MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE ODESSA STATE ECOLOGICAL UNIVERSITY

GUIDELINES

for the laboratory work "Introduction to the main rock-forming minerals and their physical and chemical properties" on the subject "Geology with Basics of Geomorphology" MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE ODESSA STATE ECOLOGICAL UNIVERSITY

GUIDELINES

for the laboratory work "Introduction to the main rock-forming minerals and their physical and chemical properties" on the subject

"GEOLOGY WITH BASICS OF GEOMORPHOLOGY"

for first-year students Specialty 101 "Ecology"

> «APPROVED» at the meeting of the specialty support group specialty 101 "Ecology" Protocol No. __ dated "__" ___ 20__ year Chairperson of the group <u>Chugai A.V.</u>

«APPROVED» at the meeting of the Department of Hydroecology and Water Research Protocol No. __ dated "__" ___2024 Head of the Department Loboda N.S. MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE ODESSA STATE ECOLOGICAL UNIVERSITY

GUIDELINES

for the laboratory work "Introduction to the main rock-forming minerals and their physical and chemical properties" on the subject

"GEOLOGY WITH BASICS OF GEOMORPHOLOGY"

for first-year students Specialty 101 "Ecology"

> «APPROVED» at the meeting of the specialty support group specialty 101 "Ecology" Protocol No. _____dated "______20___ year

Guidelines for conducting the laboratory work "Introduction to the main rock-forming minerals and their physical and chemical properties" on the subject "Geology with Basics of Geomorphology" / Kuza A.M., Loboda N.S. / - Odessa, OSEU, 2024. - 39 p.

The guidelines are intended for first-year students of specialty 101 "Ecology", educational program "Ecology, Environmental Protection and Balanced Nature Management".

TABLE OF CONTENTS

Introduction	5
4 LABORATORY WORK №4 INTRODUCTION TO MAJOR ROCK-	6
FORMING MINERALS AND THEIR PROPERTIES	
4.1 The distribution of minerals in the Earth	6
4.2 Mineral Properties	7
4.3 Classes of Minerals	12
4.4 Task for laboratory work	15
4.5 Self-assessment questions, Tests	15
4.6 Task for laboratory work "minerals" (for distance learning.)	17
Recommended literature	19
SUPPLEMENTS	20
SUPPLEMENT Mineral identification	21
SUPPLEMENT A.1 Basic mineral properties determined by hardness	21
SUPPLEMENT A.2 Key to Rock-Forming Minerals	25

Introduction

Mineralogy is the science of minerals, which studies the properties of minerals that make up the Earth's crust and the various processes of their formation. A mineral is a natural formation composed of one or more chemical elements, possessing specific physical properties, and remaining stable under certain natural conditions. Minerals are formed through physicochemical processes deep within the Earth and on its surface. Most minerals are solid substances (such as quartz, feldspar, etc.), but there are also liquid minerals (mercury, water, oil) and gaseous ones (carbon dioxide, hydrogen sulfide, etc.). It is one of the oldest branches of geological knowledge, originating in the Stone Age when early humans learned to distinguish and seek out stones suitable for making weapons and ornaments, such as jade, flint, etc. The first attempts to classify minerals trace back to Aristotle. The development of mineralogy is closely linked to the development of mining. Mineralogical research draws upon chemistry, crystallography, physics, and geology.

The objective of the laboratory work is to acquire initial knowledge about the chemical composition of the Earth's crust - minerals and rocks, as well as their formations, and to examine the most important patterns of geological processes, structural elements of the Earth, and the composition of the lithosphere.

As a result of completing the laboratory work, students should be familiar with minerals, their classification, properties, and practical applications.

LABORATORY WORK №4 4 INTRODUCTION TO MAJOR ROCK-FORMING MINERALS AND THEIR PROPERTIES

4.1 The distribution of minerals in the Earth

There are currently 92 chemical elements known to exist in the Earth's crust. Chemical elements have varying distributions and significance in the composition of the Earth's crust, as evidenced by Table 4.1 provided.

