сезона дождей в январе, расход канала Dique становится минимальным, ослабляется приповерхностный пикноклин, усиливается ветровое перемешивание вод и вертикальный турбулентный обмен между приповерхностным фотическим и придонным слоями бухты. Как следствие этого, содержание кислорода в придонных слоях увеличивается до 2-3 мл/л (рис. 2, а).

Таким образом, сильная антропогенная нагрузка на экосистему бухты Картахена со стороны индустриальных и антропогенных источников загрязнения, поступление загрязненных вод реки Магдалена, в сочетании с морфологическими особенностями бассейна привели к развитию эвтрофикации бухты и периодическому возникновению дефицита кислорода в придонных слоях.

Цель данной работы заключалась в разработке модели эвтрофикации, которая адекватно отражает особенности гидрохимического режима бухты Картахена, и использовании этой модели для оценки эффективности различных природоохранных мероприятий, направленных на улучшение кислородного режима бухты.

Описание математической моделии. <u>Гидродинамический блок модели</u> представляет собой известную модель Хесса МЕССА [1] для эстуарных зон, модифицированную Лониным [2]. В частности, модель была дополнена блоком переноса примеси с использованием транспортивных конечноразностных схем.

Основные уравнения гидродинамического блока модели записываются следующим образом:

$$u_{t} + \{(uu)_{x} + (uv)_{y} + (uw)_{z}\} = -\alpha_{0}P_{x} + fv + (2A_{h}u_{x})_{x} + (A_{h}[v_{x} + u_{y}])_{y} + (A_{v}u_{z})_{z}$$
(1)

$$P_z = -\rho g, \qquad (3)$$

$$u_{x} + v_{y} + w_{z} = 0 \tag{4}$$

$$\rho = \rho_0 [1 + F_\rho(S, T)],$$
(5)

$$S_{t_{t}} + (uS - D_{h}S_{t_{x}})_{t_{x}} + (vS - D_{h}S_{t_{y}})_{t_{y}} + (wS - D_{v}S_{t_{z}})_{t_{z}} = 0,$$
(6)

$$T_{t} + (uT - D_{h}T_{x})_{x} + (vT - D_{h}T_{y})_{y} + (wT - D_{v}T_{z})_{z} = R,$$
(7)

$$C_{t} + (uC - D_{b}C_{x})_{x} + (vC - D_{b}C_{y})_{y} + (wC - D_{v}C_{z})_{z} = Fl,$$
(8)

где *и*, *v* и *w* – компоненты вектора скорости течения в направлениях *x*, *y* и *z*, соответственно; *t* – время; *f* – параметр Кориолиса; *P* – давление; *g* – ускорение свободного падения; α_0 – удельный объем воды; ρ - плотность воды; *A_h* и *A_v* – коэффициенты горизонтального и вертикального турбулентного обмена импульсом; *D_h*, *D_v* – коэффициенты горизонтальной и вертикальной турбулентной диффузии тепла и примеси; *T* – температура и *S* – соленость воды; *C* – концентрация примеси химического или биологического происхождения; *R* – внутренний источник тепла; *Fl* – внутренние локальные потоки примеси *C*, обусловленные трансформацией веществ в результате протекания в системе процессов физико-химической и биологической природы. Индексы '*x*, '*y*,'*z* и '*t* означают соответствующие производные.

Система (1) – (8) требует задания граничных условий, которые определяются в модели следующим образом.

На поверхности моря (z = 0):

$$(\tau_{sx}, \tau_{sy}) = \rho A_v (u'_z, v'_z); \quad D_v T_{,z} = Q_T / (\rho C_W); D_v S_{,z} = Q_S; \quad D_v C_{,z} = Q_C^{top}; \quad w = dh/dt, \quad P = P_a.$$
(9)

Здесь, τ_{sx} , τ_{sy} - компоненты вектора касательного напряжения трения ветра; Q_T , Q_S – потоки тепла и соли, вычисляемые на основе метеорологических данных; Q_C^{top} - поток примеси через водную поверхность; h – отклонение уровня моря от невозмущенного состояния; C_W – удельная теплоемкость; P_a - атмосферное давление.

На дне (z = H):

 $(\tau_{bx}, \tau_{by}) = \rho A_v (u_z, v_z); \quad D_v T_z = 0; D_v S_z = 0; D_v C_z = Q_c^{bot},$ (10) где τ_{bx}, τ_{by} - компоненты вектора касательного напряжения придонного

где τ_{bx} , τ_{by} - компоненты вектора касательного напряжения придонного трения; Q_c^{bot} - поток, характеризующий обмен примесью между водой и донными отложениями.

