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Abstract: This study presents a pre-processing approach adopted for the radar reflectivity data
assimilation and results of simulations with the Harmonie numerical weather prediction model.
The proposed method creates a 3D regular grid in which a horizontal size of meshes coincides with the
horizontal model resolution. This minimizes the representative error associated with the discrepancy
between resolutions of informational sources. After such preprocessing, horizontal structure functions
and their gradients for radar reflectivity maintain the sizes and shapes of precipitation patterns similar
to those of the original data. The method shows an improvement of precipitation prediction within the
radar location area in both the rain rates and spatial pattern presentation. It redistributes precipitable
water with smoothed values over the common domain since the control runs show, among several
sub-domains with increased and decreased values, correspondingly. It also reproduces the mesoscale
belts and cell patterns of sizes from a few to ten kilometers in precipitation fields. With the assimilation
of radar data, the model simulates larger water content in the middle troposphere within the layer
from 1 km to 6 km with major variations at 2.5 km to 3 km. It also reproduces the mesoscale belt and
cell patterns of precipitation fields.
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1. Introduction

Precipitation plays an important role in both the water cycle and energy balance of the
atmosphere. However, due to the high spatial and temporal variability of precipitation in the
mesoscale, obtaining accurate quantitative precipitation estimates is still a “first-line frontier” task.
Moreover, the Global Precipitation Measurement (GPM) mission has shown notable differences in
estimations of precipitation obtained from various platforms especially for low rain rates [1]. Current
rain-gauge networks mainly suffer from sparse distribution and limited coverage [2]. Although
satellite-based infrared and visible data have high spatial resolution, relations between the radiance
from the cloud and precipitation are indirect and non-unique [3]. Additionally, the evaluations of
satellite quantitative precipitation estimates have some limitations in terms of the deficiency in the
observations, the evaluation methodology, the selection of time windows for evaluation, and the
short periods for evaluation [4]. Passive microwave instruments provide acceptable estimates of
precipitation. Nevertheless, they exhibit low spatial and temporal resolution [5]. The advantage of
the ground-based radar network in Europe is the high spatiotemporal resolution. This is the reason
to make a choice in favor of such data for predicting mesoscale precipitation patterns and associated
atmospheric variables.

The Operational Program for the Exchange of Weather Radar Information (OPERA) was launched
for improving the harmonization of radars and their measurements [6]. The program provides three
composite products such as instantaneous surface rain rate, instantaneous maximum reflectivity,
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and one-hour rainfall accumulation. Gathered data includes three-dimensional volumes of reflectivity
and radial wind. When assimilated in convection-permitting models, radar data could yield significant
improvements in the representation of the spatial distribution of cloud and precipitation as well as rain
rates [7–9]. This is achieved due to the fact that ground-based radars have a high spatial and temporal
resolution and provide a three-dimensional volume of information. It is worth noting that radar data
are heterogeneously distributed by providing abundant information near radar locations while such
information becomes sparser with an increasing distance from the sensor. Further improvement of
assimilation systems is seen in the optimization of pre-processing radar data in terms of homogenizing
data coverage along with increasing confidence in them by averaging stochastic errors.

The objective of this study is to present a pre-processing approach adopted for the radar reflectivity
data assimilation and the results of simulations with the Harmonie numerical weather prediction model.
Through a case study, it will be shown that the method can improve the prediction of precipitation
within the radar location area both in terms of the rain rates and spatial pattern presentation.

