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Within the chaos-geometric approach there are obtained improved data on the analysis and forecasting 
chaotic fluctuations in the time series of concentrations of nitrogen dioxide and sulfur dioxide in the at-
mosphere of the Gdansk region. 
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1.  Introduction 
 
 It is known that a chaos is alternative of randomness and occurs in very simple determinis-
tic systems. Although chaos theory places fundamental limitations for long-rage prediction [1-
8], it can be used for short-range prediction since ex facte random data can contain simple de-
terministic relationships with only a few degrees of freedom. Many studies in various fields of 
science have appeared, where chaos theory was applied to a great number of dynamical sys-
tems. The studies concerning non-linear behaviour in the time series of atmospheric constitu-
ent concentrations are sparse, and their outcomes are ambiguous.  
 In refs. [5,6] there is an analysis of the NO2, CO, O3 concentrations time series and is not 
received an evidence of chaos. Also, it was shown that O3 concentrations in Cincinnati (Ohio) 
and Istanbul are evidently chaotic, and non-linear approach provides satisfactory results. In 
ref. [2,3] there were developed a new approach to modelling, analyzing and forecasting hy-
dro-and air pollution and presented geographically reasonable data, illustrating its high effec-
tiveness and accuracy.   
 These studies show that chaos theory methodology can be applied and the short-range 
forecast by the non-linear prediction method can be satisfactory. Time series of concentrations 
are however not always chaotic, and chaotic behaviour must be examined for each air pollu-
tants time series.  
 In this paper, we will present more advanced (improved) studying the concentration of the 
atmospheric and in principle (in full analogy) hydrological constituents in nature mediums. 
As example, we will use air pollution in the Gdansk region (Poland). Besides, we will use on-
ly those measurements, which are defined as chaotic. At last, we will present advanced non-
linear prediction modelling for selected time series. 
 

2. Advanced chaos-geometric approach to modeling hydro- and  
atmospheric pollution  

 
 As, in our previous papers, we will use the nitrogen dioxide (NO2) and sulphurous anhy-
dride (SO2) concentration data observed at the sites of Gdansk region during 2003-2005. 
There are ten sites in the region, but time series are continuous at 2 ones only, Sopot (site 6) 
and Gdynia (site 9). We use one year hourly concentrations (total of 8760 data points).  
 Table 1 presents some of the important statistics (coordinates of sites 6 and 9 are 
54°24'54''N, 18°34'47''E and 54°29'40''N, 18°33'15''E) [2]. 
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Table 1 -  Some statistics of air pollutant concentrations at the Gdansk region (Jan.-Dec.2003) 
 

Statistics Site 6 (Sopot) Site 9 (Gdynia) 
NO2 SO2 NO2 SO2 

Number of data 8760 8760 8760 8760 
Mean (µg/m3) 15.46 9.13 17.04 11.84 

Maximum value (µg/m3) 107.53 111.99 101.13 95.47 
Minimum value (µg/m3) 2.29 3.99 3.92 5.59 

Standard deviation (µg/m3) 11.99 6.94 11.22 7.19 
Skewness 2.26 4.79 1.81 3.89 
Kurtosis 7.61 38.15 4.43 22.78 