На границах с открытым морем задаются фоновые океанские значения моделируемых переменных, если поток входит в расчетную область, и используются рассчитанные по модели значения в противном случае. Колебания уровня моря на морской границе определяются приливным режимом, а также прохождением через нее длинных волн различных типов:

$$(T, S, C) = \begin{cases} (T_*, S_*, C_*), \text{если } \vec{v}\vec{n} \le 0\\ f(T, S, C), \text{если } \vec{v}\vec{n} > 0 \end{cases}, h = h_0 + \vec{v}\vec{n}\sqrt{\frac{H}{g}}, \qquad (11)$$

где (T_*, S_*, C_*) - фоновые (океанские) значения моделируемых переменных; f(T,S,C) – функция численной экстраполяции значений переменных модели из области расчетов на ее границу; \vec{vn} - проекция вектора течений, рассчитанного в граничных точках области, на нормаль к этой границе; H = h + d – полная глубина; d – глубина при невозмущенном уровне моря; h – возмущение уровня моря.

В точках выхода канала Dique и антропогенных источников задаются расходы воды Q_r , ее минерализация, термический режим и содержание в ней загрязняющих субстанций C^{riv} :

$$U = Q_{r'}(B_{x}\Delta LH) \ u \ V = Q_{r'}(B_{y}\Delta LH); \ u' = u_{top} \cos(\pi z/H) \ u \ v' = v_{top} \cos(\pi z/H);$$

$$T = T_{top} + (T_{top} - T_{bot})(1 - \cos(\pi z/H)); \ S = S_{top} + (S_{top} - S_{bot})(1 - \cos(\pi z/H));$$

$$C = C_{top}^{riv} + (C_{top}^{riv} - C_{bot}^{riv})(1 - \cos(\pi z/H)).$$
(12)

Здесь, B_x и B_y - безразмерная ширина каналов относительно размера ΔL ячейки расчетной сетки; U и V – осредненные по вертикали компонеты вектора скорости; u' и v' – отклонения скорости от средних по глубине величин. Величины с индексом "top" соответствуют поверхностному слою воды, тогда как с индексом "bot" – придонному слою.

Уравнения модели переводились в *σ*-систему координат по вертикали с использованием следующего выражения:

 σ

$$= -(h-z)/H. \tag{13}$$

В этой системе вертикальная координата изменяется от 0 на поверхности моря до -1 на дне.

Метод решения гидродинамической задачи включает расщепление физических процессов на баротропную и бароклинную составляющие. Компоненты баротропной составляющей скорости определяются как

$$U = \int_{-1}^{0} u d\sigma$$
 и $V = \int_{-1}^{0} v d\sigma$

а проинтегрированные по вертикали уравнения движения имеют вид:

$$(HU)_{,t} + (H\theta_{uu}UU)_{,x} + (H\theta_{uv}UV)_{,y} = -gHh_{,x} - \alpha_{0}HP_{a,x} - HG_{,x}^{*} + HV + (2A_{h}HU_{,x})_{,x} + (A_{h}H[V_{,x} + U_{,y}]_{,y} + \tau_{,sx} - \tau_{,bx},$$
(14)

$$(HV)_{t} + (H\theta_{uv}UV)_{x} + (H\theta_{vv}VV)_{y} = -gHh_{y} - \alpha_{0}HP_{a'y} - HG_{y}^{*} - HU + (2A_{h}HV_{y})_{y} + (A_{h}H[V_{x} + U_{y}])_{x} + \tau_{sy} - \tau_{by},$$
(15)

$$h_{t} + (HU)_{x} + (HV)_{y} = 0, \qquad (16)$$

rge
$$G_x = \alpha_0 g \left\{ \left[H_{\sigma}^0 (\rho - \rho_0) d\sigma \right]_{x} + (h_x + \sigma H_{x})(\rho - \rho_0) \right\}, \ G_x^* = \int_{-1}^0 G_x d\sigma;$$

 $G_y = \alpha_0 g \left\{ \left[H_{\sigma}^0 (\rho - \rho_0) d\sigma \right]_{y} + (h_y + \sigma H_{y})(\rho - \rho_0) \right\}, \ G_y^* = \int_{-1}^0 G_y d\sigma;$
 $\theta_{uu} = \int_{-1}^0 (uu / UU) d\sigma; \ \theta_{uv} = \int_{-1}^0 (uv / UV) d\sigma; \ \theta_{vv} = \int_{-1}^0 (vv / VV) d\sigma.$

Бароклинные компоненты вектора скорости определяются как отклонения от средней по глубине скорости u' = u - U и v' = v - V, а уравнения для них записываются следующим образом:

$$(Hu')_{,t} + (H(uu - \theta_{uu}UU))_{,x} + (H(uv - \theta_{uv}UV))_{,y} + (\tilde{w}u')_{,\sigma} = HG_{x}^{*} - HG_{x} + HHv' + (2A_{h}Hu'_{,x})_{,x} + (A_{h}H[v'_{,x}+u'_{,y}])_{,y} + H^{-1}(A_{v}u'_{,\sigma})_{,\sigma} - \tau_{,sx} + \tau_{,bx};$$
(17)

$$(Hv')_{,t} + (H(uv - \theta_{uv}UV))_{,x} + (H(vv - \theta_{vv}VV))_{,y} + (\tilde{w}v')_{,\sigma} = HG_{y}^{*} - HG_{y} - HG_{y} - HHv' + (2A_{h}Hv'_{,y})_{,y} + (A_{h}H[v'_{,x}+u'_{,y}])_{,x} + H^{-1}(A_{v}v'_{,\sigma})_{,\sigma} - \tau_{,sy} + \tau_{,by};$$
(18)

$$(Hu')_{,x} + (Hv')_{,y} + H^{-1}(\mathfrak{W})_{,\sigma} = 0.$$
(19)