Even though radars measure the reflectivity and radial wind, this study focuses at the former
parameter only. Quality control and other extra technical procedures are also omitted by assuming
that they have been performed at preliminary steps during the initial processing of radar data. Further
pre-processing is performed in different ways and may include various methods. Among these is
the spatial screening of the raw data over some pixels in pursuit of both to reject abundant data and
rid horizontal correlations in observation errors. The screening includes either filtering or smoothing
procedures. The former is an easy way to routinely perform thinning of high-resolution radar data such
as selection data of every predefined bin along a ray. Simple thinning of abundant radar observations
throws a significant part of data out from the process, but it also affects the spectral distribution
of sub-scales finer than a thinning parameter. An alternative to the thinning is the averaging of
observations within a given box to create a new value located at an average position. This also allows
us to average out random observation errors [10]. This method, which is called superobbing, is used
for remote sensing observations such as atmospheric motion vectors and Doppler radar radial wind
measurements [11]. With this approach, the observation (O) minus the background (B) differences
(denoted as O–B) or innovations are averaged. For each observation, its model simulated analogue is
computed and an O–B innovation is calculated. These innovations are then averaged and added to
the model observation closest to the center of the superobbing cell to provide the super-observation.
Optimization of the superobbing processing from dense raw data is the compromise between the above
two factors including saving finer than average size scales and obtaining more stable estimates for the
remaining scales by reducing stochastic errors [12]. Additionally, the problem of representativeness
is necessary to be accounted for while comparing and assimilating data from sources with different
spatial resolutions. Experience with assimilating high-resolution data shows that such data coverage
may provide unsatisfactory results. In particular, tests with the Generalized Cross-Validation (GCV)
method [13] using a simulated high-resolution data set at full resolution has led to a poorer analysis
than a lower resolution data set that preceded it. The larger the nonconformity between the resolution
of the observations network is, on the one hand, and that of the model, on the other hand, the larger
the numerical impact on the result is or, equivalently, the larger the representativeness error is.

A modified method of pre-processing is presented in Section 2 in which the model and data used
in this study are elaborated on. Results of simulations with the proposed pre-processing approach are
presented in Section 3. Section 4 presents the discussion and concluding remarks.

2. Materials and Methods

2.1. Pre-Processing of Radar Data

In this study, the data assimilation system in the convection-permitting Harmonie model is
further developed by involving radar reflectivity measurements. The focus is on optimizing the
inner parameters of the pre-processing procedure rather than a data assimilation algorithm itself.
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In pursuing the compatibility between the model resolution and smoothed radar observation density,
the “cube-smoothing” approach is proposed. It seems obvious to optimally feed the model with
observations at the same resolution as the model grid. Similar approaches at the assimilating step are
explored for simulated reflectivity in a 1D + 3D variational assimilation system by feeding vertical
profiles of reflectivity on a regular grid [14], an Ensemble Kalman Filter Analysis (EnKF) [15], and a
Hybrid EnKF-3Dvar algorithm [16]. The earlier method performs backward retrieving of radar
reflectivity from atmospheric microphysics variables for further assimilating measurements. This
approach is operationally used in the model and pursuits the aim to globally assimilate radar data
by doing it with a coarser resolution than explored in the regional model. The two latter approaches
were developed within the Advanced Regional Prediction System (ARPS) and verified with the
use of an Observing System Simulation Experiment (OSSE). However, as previously mentioned [13],
the involvement of simulated high-resolution data sets in assimilating can, under certain circumstances,
lead to an improper analysis.

The proposed pre-processing method for smoothing radar reflectivity data imposes a minor
additional computational cost, which can be afforded before the model is run and tuned for a specific
domain. The method first creates a 3D regular grid in which a horizontal size of meshes coincides with
a horizontal model resolution. This should minimize the error associated with the discrepancy between
resolutions of informational sources [17] while the impact from filtering out sub-grid scales may occur.
This is seen from comparing structure functions for original radar reflectivity data and those calculated
after pre-processing (Figure 1). A Structure function as an alternative statistic to view variations in
time series or fields is often used in meteorology [18,19] and is denoted by the equation below.