From the table, it can be seen that the Earth's crust consists of the 10 most abundant chemical elements, while the rest of the chemical elements together constitute about 0.5%.

N₂	Chemical Elements	Weight Percentage
1	Oxygen	47.00
2	Silicon	29.50
3	Aluminum	8.05
4	Iron	4.65
5	Calcium	2.96
6	Sodium	2.50
7	Potassium	2.50
8	Magnesium	1.87
9	Titanium	0.45
10	Phosphorus	0.09
Other elements		0.43
		100%

Table 1 - Average Composition of the Earth's Crust (in weight %) (according to Vinogradov O.P.)

Most chemical elements in the Earth's crust form compounds with other elements, only a few of them - such as gold, platinum, silver, copper, diamond, graphite, sulfur, and others - occur in pure native form. As a result of various chemical transformations, elements combine and form minerals that make up the Earth's crust. Hence arises the definition of the concept of "mineral."

A mineral is defined as a natural chemical compound of elements (or a native element) formed as a result of certain physicochemical processes occurring in the Earth's crust or on its surface.

Minerals in the Earth's crust do not form large independent geological bodies, but individual minerals are observed in nature, which in their pure form constitute bodies such as ice in glaciers, halite in salt deposits, calcite in marble deposits, and others. In these cases, the mentioned minerals form monomineralic rock formations.

4.2 Mineral Properties

Out of the total number (almost 2500) of known minerals, only about 50 are of significant importance, participating in the formation of rock formations; these are called rock-forming minerals. Each mineral possesses certain physical properties that arise from the characteristics of its internal structure. Physical properties enable the distinction of minerals from one another.

The physical properties of minerals include:

Color - a physical characteristic of minerals (the first thing observed by an observer). However, the same mineral species may have different colors (Fig.4.1). For example, quartz can be colored purple, dark, pink, white, or gray, but it can also be colorless and transparent. Due to color variability, color may not always be a distinctive feature of minerals. Only certain minerals have consistent coloring. For example: green - malachite, red - cinnabar, etc.

The color of minerals depends on their chemical impurities - pigments. For example, corundum (Al2O3) in its pure form is colorless and transparent, but when it contains Cr2O3 impurities, it turns red (ruby), and Ti impurities give it a blue color (sapphire).

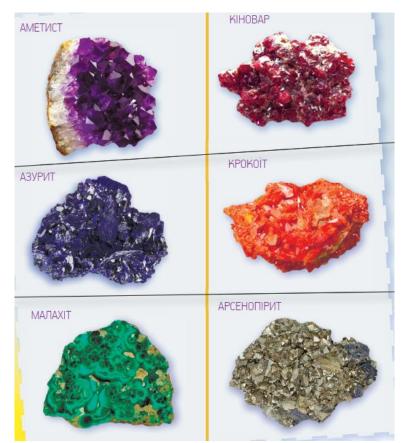


Figure 4.1 - A variety of mineral colors

Streak color. Many minerals, when ground into powder, have a different color than their solid crystal or piece. Pyrite, for example, appears golden-yellow

in its solid form but almost black as a powder. To determine the streak color of a mineral, it is repeatedly drawn across the unglazed surface of a porcelain plate (fig.4.2).

Figure 4.2 - Mineral streak colors

Luster. Most minerals exhibit a luster when viewed in reflected light. Only some, mostly amorphous ones, have a dull surface. The luster of minerals is determined by comparison with the characteristic luster of familiar substances. There are two types of luster: metallic and non-metallic.

Metallic luster - the mineral shines similarly to a polished surface of steel, silver, platinum, and other metals. Minerals such as pyrite, galena, and others have a metallic luster.