В уравнениях (17)-(18)
$$\mathfrak{V}$$
 - вертикальная скорость, вычисляемая как:
 $\tilde{w} = Hd\sigma / dt = w - (1 + \sigma)h_{t} - u(h_x + \sigma H_x) - v(h_y + \sigma H_y).$ (20)

Уравнение переноса неконсервативной субстанции C, с собственной скоростью гравитационного осаждения w_g , может быть представлено в следующей форме:

$$(HC)_{,t} + (H(uC - D_h C_{,x}))_{,x} + (H(vC - D_h C_{,y}))_{,y} + + ((\tilde{w} + w_g)C - H^{-1}D_v C_{,\sigma})_{,\sigma} = Fl$$
(21)

Гидродинамические уравнения решались с использованием численных конечно-разностных методов, подробное описание которых дано в [1]. При

численной реализации уравнения (21) для описания горизонтального переноса использовалась численная схема FCT [3, 4], а для вертикального - TVD [5].

Число уравнений переноса (20), составляющих модель эвтрофикации, соответствует числу моделируемых химико-биологических компонент экосистемы. Правые части этих уравнений $Fl_i(C_b, x, y, z, t)$ представляют собой составленные на основе балансового подхода алгебраические суммы членов, которые описывают локальные потоки вещества между компонентами модели, обусловленные различными (био)химическими реакциями и биологическими взаимодействиями:

$$\left. \frac{dC_i}{dt} \right|_{\text{local}} = Fl_i. \tag{22}$$

При построении химико-биологического блока модели трехмерное пространство делится на отдельные ячейки, соответствующие сеточным боксам гидродинамического блока. При этом полагается, что внутри бокса элементы экосистемы связаны только локальными потоками согласно системе уравнений (22), в то время как перемещение вещества и энергии между ячейками осуществляется в результате переноса (21).

<u>Химико-биологический блок модели</u> включает в себя следующие параметры экосистемы: B_f - фитопланктон, B_b - бактериопланктон, B_{org}^{DET} - детрит, $B_{org}^{DIS} = B_{org}^{ant} + B_{org}^{nat}$ - растворенное органическое вещество, C_{PO4} - фосфаты, C_{NH4} - аммоний, C_{NO2} - нитриты, C_{NO3} - нитраты, C_{O2} – растворенный кислород. Диаграмма связей между компонентами экосистемы представлена на рис.3.

Р и с. 3. Структурная диаграмма химико-биологического блока модели эвтрофикации и связей между его элементами

Для локальной точки пространства уравнения блока записываются следующим образом:

$$\frac{dB_{f}}{dt} = (1 - \gamma_{f})\sigma_{f}(I_{z}, C_{PO4}, C_{N})B_{f} - \mu_{f}B_{f},$$
(23)

$$\sigma_{f} = V_{f}^{\max} f_{1}(I)f_{2}(C_{N}, C_{PO4}),$$

$$f_{1}(I) = \frac{1}{\Delta z}\int_{Z_{1}}^{Z_{2}} f_{z}(I_{z})dz = \frac{2.718}{\Delta z\alpha} [\exp(-R_{z_{1}}) - \exp(-R_{z_{2}})], \quad R_{z_{1}} = \frac{I_{0}}{I_{opt}} \exp(-\alpha z_{i}),$$

$$f_{z}(I_{z}) = \frac{I_{z}}{I_{opt}} \exp\left(1 - \frac{I_{z}}{I_{opt}}\right), \quad I_{z} = I_{0} \exp(-\alpha z),$$

$$f_{2}(C_{N}, C_{PO4}) = \min\left\{\frac{C_{N}}{Ck_{N} + C_{N}}, \frac{C_{PO4}}{Ck_{PO4} + C_{PO4}}\right\}, \quad C_{N} = C_{NH4} + C_{NO3}.$$

$$\frac{dB_{b}}{dt} = V_{b}^{\max}\left(\frac{B_{org}^{DIS}}{Bk_{org} + B_{org}^{DIS}} - \frac{B_{b}}{B_{b}}\right)B_{b},$$
(23)

$$\frac{dB_{org}^{DET}}{dt} = \lambda_f \eta_f \mu_f B_f \beta_{O2/C} \beta_{m3/L} - \delta B_{org}^{DET}, \qquad (25)$$