DAA(L) =
1
N

N−1

∑
k=0

[
Ak − Ak+j

]2
(1)

where L = r = j∆r represents the spatial separation, r, between the two measurements. The advantage
of the structure function compared to other statistics is in its low dependence on variations between
ensemble members as well as the possibility for obtaining stable estimates on the basis of a single
limited length series containing systematic errors. For zero separation distance, the structure function
is identical to zero and increases with the increasing separation until it reaches its maximum value, i.e.,
when it saturates. Such a distance implies lack of connectivity in a field and serves as a criterion for
dominating scales in atmospheric processes. Regarding the slow changing structure functions for most
atmospheric variables, the gradient of the function allows for the identification of a point on the curve,
which corresponds to this criterion.

To estimate horizontal size and shape of precipitation patterns in the original data and after
pre-processing with various smoothing values, the structure functions for radar reflectivity have been
obtained. Only measurements from lower bins have been taken into account on the assumption that it
provides horizontal scales in precipitation fields. Figure 1 shows that the saturation of the structure
function starts at a few kilometer distance. Smoothing with 0.5 km yields very similar results both
in the value and behaviors of the original data as the gradient. The latter allows us to clearly specify
changes in the function behavior. In particular, saturation of the structure functions occurs at the
shortest lag of about 1 km, which confirms the dominant role of mesoscales. Smoothing with the
2.5 and 5 km shows weaker gradients at the smallest resolved scales but also background (secondary)
phenomena appear at the scales of about 20 to 30 km. This numerical (artificial) effect, which results
from the inconsistency between filtering parameters and existent atmospheric patterns, is one of the
reasons leading to a systematic phase error in the modeling of precipitation [20]. All structure functions
completely saturate above the 60 km lag where the large-scale circulation dominates.

The drawback even for complete radar data sets is that they fill-in only a part of the physical
or model spaces. For instance, the six Finish radars used in this study cover from 5% to about 20%
of a model grid depending on the horizontal smoothing parameter and the vertical factor at the
pre-processing step (Figure 2).
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Figure 1. (a) Structure functions and (b) their gradients of radar reflectivity measurements for original
data and after pre-processing with various smoothing parameters.

This is a considerable difference between the OSSE approach and the real data sets. A vertical
size for meshes can be chosen on the basis of several criteria. Among the most appropriate ones are
those that correspond to a list of model layers with varying steps along the vertical coordinate to
homogeneous filling-in meshes by radar measurements and to a regular vertical step. Regarding
the irregularly distributed Finnish radar network, the preliminary estimates of filling-in 3D-meshes
have been obtained for the whole domain in one batch (Figure 3). The use of the vertical step in
accordance to the Harmonie model level list leads to minor filling-in of lower layers, which significantly
increases. Otherwise, the regular but rather large vertical step of 500 m yields an opposite distribution
of the data. So far, the equal filling-in approach seems to ensure the homogeneous saturation of
the model grid, which was selected for further pre-processing. At least three direct impacts from
the pre-processing smoothing are clear. Over-smoothing with a parameter larger than the model’s
resolution leads to underestimating the total amount of water content and the small decreases but
intensive cells of precipitation as well as the incorrectly presenting spatial patterns of rain water in the
atmosphere. To this end, these factors affect the initial conditions and disrupt the subsequent evolution
of precipitation patterns. Smoothing with 0.5 km yields reflectivity distributions similar to the original
(Figure 2a).

Figure 2. Cont.
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Figure 2. Filling-in the model grid by radar measurements depending on pre-processing smoothing
parameters: (a) 0.5 km, (b) 1 km, (c), 2.5 km, and (d) 5 km.

Figure 3. Filling-in the layers by radar data depending on the type of vertical step lists.

2.2. Configuration of Radar Data Assimilation Experiments

Radar reflectivity data from the BaltEx experiment covering the Finnish domain were used in
this study (www.baltex-research.eu). The BaltRad project (se.baltrad.eu) related to these data points
operates with high-quality data and has demonstrated to possess a significant value for forecasters
and decision-makers. The Finnish domain was chosen due to several reasons. First, a major part of the
domain is covered by radar measurements even though their inhomogeneous distribution is a factual
issue. Second, the smooth orography and relatively homogeneous surface significantly decrease a
potential external impact from sharp gradients of the complex orography and surface contrasts.