Non-metallic luster can be:

a) *Vitreous luster* - the surface of minerals shines like the surface of window glass or a bottle. Many minerals exhibit this luster, including halite, gypsum, quartz, topaz, olivine, feldspar, and others.

b) *Pearly luster* - the mineral shines like mother-of-pearl with a rainbow iridescence, which occurs when light is reflected from thin surface layers. Examples include talc, muscovite, orthoclase, anorthite, gypsum, and others.

c) *Silky luster* - characteristic of minerals with a fibrous structure resembling the sheen of silk threads, such as asbestos, satin spar, fibrous varieties of gypsum, and others.

d) Dull luster - minerals with a porous, earthy surface do not shine.

e) *Greasy luster* - the mineral shines like a surface smeared with grease. Minerals such as sulfur, opal, quartz in fracture, nepheline, and others exhibit this luster.

Hardness - is conveyed by the ability of minerals to resist scratching and abrasion. In determining hardness, the Moos scale is used, which includes 10 minerals. The ordinal number of the mineral on the scale determines its hardness in units. The hardness scale includes minerals arranged in increasing order of hardness (Fig.4.3):

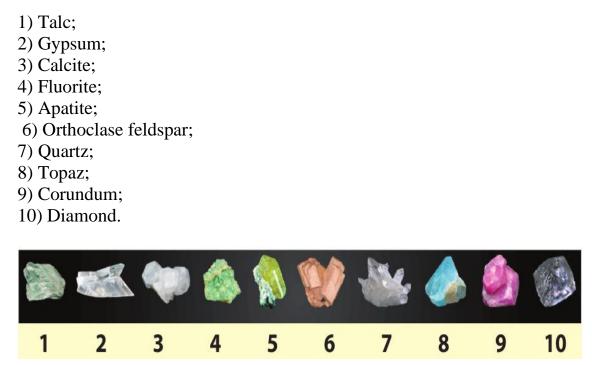


Figure 4.3 - The Moos scale of hardness

The sequence for determining the hardness of minerals is as follows: a smooth surface is selected on the mineral being tested, then the minerals of the scale are sequentially scratched on it. Suppose the first three do not leave any scratches, but the fourth (fluorite) does leave a scratch on the tested mineral. Based on this, it is determined that our mineral has a hardness of 3. If the tested mineral leaves a scratch on gypsum, which has a hardness of 2, this definitively indicates that the tested mineral has a hardness of 3.

Harder minerals have a greater density of packed atoms in their spatial lattices. They are generally more resistant to processes of solubility and chemical decomposition. This distinct property of mineral hardness significantly influences the development of the Earth's surface relief and the chemistry of surface and groundwater. Rock formations composed of harder minerals form positive elements of relief, while those consisting of relatively softer minerals create negative relief features.

Cleavage - is characteristic only of crystalline substances. Cleavage refers to the ability of crystalline minerals to split along specific planes. The directions of easiest cleavage in minerals are called cleavage planes.

Cleavage can be:

a) *Perfect cleavage* is manifested in minerals easily splitting into sheets or breaking into fragments with evenly distributed flat surfaces. The first case of perfect cleavage is typical in micas, and the second is seen in halite, calcite, adenate, and others.

b) *Good cleavage* - when minerals break into fragments with both smooth and rough surfaces upon crushing. Feldspars, hornblende, fluorite, and others exhibit this type of cleavage.

c) *Poor cleavage* - the flat surfaces of the break when minerals are crushed are barely discernible or entirely absent. Minerals such as apatite, quartz, pyrite, and others have this type of cleavage.

d) *Some minerals lack cleavage* altogether; in this case, it is referred to as complete lack of cleavage. Examples include milky-white quartz and gold.

Cleavage is closely related to the internal structure of crystals and is explained by the presence of planes between which the attractions are minimal due to the considerable distance between atoms or ions. As a result, fractures along these planes occur more easily in minerals than in any other direction. The nature of cleavage is an important distinguishing feature of minerals.