$$\frac{dB_{org}^{nat}}{dt} = \left[\left(\gamma_{f} \sigma_{f} (I_{z}, C_{PO4}, C_{N}) + (1 - \lambda_{f}) \eta_{f} \mu_{f} \right) B_{f} + \mu_{b} B_{B} - \frac{V_{B}^{max}}{\theta} \frac{B_{org}^{nat}}{Bk_{org}} B_{org}^{nat} B_{B} \varepsilon_{ing} \right] \beta_{O2/C} \beta_{m3/L} + \delta B_{org}^{DET},$$
(26.a)

$$\frac{dB_{org}^{ant}}{dt} = Q_{org}^{ant} - \frac{V_B^{max}}{\theta} \frac{B_{org}^{ant}}{Bk_{org} + B_{org}^{DIS}} B_B \varepsilon_{ing} \beta_{O2/C} \beta_{m3/L}, \qquad (26.b)$$

$$\frac{dC_{PO4}}{dt} = \left[\left(\frac{1}{\theta} - 1\right)\beta_{P/C}B_{org}^{nat} + \left(\frac{1}{\theta} - \omega_{P}\right)\beta_{P/C}^{ant}B_{org}^{ant} \right] \frac{V_{B}^{max}}{Bk_{org} + B_{org}^{DIS}} B_{b}\beta_{m3/L}\varepsilon_{ing} - \frac{1}{(27)} - \sigma_{f}(I_{z}, C_{PO4}, C_{N})B_{f}\beta_{P/C}\beta_{m3/L},$$

$$\frac{dC_{NH4}}{dt} = \left[\left(\frac{1}{\theta} - 1\right) B_{org}^{nat} \beta_{N/C} + \left(\frac{1}{\theta} - \omega_N\right) B_{org}^{ant} \beta_{N/C}^{ant} \right] \frac{V_B^{max}}{Bk_{org} + B_{org}^{DIS}} B_b \beta_{m3/L} \varepsilon_{ing} - \left(28\right) - \chi \sigma_f (I_z, C_{PO4}, C_N) B_f \beta_{N/C} \beta_{m3/L} - v_{NI} C_{NH4} \varepsilon_{ing},$$

$$\frac{dC_{NO2}}{dt} = v_{N1}C_{NH4}\varepsilon_{ing} - v_{N2}C_{NO2}\varepsilon_{ing} \quad , \tag{29}$$

$$\frac{dC_{NO3}}{dt} = v_{N2}C_{NO2}\varepsilon_{ing} - (1-\chi)\sigma_{f}(I_{z}, C_{PO4}, C_{N})B_{f}\beta_{N/C}\beta_{m3/L} - \upsilon_{DN}(C_{NO3} - C_{NO3}^{crit}) - \upsilon_{foto}(C_{NO3} - C_{NO3}^{crit}),$$
(30)

$$\frac{dC_{O2}}{dt} = \left[\sigma_{f} (I, C_{PO4}, C_{N}) B_{f} - \frac{V_{b}^{max}}{\theta} \frac{B_{org}}{Bk_{org} + B_{org}} B_{b} \varepsilon_{ing} \right] \beta_{O2/O} \beta_{m3/L} - (\beta_{O2/N} V_{N1} C_{NH4} + V_{N2} \beta_{O2/N2} C_{NO2}) \varepsilon_{ing} - Q_{O2}^{bot} \pm Q_{O2}^{atm}.$$
(31)

Здесь t – время, ч; B_f , B_b – биомассы фитопланктона и бактерий, соответственно, мгС/м³; C_{O2} , C_{PO4} , C_{NH4} , C_{NO2} , C_{NO3} - содержание в морской воде кислорода, фосфора фосфатов, аммонийного, нитритного и нитратного азота, соответственно, мг/л; B_{org}^{DET} - содержание взвешенного мертвого органического вещества (детрита), мгО₂/л; В^{DIS} - содержание растворенного органического вещества (РОВ) в морской воде, мгО₂/л, которое слагается из органического вещества антропогенного B_{org}^{ant} и естественного B_{org}^{nat} V_{ℓ}^{\max} максимальная происхождения; удельная скорость роста фитопланктона, ч⁻¹; I₀ – поток фотосинтетически активной солнечной радиации, проникающий через поверхность моря, Вт/м²; *I*opt – оптимальная для фотосинтеза освещенность, BT/m^2 ; I_z - освещенность на глубине z, BT/m^2 ; $\alpha = \alpha_o + \alpha_{sus} + \alpha_f - суммарный коэффициент ослабления освещенности с$ глубиной, м⁻¹, составными частями которого являются α_o – коэффициент экстинкции, характерный для океанских вод, α_{sus} и α_{f} . коэффициенты, учитывающие вклад минеральной взвеси И фитопланктона ослабление потока фотосинтетически активной (самозатемненение) в солнечной радиации: $\alpha_{sus} = 1.31 C_{susp}^{0.542}$, $\alpha_f = 0.0088B_f + 0.054B_f^2$, где $C_{susp} - C_{susp}$ концентрация минеральной взвеси, мг/л; Ск_N , Ск_{PO4}- константы (Михаэлиса-Ментен) полунасыщения процесса утилизации фитопланктоном минеральных форм азота И фосфора, мг/л; $\chi = C_{_{NH4}}\phi/[\phi C_{_{NH4}} + (1-\phi)C_{_{NO3}}]$ - доля минерального азота, потребляемого фитопланктоном форме аммония, ø коэффициент В где предпочтительности усвоения фитопланктоном аммония по отношению к нитратам; у ,- доля продукции фитопланктона, идущая на обеспечение его жизнедеятельности (дыхание); μ_{f} _ удельная скорость гибели σ_{f} - удельная скорость роста фитопланктона, ч⁻¹, ϕ итопланктона, ч⁻¹; определяемая условиями освещенности I и наличием в воде биогенных веществ – минеральных форм азота C_N и фосфора C_{PO4} ; η_f - доля лабильной органики в отмершем органическом веществе фитопланктона; V_{h}^{\max} максимальная удельная скорость роста бактериопланктона, ч⁻¹; *Bk*_{ara} константа полунасыщения роста бактерий, равная концентрации органического субстрата, при которой реальная удельная скорость роста бактерий равна половине от максимальной, мгО₂/л; В_b^{max} - максимально возможная биомасса бактерий, мгС/м³; *б* - удельная скорость автолиза детрита, ч⁻¹; λ_f – доля детритной фракции в клетках фитопланктона (0 < λ_f < 1); $\mu_B = V_B^{\max} B_B^2 / B_B^{\max}$ - удельная скорость смертности бактериопланктона, ч ¹; θ - экономический коэффициент для учета затрат энергии на рост; $\varepsilon_{ing} =$ f(C₀₂) – параметр ингибиции процессов биохимического окисления органического вещества и нитрификации при дефиците содержания