The experimental design has been implemented on the operational Harmonie platform as follows.
A heavy precipitation event over Finland during 14–15 August 2010 with the maximum rain rate during
the period 15:00–18:00 UTC was considered. Numerical experiments were performed in the framework
of the mesoscale Harmonie-40h1.1 model with 2.5 km domain resolution. Three runs have been
carried out with the same model configuration including 3D-Var data assimilation with a three-hour
updating cycle. The differences between experiments were in only the radar data involvement and
the pre-processing procedure. The control run (CNTR) included the assimilation of all the available
SYNOP, TEMP, and AIREP but RADAR observation types over the domain. Two radar reflectivity
data assimilation runs used the following approaches. The first approach proposes “cube-smoothing”
(FINE) described above with the horizontal resolution equal to the model’s 2.5 km resolution and
vertical resolution, according to quasi-equivalent filling. The second one (COARSE) explores the
operationally implemented procedure based on double subsequent smoothing of the radar network
with resolutions of 8 km and 15 km, respectively, while the model resolution was still kept to 2.5 km [14].

www.baltex-research.eu
se.baltrad.eu
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3. Results of Radar Data Assimilation

The results of the numerical experiments have revealed a noticeable impact of radar reflectivity
data assimilated in the model on the prediction of precipitation patterns and rates. Moreover, it has
been shown that this impact varies depending on pre-processing procedures and their corresponding
parameters. Figure 4 shows the spatial distribution of precipitable water and its differences in
experiments over the Finnish domain for 18:00 UTC 14 August 2010. This variable was chosen
since it better pronounces continuous distribution of water in the atmosphere compared to the discrete
form of surface precipitation (Figure 5). Even though both variables reflect major features of spatial
coverage, certain discrepancies can be associated with the resolution in radar data assimilation (RDA)
formulations. In particular, both methods of RDA lead to redistribution of precipitation toward
fine-scale cells within large areas accompanied by an enlarging area of increased precipitation in
total. The COARSE run provides larger amounts of precipitation than the FINE run. However,
special attention would be paid to the South Finland area where six radars (Anjalankoski, Ikaalinen,
Korpo, Kuopio, Vantaa, and Vimpeli (en.ilmatieteenlaitos.fi/fmi-radar-network)) account for the dense
three-dimensional coverage of the water content field in the atmosphere. Analysis of the CNTR run
with the operationally used configuration shows a rather homogeneous field of precipitable water over
this area (see Figure 4a). RDA allows us to specify and redistribute precipitable water among several
areas since it is displayed in Figure 4. The first area is associated with the increased precipitation rate
in both RDA runs (area I in Figure 4b,c) while the gain is sufficiently higher in the FINE run. This is
reflected by the negative values in Figure 4d (COARSE-FINE runs). Over the second area (area II in
Figure 4b,c), both RDA runs decrease the water content in the atmosphere, which is actually reallocated
toward the first neighboring one. As in the previous site, changes are larger in the FINE run, which
result in the area of positive values in Figure 4d. A belt of lower precipitable water amount in the
FINE run corresponds to the third area (area III in Figure 4b,c), which, however, does not appear in the
COARSE run.

Bearing in mind the above, it can be stated that RDA affects the prognostic fields of the
precipitation rate and spatial distribution. In general, this leads to slightly increasing in total
precipitation amount over the domain while redistribution of water in the atmosphere occurs in
a form of fine-scale cells of opposite signs within a common area of precipitation. As expected,
the value and size of these changes depend on the smoothing parameter. The larger this parameter,
the smoother the impact in spatial coverage is and the smaller the deviations from the analysis are [21].
Matching the radar resolution to that of the model should minimize numerical effects while focusing
on physical features. In particular, the belt and cell features in precipitation fields [22,23] are better
simulated with RDA. Higher vertical resolution used in “cube-smoothing” RDA allows us to correct
the position of the condensation level, which reduces the phase error. However, the impact from RDA
is numerically sensitive to the radar pre-processing approaches and their internal parameters.

en.ilmatieteenlaitos.fi/fmi-radar-network
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Figure 4. Spatial distribution of precipitable water over the Finnish domain for 18:00 UTC 14 August 2010.
(a) in analysis and differences between runs: (b) FINE-CNTR, (c) COARSE-CNTR, (d) COARSE-FINE.
Areas I, II, and III outline specific regions in redistributing of precipitable water.