Fracture - is the surface characteristic obtained during the crushing of minerals. When minerals with perfect cleavage are broken, flat surfaces are formed. Different fracture surfaces are formed in amorphous minerals or minerals with imperfect cleavage.

Minerals are characterized by the following types of fractures:

a) *Conchoidal* - the fracture surface of the rock resembles the surface of a shell with concentric growth zones. This type of fracture is characteristic of amorphous and cryptocrystalline minerals such as obsidian, opal, quartz, and others.

b) *Earthy* - the surface is rough and porous, similar to lumps of soil. Minerals such as limonite, kaolin, chalk, bauxite, and others have this type of fracture.

c) Granular - crystalline aggregates of minerals, for example, marble.

d) *Fibrous (splintery)* - sharp needles are present on the fracture surface, for example, in fibrous gypsum (selenite), fibrous hornblende.

The density for different minerals varies from 0.9 to 19 (see table 4.2). The exact determination of density is possible only under laboratory conditions by weighing on hydrostatic balances and other methods. In practice, for a quick approximate determination of density, minerals are weighed by hand (assessment - "high," "medium," "low" density). The density of minerals is of great importance in the transportation by water streams. Minerals of low density are carried over long distances, while those of high density settle earlier. Consequently, during the transportation of minerals, they are sorted by density, leading to the natural enrichment and formation of placers of valuable minerals such as gold, platinum, cassiterite, wolframite, and others.

Minerals of low density, up to 3	Minerals of medium density, from 3 to 5	Minerals of high density, over 5	
Ice 0.91	Fluorite 3.25	Galena 7.50	
Gypsum 2.30	Barite 4.50	Cinnabar 8.00	
Quartz 2.65		Gold 19.0	

Table 4.2 - Density of Some Minerals

Magnetism. Some minerals possess magnetic properties, meaning they either act on a magnetic needle or are attracted to a magnet themselves. Due to this, magnetism is an important characteristic for them. Minerals characterized by magnetic properties include magnetite Fe3O4, pyrrhotite FeSnS, native platinum with iron impurities. Certain minerals exhibit specific properties; for instance, carbonates react with weak (5-10%) hydrochloric acid, producing bubbles of CO2, and many sulfides fizz with the formation of carbon disulfide, easily detectable by its characteristic odor.

Some water-soluble salts can be identified by taste. Using this characteristic, it is easy to distinguish, for example, sylvite from halite. The former has a bitter-salty taste, while the latter is simply salty.

In nature, conditions of crystallization where material flow occurs evenly from all sides are rare, so perfect crystals are seldom encountered. More commonly, minerals exist as crystalline aggregates and aggregates.

Crystalline aggregates represent the clustering of mineral grains of various shapes, depending on the internal structure of the mineral and the shape of the space in which its crystallization occurred. Among crystalline aggregates, the following forms are distinguished by shape: granular (pyrite, rock salt), columnar (selenite), acicular (hornblende), fibrous (asbestos), platy (gypsum), scaly (graphite).

Minerals in nature are found in the form of dendrites, druses, secretions, concretions, infiltrations, crusts.

Dendrites are treelike crystal growths formed during rapid crystallization or in thin cracks. Examples include ice dendrites on window glass in winter, clays, limestones, dendrites of native copper, gold, silver, and others.

Druses or crystal "children" are crystal growths attached at one end to a common base, limiting them to free ends only; druses may contain quartz, calcite, fluorite, gypsum, and others.

Secretions are voids in solid rock formations, completely or partially filled with mineral material. Large secretions with a cavity inside are called geodes. Secretions have a concentric structure, and their mineral filling occurs from the periphery to the center.

Concretions are concretions of spherical or irregularly rounded shape, formed during the deposition of mineral material around any centers of crystallization, often resulting in a radial structure. Concretions are typical for minerals such as phosphorite, pyrite, siderite, and others.