кислорода в морской воде (0 < ε_{ing} < 1), рассчитываемый по формуле: $\varepsilon_{ing} = C_{O2} / (C_{O2} + Ck_{O2})$, где Ck_{O2} - константа полунасыщения процесса, мг/л; $\omega_p = \beta_{P/C} / \beta_{P/C}^{ant}$, $\omega_N = \beta_{N/C} / \beta_{N/C}^{ant}$ – соотношения между содержанием фосфора и азота в органическом веществе естественного и антропогенного происхождения; v_{N1} , v_{N2} - удельная скорость первой и второй стадий нитрификации, ч⁻¹; *U*_{DN} – удельная скорость денитрификации в придонных слоях, где содержание кислорода менее 1 мг/л, ч⁻¹; υ_{foto} – удельная скорость убыли нитратов, ч⁻¹, за счет физико-химических процессов в поверхностном $C_{NO:3}^{crit}$ - минимальная концентрация нитратов, слое: при которой прекращаются процессы нитрат-редукции, мг/л; $\beta_{o2/c}$ - коэффициент перевода углеродных единиц органического вещества мгС в кислородные мгO₂, мгO₂/мгC; $\beta_{P/C}, \beta_{N/C}, \beta_{P/C}^{ant}, \beta_{N/C}^{nat}$ - стехиометрические коэффициенты перехода от мгС к мгР, мгР/мгС, и мгN, мгN/мгС, для мертвой органики естественного B_{org}^{nat} и антропогенного B_{org}^{ant} происхождения; $\beta_{O2/N1}$, $\beta_{O2/N2}$ кислородные эквиваленты 1-й и 2-й стадий нитрификации, мгО2/мгN; $\beta_{m^{3/L}} = 0.001$ - коэффициент перехода от кубических метров к литрам, м³/л.

Поглощение кислорода донными осадками в первом приближении может быть оценено с помощью эмпирической зависимости, приведенной в [6], на основе сведений о содержании кислорода в воде C_{O2} :

 $Q_{O2}^{bot} = a \cdot f(x, y)(C_{O2})^{b}$, (32) где $[Q_{O2}^{bot}] = M\Gamma/M^{2} \cdot \Psi, [C_{O2}] = M\pi/\pi, a = const$ и b = const - эмпирические коэффициенты, <math>f(x,y) - функционал, описывающий пространственную изменчивость поглощения кислорода донными осадками и определяемый как $f(x, y) = F_{org}^{act}(x, y) / F_{med}^{act}$, где $F_{org}^{act}(x, y)$ поток органического вещества в донные отложения, полученный по модели в каждой расчетной точке, $F_{med}^{act} - средняя величина потока органики в современных условиях.$

Газообмен кислородом с атмосферой рассчитывается на основе зависимости вида [7]:

$$Q_{02}^{atm} = \gamma_{e,i} n_V n_i (C_{02}^S - C_{02}), \qquad (33)$$

где Q_{02}^{atm} - поступление (инвазия) или выделение (эвазия) кислорода, мг/м²ч; $\gamma_{i,e}$ - коэффициент инвазии (эвазии), л/м²ч; n_t – температурный коэффициент (при $T=30^{\circ}$ С, $S=30-35^{-00}/_{0}$, $n_t=1.1$), n_v – интегральный ветровой коэффициент:

$$n_{v} = \begin{cases} 1.0 + 0.27 \, w^{2}, \text{для} & w \le 8 \, \text{M/c} \\ & , \\ -7.4 + 0.4 \, w^{2}, \text{для} & w > 8 \, \text{M/c} \end{cases}$$
(34)

w- скорость ветра, м/с; C_{O2}^{s} - насыщающая (при данной T^{o} и *S*) концентрация кислорода, мг/л.