 
 As usually, let us consider scalar measurements S(n)=s(t0+ n∆t) = s(n),   where t0 is a start 
time, ∆t is time step, and n is number of the measurements. In a general case, s(n) is any time 
series (f.e. hydrological or atmospheric pollutants concentration). As processes resulting in a 
chaotic behaviour are fundamentally multivariate, one needs to reconstruct phase space using 
as well as possible information contained in s(n). Such reconstruction results in set of d-
dimensional vectors y(n) replacing scalar measurements. The main idea is that direct use of 
lagged variables s(n+τ), where τ is some integer to be defined, results in a coordinate system 
where a structure of orbits in phase space can be captured. Using a collection of time lags to 
create a vector in d dimensions, y(n)=[s(n),s(n + τ),s(n + 2τ),..,s(n +(d−1)τ)], the required co-
ordinates are provided. In a nonlinear system, s(n + jτ) are some unknown nonlinear combina-
tion of the actual physical variables. The dimension d is the embedding dimension, dE. 
The next important step is the choice of proper time lag.  Obvious that it is  important for the 
subsequent reconstruction of phase space.  If  τ is chosen too small, then the coordinates 
s(n + jτ),  s(n +(j +1)τ)  are so close to each other in numerical value that they cannot be dis-
tinguished from each other. If τ is too large, then s(n+jτ),  s(n+(j+1)τ) are completely inde-
pendent of each other in a statistical sense. If τ is too small or too large, then the correlation 
dimension of attractor can be under-or overestimated. One needs to choose some intermediate 
position between above cases. First approach is to compute the linear autocorrelation function 
CL(δ) and to look for that time lag where CL(δ) first passes through 0. This gives a good hint 
of choice for τ at that s(n+jτ) and s(n+(j +1)τ) are linearly independent. It’s better to use ap-
proach with a nonlinear concept of independence, e.g. an average mutual information. The 
mutual information I of two measurements ai and bk is symmetric and non-negative, and 
equals to 0 if only the systems are independent. The average mutual information between any 
value ai from system A and bk from B is the average over all possible measurements of 
IAB(ai, bk). In ref. [4] it is suggested, as a prescription, that it is necessary to choose that τ 
where the first minimum of I(τ) occurs. 
 Further let us consider an advanced approach to the embedding dimension determination. 
The goal of the embedding dimension determination is to reconstruct a Euclidean space Rd 
large enough so that the set of points dA can be unfolded without ambiguity. The embedding 
dimension, dE, must be greater, or at least equal, than a dimension of attractor, dA, i.e. dE > dA. 
In other words, we can choose a fortiori large dimension dE, e.g. 10 or 15, since the previous 
analysis provides us prospects that the dynamics of our system is probably chaotic. The corre-
lation integral analysis is one of the widely used techniques to investigate the signatures of 
chaos in a time series. The analysis uses the correlation integral, C(r), to distinguish between 
chaotic and stochastic systems. According to [8], it is computed the correlation integral C(r).  
If the time series is characterized by an attractor, then the correlation integral C(r) is related to 
the radius r as  
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where d is correlation exponent. If the correlation exponent attains saturation with an increase 
in the embedding dimension, then the system is generally considered to exhibit chaotic dy-
namics. The saturation value of correlation exponent is defined as the correlation dimension 
(d2) of the attractor (see details in refs. [2,8]). 
 The most fundamental and important block of the whole approach is formulation of com-
prehensive advanced non-linear prediction model. Here, let us begin from the rhetorical ques-
tion. Namely, first of all, it’s important to define how predictable is a chaotic system? The 
predictability can be estimated by the Kolmogorov entropy, which is proportional to a sum of 
positive LE. The spectrum of LE is one of dynamical invariants for non-linear system with 
chaotic behaviour. The limited predictability of the chaos is quantified by the local and global 
LE, which can be determined from measurements. The LE are related to the eigenvalues of 
the linearized dynamics across the attractor. Negative values show stable behaviour while 
positive values show local unstable behaviour. For chaotic systems, being both stable and un-
stable, LE indicate the complexity of the dynamics. The largest positive value determines 
some average prediction limit. Since the LE are defined as asymptotic average rates, they are 
independent of the initial conditions, and hence the choice of trajectory, and they do comprise 
an invariant measure of the attractor. An estimate of this measure is a  
sum of the positive LE. The estimate of the attractor dimension is provided by the conjecture 
dL and the LE are taken in descending order. The dimension dL gives values close to the di-
mension estimates discussed earlier and is preferable when estimating high dimensions. To 
compute LE, we use a method with linear fitted map [1,2], although the maps with higher or-
der polynomials can be used too. Non-linear model of chaotic processes is based on the con-
cept of compact geometric attractor on which observations evolve. Since an orbit is continual-
ly folded back on itself by dissipative forces and the non-linear part of dynamics, some orbit 
points yr(k), r =1, 2, ..,NB can be found in the neighbourhood of any orbit point y(k), at that 
the points yr(k) arrive in the neigh-bourhood of y(k) at quite different times than k. One can 
then choose some interpolation functions, which account for whole neighbourhoods of phase 
space and how they evolve from near y(k) to whole set of points near y(k+1). The implemen-
tation of this concept is to build parameterized non-linear functions F(x, a) which take y(k) 
into y(k+1) = F(y(k), a) and  use various criteria to determine parameters a. Since one has the 
notion of local neighbourhoods, one can build up one's model of the process neighbourhood 
by neighbourhood and, by piecing together these local models, produce a global non-linear 
model that capture much of the structure in an attractor itself. The other model and computa-
tion details can be found in [4-8]. 
 

3. Some illustrative results for hudro-and atmospheric pollutant time series 
 
 Table 2 summarizes the results for the time lag calculated for first 103 values of time se-
ries. The autocorrelation function crosses 0 only for the NO2 time series at the site 9, whereas 
this statistic for other time series remains positive. The values, where the autocorrelation 
function first crosses 0.1, can be chosen as τ, but in  [1] it’s showed that an attractor cannot be 
adequately reconstructed for very large values of τ. So, before making up final decision we 
calculate the dimension of attractor for all values in Table 2. The large values of τ result in 
impossibility to determine both the correlation exponents and attractor dimensions (Table 3) 
using Grassberger-Procaccia method [8]. 
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Table 2 - Time lags (hours) subject to different values of  CL, and first minima of average mu-
tual information, Imin1, for the time series of NO2 , SO2 at the sites of Gdansk reg.  

(Jan.-Dec. 2003) 
 

 Site 6 (Sopot) Site 9 (Gdynia) 
NO2 SO2 NO2 SO2 

CL = 0 — — 102 — 
CL = 0.1 136 232 53 147 
CL = 0.5 6 12 4 26 

Imin1 9 19 8 17 
 

The outcome is explained not only inappropriate values of τ but also shortcomings of correla-
tion dimension method [2]. If algorithm [1] is used, then a percentages of false nearest neigh-
bours are comparatively large in a case of large τ. If time lags determined by average mutual 
information are used, then algorithm of false nearest neighbours provides dE = 6 for all air 
pollutants.  
 