Unlike secretions, concretions grow from the center outward. Oolites resemble concretions in their structure - shallow (up to 10 mm in diameter) rounded formations with a concentric structure formed by the precipitation of mineral material from aqueous solutions.

Oolites are most often composed of calcite, manganese oxide, and brown ironstone.

4.3 Classes of Minerals

Each mineral is characterized by its chemical composition. The physical properties, practical significance, and behavior of minerals in various geological conditions primarily depend on their chemical composition. The chemical composition of minerals is expressed by ordinary chemical formulas. Knowing the chemical formula of a mineral makes it easy to predict all of its properties.

For convenience in studying and practical use, minerals, like other natural formations, are divided into classes and groups. The classification is based on chemical properties, composition, and origin of minerals. Taking into account notable features, *all minerals can be divided into nine classes*:

- 1) Native elements;
- 2) Sulfides;
- 3) Halide compounds;
- 4) Oxides and hydroxides;
- 5) Silicates;
- 6) Carbonates;
- 7) Sulfates;
- 8) Phosphates;
- 9) Carbon compounds.

Native Elements. Minerals in this class consist of a single chemical element. They are not widely distributed (except for graphite and sulfur) but are very important practically. Native element minerals include platinum Pt, gold Au, silver Ag, diamond C, graphite C, sulfur S, copper Cu, and others.

Sulfides. This class includes minerals that are primarily compounds of heavy metals with sulfur. They are not rock-forming minerals but are of great interest as ores of colored and black metals. The most common minerals of this class include pyrite FeS2 (iron or sulfur pyrite), galena PbS, sphalerite ZnS, chalcopyrite CuFeS2, cinnabar HgS.

Halide Compounds. Minerals in this class are salts of halogen acids (HCl, HF, etc.) in chemical terms. Their role as rock-forming minerals is small, but they are important in general geological and practical terms. Typical minerals of this class include halite (rock salt) NaCl, sylvite KCl, fluorite CaF2.

Oxides and Hydroxides. Minerals in this class are compounds of elements with oxygen and the hydroxyl group OH. They are widespread in the Earth's crust and make up about 17% of its mass. Let's consider the most important among them.

Quartz SiO2 is the most common rock-forming mineral, accounting for 12% of the Earth's crust. Chemically, it is classified as an oxide, and structurally, as a silicate. Varieties of quartz differ in color:

- 1) Rock crystal colorless and transparent;
- 2) Amethyst purple;
- 3) Morion black;

4) Milky quartz - white;

5) Ordinary quartz - gray, and so on.

Chalcedony SiO2 is a cryptocrystalline variety of quartz. Chalcedony usually contains various impurities, so it has many varieties, including:

1) Carnelian - contains clay-iron impurities;

2) Jasper - similar impurities but typically has a colored, even, or mottled appearance, making it widely used as a gemstone;

3) Agate - banded chalcedony.

Hematite (red iron ore) Fe2O3, while not significant as a rock-forming mineral, occurs as impurities in many rocks, ranging from a fraction of a percent to several percent. Uniformly dispersed particles in sedimentary rocks (clays, sand, sandstone, limestone, etc.) color these rocks red or reddish.

Magnetite (magnetic iron ore) Fe3O4 is a mineral in basic igneous rocks Fe3O4, Fe2O3, FeO, richer in iron than hematite, and exhibits magnetic properties.

Corundum Al2O3, while not significant as a rock-forming mineral, includes red corundum called ruby and blue corundum called sapphire. A fine-grained aggregate of corundum with impurities such as quartz, hematite, and others is called emery.

From the hydroxide group, the most common is goethite, or limonite Fe2O3 · nH2O, a complex mineral aggregate closely related in composition to minerals. Therefore, it can be conditionally classified as a class of water oxides. Goethite is scattered as impurities in sedimentary rocks and, depending on concentration, imparts various colors such as yellow, yellow-brown, brown, etc., often acting as cement in rocks like sandstones and conglomerates.