Информация об источниках загрязнения бухты была предоставлена природоохранными организациями города Картахена. Схема расположения источников загрязнения представлена на рис.1.

При расчетах пространственная область Бухты Картахена аппроксимировалась расчетной сеткой 37 х 64 узла с шагом 250 м. Шаг по времени составлял 12 сек. в гидродинамическом блоке и 1 час в химико - биологическом. Коэффициент горизонтальной турбулентности полагался равным 0.1 м²/с.

Сезонная изменчивость ветровых условий, расходов канала Dique, прозрачности вод и метеорологических параметров для расчета потока фотосинтетически активной радиации задавались на основе климатических данных. Приливные колебания уровня на морской границе задавались на основе информации [8] о константах основных гармонических составляющих прилива в порту Картахена.

Оценка констант химико-биологического блока выполнялась на основе информации приведенной в научной литературе [9 – 11]; [6], данных лабораторных и натурных экспериментов. Отдельные параметры модели $(V_{f}^{\max}, V_{B}^{\max}, \delta, v_{N1}, v_{N2})$ были адаптированы к температурным условиям *in situ* (в течение всего года температура воды $\approx 30^{\circ}$ C) на основе эмпирических и литературных источников. Основным критерием выбора того или иного значения констант модели являлось, с одной стороны, максимальное соответствие динамики описываемых моделью процессов данным натурных наблюдений, а, с другой стороны, соответствие этих значений оценкам, полученным другими исследователями.

Для упрощения задачи, калибрация модели на основе данных натурных наблюдений выполнялась первоначально в ее одномерном варианте (модель годовой динамики вертикального распределения компонент экосистемы, с учетом внешних потоков вещества и энергии). На этом этапе основная задача калибрации заключалась в достижении соответствия порядков получаемых по модели и наблюденных величин моделируемых компонентов экосистемы.

Предварительное использование одномерного варианта модели обусловлено тем, что при настройке параметров и калибрации модели он требует значительно меньших затрат машинного времени, чем трехмерный вариант, что позволяет провести большое количество численных экспериментов с различным сочетанием параметров модели на период в несколько лет машинного времени с целью установления годового цикла изменчивости моделируемых компонент экосистемы. Используя одномерный вариант легче добиться баланса в продукционно деструкционных процессах путем подбора соответствующих значений параметров модели в рамках допустимой изменчивости их величин, установленной на основе анализа литературных данных.

Т а б л и ц а 1. Значения констант химико-биологического блока модели эвтрофикации бухты Картахена, установленные в результате ее калибрации.

Величина	Значение	Ед.измерен.	Величина	Значение	Ед.измерен.
$V_{\scriptscriptstyle f}^{\scriptscriptstyle m max}$	4.0	сут ⁻¹	λ_{f}	0.4 (0.8)*	-
$V_{\!B}^{\! m max}$	2.0 (4.0)*	сут ⁻¹	B k _{org}	1000.	$M\Gamma C/M^3$
Ck_{po4}	0.01	мгР/л	$\beta_{C/Chl"a"}$	40.	мгС/мгХл «а»
$C\dot{k}_N$	0.073	мгN/л	$\beta_{P/C}$	0.024	мгР/мгС
γ_{f}	0.1	cyr^{-1}	$\beta_{N/C}$	0.176	мгN/мгС
μ_{f}	0.5	cyr^{-1}	$\beta_{P/C}^{ant}$	0.034	мгР/мгС
I_{opt}	110	BT/M^2	$\beta_{N/C}^{ant}$	0.51	мгN/мгС
W_{gf}	1.0	м/сут	$\beta_{O2/C}$	3.47	$M \Gamma O_2 / M \Gamma C$
η_{f}	0.9	-	$\beta_{O2/N1}$	3.4	$M \Gamma O_2 / M \Gamma N$
δ	0.1	сут ⁻¹	$\beta_{O2/N2}$	1.1	$M \Gamma O_2 / M \Gamma N$
W_{gd}	1.0	м/сут	v_{DN}	0.1	cyr^{-1}
$\check{\phi}$	0.2	-	\mathcal{U}_{foto}	0.1	сут -1
Ck_{O2}	1.0	мг/л	a	128.	$M\Gamma O_2/M^2$ ч
V_{IN}	0.21	cyr^{-1}	b	0.66	-
V_{2N}	4.0	cyr^{-1}	Ye	22.0	л/м ² ч
θ	0.33	-	γ_i	11.5	л/м ² ч

* - значения, использованные в одномерном варианте модели.