The RDA procedures change also the vertical distribution of rain water in the atmosphere. Figure 6
shows the vertical profiles for this variable in the area of the largest differences between the FINE and
COARSE runs. The former is similar, in its general features, to the control run, but slightly redistributes
water from a 2.5 to a 3.5 km layer towards lower levels. This can produce rare ripe condensation and a
decrease of downstream precipitation in favor of upstream, which is shown in Figure 4b. The COARSE
run shows a significant reduction of water content in the area, which is explained by the following
two reasons. The first is that the deep smoothing spreads a compact substance (water cell) over larger
neighboring areas and decreases its concentration. The second, which is related to the above, is that the
smoothing changes the water (vapor) concentration, which follows changes in a chain of microphysical
processes. The detailed study of links in this chain is a subject of ongoing research.
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Figure 5. Same as Figure 4, but for surface precipitation.

Figure 6. Vertical profiles of rain water in the atmosphere for different runs.
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4. Discussion and Concluding Remarks

The quality of numerical weather forecasts is crucially dependent on several factors. The data
assimilation remains in the first line among these factors since this determines the error in the initial
conditions and the further error growth rate during a forecast. The problem becomes even sharper
for mesoscale atmospheric modeling with a resolution of order of a kilometer. Conventional data
are less useful because of their coarse spatial and temporal resolutions. Remote sensing is a way for
improving this situation due to the fact that it provides high resolution measurements of the order of a
few hundred meters over the area of interest with a few minutes of a discretization time-step. However,
another sort of problem appears in the forefront: this approach yields an abundance of information,
which has to be screened from a useful core. Thus, a compromise has to be made between a volume
of detailed information and a restricted amount of selected data, which, however, should still keep
spatial and temporal atmospheric features. This is a subject that is dealt with the preprocessing step
before data are forwarded to the assimilation module of a numerical atmospheric model.

In this research, the data assimilation system in the convection-permitting Harmonie model
has been further developed by involving radar reflectivity measurements. The focus has been on
optimizing the inner parameters of the pre-processing procedures. In pursuing the compatibility
between the model resolution and smoothed radar observation density, the “cube-smoothing”
approach has been proposed, which promotes the presentation of radar measurements on a regular
grid at a resolution equal to that of the model’s grid. This ensures the equivalent presentation of
precipitation (reflectivity) structures in both spaces such as the model and observation in the sense
of equally preserving the scales of precipitation patterns. From the spectral point of view for spatial
frequencies (wave numbers), this implies an equal cut-off of a high-frequency band in the model and
in the observation fields. In this way, at least one component of the forecast error associated with the
representativeness error [17] has been minimized.

As shown from the results presented above, the numerical experiments with the proposed
approach exhibit better simulation of mesoscale cells and belts of precipitation versus the respective
control runs. In particular, instead of one large area with smoothed values for rain rates, the improved
assimilation approach was allowed to specify and redistribute precipitable water among several
sub-areas. Two of them have higher accumulated water content. The third area located between these
has lost some precipitable water. Such redistribution retrieves mesoscale features with sizes from a few
to ten kilometers in precipitation fields and improves rain rates over the domain. However, precise
verification still remains an issue due to several reasons including being the instrumental error and
transient functions for radar measurements as well as the dominating sizes of precipitation patterns
in particular regions and under certain atmospheric flow regimes. The latter will be the focus of
further studies.
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