Opal SiO2 \cdot **nH2O** is a hydrated silicon oxide. In some cases, it is a rock-forming mineral and is the main component of rocks such as geyserite, tufa, and diatomite.

Carbonates. Minerals of the carbonate class are salts of carbonic acid H2CO3. They are widespread in the upper parts of the Earth's crust. Representatives of carbonates include calcite CaCO3, magnesite MgCO3, dolomite CaMg(CO3)2, siderite FeCO3, malachite Cu(OH)2CO3.

Sulfates. This class includes minerals such as gypsum CaSO4 \cdot 2H2O, and barite BaSO4. Long fibrous varieties of gypsum, sometimes called selenite (moonstone), are occasionally encountered. Fine-grained masses of ordinary gypsum are called alabaster.

Barite BaSO4 is characterized by high density compared to other nonmetallic minerals (4300-4600) and is found among sedimentary rocks along with calcite and other minerals.

Phosphates. Phosphates are salts of orthophosphoric acid H3PO4. Among the many minerals in this class, apatite and phosphorite are particularly important as rock-forming minerals and raw materials for fertilizer production. Apatite Ca(Cl,F)(PO4)3 is the most common mineral in this class. Phosphorites are marine sedimentary formations, chemically similar to apatite, primarily composed of

Ca5(Cl,F)(PO4)3 with impurities of carbonates, clays, and other substances. They usually form radially fibrous and cryptocrystalline concretions.

Silicates. Minerals of this class are the most widespread, constituting over 75% of the Earth's crust by mass. Silicates are the main rock-forming minerals and are present in most types of rocks. It is now established that in all silicates, each silicon ion (SiO4)4 is connected to four oxygen ions. The basic structural unit of silicates is the silicon-oxygen tetrahedron, with four oxygen ions positioned at the vertices and a silicon ion at the center.

The silicon-oxygen tetrahedron has four free valence bonds, through which ions of other chemical elements and silicon-oxygen tetrahedra can be attached. Silicate classification is based on the method of tetrahedron linkage. Siliconoxygen tetrahedra can be isolated from each other or connected through shared ions via tetrahedral vertices, forming complex anionic radicals. Sometimes the tetravalent silicon ion can be replaced by a trivalent aluminum ion. Compounds in which aluminum, together with silicon, plays the role of the oxygen element, are called aluminosilicates, as proposed by Academician V.I. Vernadsky, which include feldspars, for example.

In chemical terms, silicates are salts of various silicic acids. Important silicic acids include: orthosilicic acid H4SiO4, metasilicic acid H2SiO3, and aluminosilicic acid H2Al2Si2O8. In aluminosilicic acid, aluminum, together with silicon, acts as the acidic element. Let's consider the main minerals of this class: olivine, augite, hornblende, feldspars, kaolin, and micas.

Olivine (Mg,Fe)2SiO4 is an iron-magnesium-rich, poor silicate, characteristic of basic and ultrabasic volcanic rocks.

Augite Ca(Mg,Fe,Al)2(Si,Al)2O6 is a mineral of complex and variable chemical composition. In the structure of augite, aluminum occupies the center of oxygen tetrahedra, replacing silicon. It is an important rock-forming mineral found in rocks such as basalt, gabbro, and diabase.

Hornblende. Its composition is quite variable and can be expressed by the formula (CaNa)2(Fe2+,Fe3+,Mg,Al,Mn,Ti), (Fi,OH2)2.

Feldspars are aluminosilicates with many varieties, among which the main ones are orthoclase K[Al Si3O8], albite Na[Al Si3O8], and anorthite Ca[Al2Si2O8]. Albite and anorthite are similar in their crystal-chemical structure and often crystallize together, forming a group of minerals called plagioclase. The content of albite (Ab) and anorthite (An) in plagioclases ranges from 0 to 100%. The composition of plagioclases is determined by the formula r. Ab q. An; r and q represent the percentage content of albite and anorthite in the plagioclase of a given composition.