Table 3 - Correlation exponents (d2) and embedding dimensions determined by false nearest 
neighbours method (dN) with percentage of false neighbours (in parentheses) calculated for 

various time lags (τ) for time series of NO2, SO2 of Gdansk reg. (Jan.-Dec. 2003) 
 

Site 6 (Sopot) NO2 Site 6 (Sopot) SO2 Site 9 (Gdynia) 
NO2 

Site 9 (Gdynia) 
SO2 

τ d2 dN τ d2 dN τ d2 dN τ d2 dN 
136 - 11 

(6.2) 
232 - 10 

(8.8) 
53 7.62 9 

(9.2) 
147 - 10 

(9.8) 
6 5.42 6  

(1.3) 
12 1.64 6  

(1.2) 
4 5.29 6 

(1.1) 
26 3.95 6 

(1.1) 
9 5.31 6  

(1.2) 
19 1.58 6  

(1.2) 
8 5.31 6 

(1.1) 
17 3.40 6 

(1.2) 
 
 Table 4 shows the global LE. It can note that the Kaplan-Yorke dimensions, which are al-
so the attractor dimensions, are smaller than the dimensions obtained by the algorithm of false 
nearest neighbours. The presence of the two (from six) positive λi suggests the system broad-
ens in the line of two axes and converges along four axes that in the six-dimensional space. 
The time series of SO2 at the site 9 have the highest predictability (more than 2 days), and 
other time series have the predictabilities slightly less than 2 days.  
To use the non-linear prediction method, it is necessary to solve another one problem which 
can be defined as how much exactly nearest neighbours, NN, must be considered to obtain 
satisfactory results of the forecasts? Table 5 summarizes the results of our experiments. The 
coefficients of correlation rise to the maxima at some number of NN. These coefficients are 
both large and significant. So, we further use NN = 180 for NO2 and NN = 260 for SO2 at the 
site 6, as well as NN = 2100 for NO2 and NN = 250 for SO2 at the site 9 
 In conclusion let us underline that we have investigated a chaotic behaviour in the nitro-
gen dioxide and sulphurous anhydride concentration time series at 2 sites in Gdansk region 
and proved an existence of the low-dimensional chaos in these series. We have presented an 
effective nonlinear prediction model and realized a successful short-range forecast of atmos-
pheric pollutant time series.  
 Acknowledgements. The work is carried out in accordance with the NDS-159 project of 
Ministry of Education and Science of Ukraine. 
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Table 4 - First two LE(λ1,λ2),  Kaplan-Yorke dimension (dL), and average limit of predictabil-
ity (Prmax, hours) for time series of NO2,SO2 at sites of Gdansk reg. (Jan.-Dec. 2003) 

 
 Site 6 (Sopot) 

NO2 
Site 6 (So-
pot) SO2 

Site 9 (Gdynia) 
NO2 

Site 9 (Gdy-
nia) SO2 

λ1 0.0184 0.0164 0.0189 0.0150 
λ2 0.0061 0.0066 0.0052 0.0052 
dL 4.11 5.01 3.85 4.60 

Prmax 40 43 41 49 
 

Table 5. Coefficient correlation (r) between actual data and 24-hour forecast subject to NN for 
last 100 points of time series of NO2 and SO2 at the sites of Gdansk reg. during  

Jan.-Dec. 2003 
 

 Site 6 (Sopot) NO2 Site 6 (Sopot) SO2 Site 9 (Gdynia) 
NO2 

Site 9 (Gdynia) 
SO2 

NN 80 180 200 80 260 280 80 210 230 80 250 270 
R 0.95 0.96 0.96 0.91 0.94 0.94 0.96 0.97 0.97 0.93 0.94 0.94 
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Хаос-геометричний метод в короткостроковому прогнозі рівня забруднень гідро-і атмосфери:  
поліпшені оцінки  
Глушков А.В., Сербов Н.Г., Шахман І.А., Балан Г.К., Мансарлійскій В.Ф ., Дудінов А.А.  
В рамках хаос-геометричного підходу отримані поліпшені дані з аналізу та прогнозу хаотичних флукту-
ацій для часових рядів концентрацій діоксиду азоту та сірчистого ангідриду в атмосфері Гданського 
регіону.  
Ключові слова: забруднення гідро-і атмосфери, моделювання, хаос-геометричний підхід. 
 
Хаос-геометрический метод в краткосрочном прогнозе уровня загрязенния гидро-и атмосферы:  
Улучшенные оценки  
Глушков А.В., Сербов Н.Г., Шахман И.А., Балан А.К., Мансарлийский В.Ф., Дудинов А.А. 
В рамках хаос-геометрического подхода получены улучшенные данные по анализу и прогнозу хаотиче-
ских флуктуаций для временных рядов концентраций диоксида азота и сернистого ангидрида в атмо-
сфере Гданьского региона.   
Ключевые слова: загрязнение гидро-и атмосферы,  моделирование, хаос-геометрический подход. 
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