модели в трехмерном варианте проводилась путем Калибрация сравнения пространственного распределения компонент экосистемы, получаемых по модели, с наблюденными полями и потребовала незначительной коррекции констант модели, определенных в нульмерном варианте. Рассчитывались типовые поля элементов экосистемы бухты для сухого и влажного сезонов года. Под «типовым» (характерным) пространственным распределением химико-биологических характеристик экосистемы понимается такое их распределение, которое соответствует стационарному состоянию, к которому приходит экосистема при неизменных внешних воздействиях (антропогенных нагрузках, гидрометеорологических условиях) И заданных параметрах функционирования экосистемы.

Некоторые результаты калибрации модели приведены на рис. 4 – 5. Несмотря на значительную формализацию задачи, изменчивость химикобиологических элементов экосистемы, полученная по модели, в целом соответствует данным натурных наблюдений. Константы химикобиологического блока модели эвтрофикации бухты Картахена, принятые в результате калибрации модели на основе экспериментальных и литературных данных, а также в результате численных экспериментов с одномерным и трехмерными вариантами модели, представлены в таблице 1.

Р и с. 4. Внутригодовая изменчивость аммония (а) и фосфатов (б) в поверхностном слое бухты Картахена, полученная по одномерной модели (кривая) и пространственным осреднением данных наблюдений (точки)

Результаты моделирования. Описанная выше модель использовалась для оценки эффективности различных природоохранных мероприятий, направленных на улучшение кислородного режима бухты Картахена. В этих расчетах поглощение кислорода донными осадками корректировалось с учетом изменения потока органического вещества в донные отложения путем переопределения функционала $f(x, y) = F_{org}^{new}(x, y) / F_{med}^{act}$, где F_{org}^{new} -поток органического вещества в прогнозируемой ситуации.

Согласно плану развития города Картахена предполагается, что до 2025 года все городские коммунальные стоки будут выведены в центральную систему канализации, со сбросом в открытое море далеко за пределами города. Сброс биогенных веществ и мертвой органики предприятиями индустриальной зоны планируется понизить на 80 %. Моделирование этого сценария показало, что данные мероприятия позволят избежать образования дефицита кислорода в придонном слое Внутренней бухты (рис. 6, б). Во Внешней бухте, хотя дефицит кислорода несколько уменьшится, однако качественно ситуация не изменится, т.к. в придонном слое большей части акватории содержание кислорода останется попрежнему менее 1.5 мл/л. Объясняется это тем, что несмотря на существенное уменьшение сбросов антропогенными источниками, не ликвидирована основная причина образования дефицита кислорода: вынос из канала Dique пресных вод с высоким содержанием биогенных веществ,

Р и с. 5. Пространственное распределение биомассы фитопланктона (в мг-хл «а»/м³) (I) и содержания фосфатов (в мг/л) (II) в поверхностном слое бухты Картахена в сухой сезон (январь), полученные по данным наблюдений (а) и по модели (б). Точками отмечены пункты наблюдений

образование мощного приповерхностного пикноклина и, вследствие этого, слабая вентиляция придонного слоя бухты кислородом. Поэтому, в дополнение к вышесказанному, были рассмотрены еще три сценария (альтернативы):

- снижение расхода канала Dique во влажный период года с 150 до 50 м³/с (расход в период сухого сезона);
- снижение расхода канала Dique во влажный период года со 150 до 50 м³/с и уменьшение содержания минеральных форм азота и фосфора в водах канала в два раза;
- 3) полное закрытие канала.

При снижении расхода канала до 50 м³/с уменьшится количество выносимой из него взвеси и увеличится прозрачность вод бухты. Этот эффект учитывается заданием поля прозрачности характерного для сухого сезона. При увеличении прозрачности возрастет первичная продукция фитопланктона и поток мертвой органики в донные отложения в центральной части бухты, где минимум кислорода углубится (рис. 6, в). Таким образом, частичное изъятие стока канала не способствует улучшению кислородного режима бухты, поскольку канал по-прежнему остается мощным источником биогенных элементов, а зоны максимальной продуктивности фитопланктона смещаются от границ в центральную часть бухты.

Уменьшение содержания биогенных веществ в водах канала, в сочетании с ограничением его стока до 50 м³/с, дает значительно лучшие результаты. На большей части акватории бухты значительно уменьшается биомасса фито- и бактериопланктона, поток органического вещества в донные отложения и, как следствие, ослабевает дефицит кислорода в придонном слое (рис. 6, г).

При полном закрытии канала, эвтрофный статус вод бухты максимально приблизится к статусу морских вод, дефицит кислорода в придонном слое исчезнет (рис. 7, б). В южной части Внешней бухты, которая слабо промывается океанскими водами и где расположена группа индустриальных источников с большим объемом сброса загрязненных вод (даже при условии изъятия 80 % их современного сброса), содержание кислорода в придонном слое во влажный сезон года будет превышать 1.5 мл/л, в то время как во Внутренней бухте она повысится до 2.5 мл/л.

Рассмотренные выше варианты ограничения стока канала Dique либо его полного закрытия являются вполне реальными. В настоящее время канал потерял свое навигационное значение и имеет кроме бухты Картахена другие выходы в море. Кроме того, в настоящее время выполнено предварительное техническое обоснование проекта строительства в канале шлюза, который ограничит вынос загрязненных пресных вод на акваторию бухты Картахена, перераспределив сток канала в другие рукава, впадающие в открытое море. Кроме того планируется объединить всю систему озер канала Dique в единую сеть. При прохождении этих озер загрязненные воды реки Магдалена будут очищаться от биогенных элементов.

В заключение отметим, что ограничение сбросов загрязняющих веществ антропогенными источниками в указанных выше пределах является первоочередным условием решения проблемы улучшения

Р и с. 6. Распределение кислорода (мл/л) в придонном слое бухты Картахена во влажный сезона года, полученное по модели для современных условий (а), при изъятии 100 % бытового и 80 % промышленного стока загрязненных вод (б), предыдущий вариант при ограничении расхода канала Dique до 50 м³/с (в), тот же вариант при уменьшении содержания биогенных веществ в водах канала в два раза (г)

кислородного режима бухты. Моделирование сценария с закрытием канала Dique, при сохранении современных объемов сброса загрязненных вод антропогенными источниками, показало, вместо что ожидаемого улучшения ситуации, наоборот, произойдет ее ухудшение (рис. 7, а). Объясняется это тем, что при закрытии канала прозрачность вод бухты увеличится до 6 м и перестанет быть фактором лимитирующим фотосинтез, как поставок биогенных элементов от антропогенных в то время источников будет достаточно для поддержания продуктивности фитопланктона на высоком уровне.

Р и с. 7. Распределение кислорода (мл/л) в придонном слое бухты Картахена во влажный сезона года, полученное по модели при полном закрытии канала без ограничения стока антропогенных источников загрязнения (а) и при условии изъятия 100 % бытового и 80 % промышленного стока загрязненных вод (б)

Выводы. Кислородный режим бухты Картахена формируется сложным комплексом природных и антропогенных факторов, среди которых можно выделить: морфологию бассейна, сток канала Dique, водообмен приливного типа с морем, сброс неочищенных хозяйственно – бытовых и промышленных сточных вод города, ветровой режим. Поэтому без использования математической модели практически невозможно оценить эффективность различных природоохранных мероприятий, направленных на улучшение современной ситуации.

В работе описана математическая модель эвтрофикации, в которой явно учитывается роль бактериопланктона в минерализации мертвой органики и регенерации минеральных форм азота и фосфора, а также различия в химическом составе органического вещества естественного и антропогенного происхождения.

Моделирование с помощью математической модели эвтрофикации различных сценариев улучшения экологической ситуации в бухте Картахена показало, генеральная стратегическая линия должна заключаться в максимальном ограничении стока канала Dique и уменьшении содержания в его водах биогенных веществ. Одновременно должно проводится нормирование сбросов антропогенных источников загрязнения.

Модель прошла успешную аппробацию в бухте Картахена и может использоваться для решения аналогичных задач в глубоких морских заливах и бухтах.

Список литературы

- 1. *Hess K.W.* MECCA Program Documentation NOAA. Technical Report NESDIS 46.– Wash., D.C., USA, 1989.– 200 p.
- Lonin S.A. Modelo Hidrodinámico del CIOH y Cálculo de Transparencia para la Bahía de Cartagena // Boletín Científico CIOH.- N 18.- Cartagena.- 1997.- P. 85-92.
- 3. *Флетчер К.* Вычислительные методы в динамике жидкостей. т.2. М:Мир, 1991. 551 с.
- 4. Boris, J.P. and Book, D.L. Methods Comput. Phys. 16. 1976. P. 85 129.
- 5. Harten A.J. J.Comput.Phys.- Vol.49.- 1983.- P. 357 393.
- 6. *Parsons T.R., Takahashi M., H.Hargrave* Biological oceanographic processes. Oxford, New York, Pergamon Press, 1984. 324 p.
- 7. Ляхин Ю.И. О скорости обмена кислородом между океаном и атмосферой // Океанология.- 1980.- т.18.- N 6. С.1014-1021.
- Bjorn Kjerfve. Tides of the Caribean Sea // Journal of geophysical research Vol. 86, N C5.– 1981.– P. 4243-4247.
- Моделирование компонентов экосистемы. Проблемы исследования и математического моделирования экосистемы Балтийского моря. – Вып. 3. – Л: Гидрометеоиздат, ЛО ГОИН. – 1987. - 255с.
- 10. *Моделирование* процессов переноса и трансформации вещества в море.-Л:Гидрометеоиздат, ЛГМИ, 1979.- 290 с.
- User Guide and Reference Manual Water Quality Module, release 2-4 MIKE21. Danish Hydraulic Institute.– Haskoning-Carinsa, Cartagena, Colombia, December 1994. – 124 p.

Одесский филиал Института биологии южных морей НАН Украины r.Oдесса Centro de Investigaciones oceanograficas e hidrograficas

Cartagena de Indias, Colombia