Feldspars are the most common minerals in the Earth's crust (about 50%). They are the main components of rocks such as granite, syenite, diorite, gabbro, basalt, gneiss, and others.

Kaolinite Al4(OH)8[Si4O10] is formed by the chemical decomposition of feldspars and is a component of clays. Earthy fluffy masses of kaolinite are called kaolin (china clay).

Micas are part of many volcanic and metamorphic rocks. They have perfect cleavage in one direction, which makes them easily split into very thin sheets. Muscovite and biotite have significant geological importance.

Muscovite KAl2(F,OH)2[HSiO10] is a colorless or slightly tinted transparent potassium mica. A fine scaly variety of muscovite is called sericite. Muscovite is found in granites, syenites, diorites, and mica schists.

Biotite K(Mg,Fe2+, Fe3+, Al)3(OH,F)6[Al Si3O10] is a magnesium-iron mica of greenish or brownish-black color. It occurs in granites, syenites, diorites, and mica schists.

Talc Mg(OH)2[Si4O10] is often a rock-forming mineral and is a major component of talc schists.

Serpentine Mg6(OH)8[Si4010], differs from talc only in its higher magnesium content and lower silicon content. A rock composed of serpentine is called serpentinite (from "serpens" meaning serpent), as it often has a green color. The fibrous variety of serpentine is called asbestos.

Carbon compounds. This class includes mineral formations that represent substances of animal and plant origin that have undergone physical and chemical changes. According to chemical characteristics, mineral carbon compounds can be divided into three groups: 1) hydrocarbons; 2) natural resins; 3) fossil coal.

Hydrocarbons include petroleum and mineral wax (ozocerite). The latter forms through the natural solidification of petroleum and consists of 84% carbon and 16% hydrogen.

Natural resins include amber C10H16O (fossil resins of tertiary coniferous plants) and asphalt - a product of natural solidification and oxidation of petroleum.

Fossil coal consists of altered plant remains enriched with carbon. It includes peat, lignite, bituminous coal, and anthracite. They are essentially rock formations and will be considered in the section on sedimentary rocks.

4.4 Task for laboratory work:

1. Determine the physical properties of 4-5 mineral samples using a mineral identification guide.

2. Briefly explain the theoretical part, basic principles, and definitions.

3. Describe the physical properties of two to four mineral samples.

4.5 Self-assessment questions:

1. Define the concepts of "mineralogy" and "mineral."

2. What factors determine the physical and chemical properties of rocks and minerals?

3. Provide a general overview of endogenic and exogenic processes in mineral formation.

4. How is the hardness of minerals determined? What is the Mohs scale?

5. What are cleavage and fracture? What types are encountered?

7. Mineral classes

- 8. Determine which class of minerals is the most common. Explain why.
- 9. Which minerals belong to the class of native elements?

10. Name 10 primary chemical elements that make up the Earth's crust, indicating the percentage content of the top 3 chemical elements.

TESTS:

1. Diagnostic features of minerals are:

A) characteristics specific to that mineral;

B) physical properties of minerals;

C) chemical properties of minerals;

D) origin of minerals.

2. Which chemical element of the Earth's crust has the highest percentage content:

A) silicon;

B) iron;

C) gold;

D) nickel.

3. The hardness of minerals is determined by a scale called:

A) Mohs;

- B) Clarke;
- C) Moho;
- D) Haina.

4. Obsidian is a rock of:

- A) igneous origin;
- B) hydrothermal origin;
- C) effusive origin.

5. Which layer of the Earth is called the "lithosphere"?

- A) Earth's crust;
- B) mantle;

C) core;

D) asthenosphere.

6. Halite belongs to:

- A) carbonates;
- B) aluminosilicates;
- C) halide compounds.

7. Minerals composed of a single chemical element are called:

- A) native elements;
- B) silicates;
- C) carbonates;
- D) clarkes.

8. Limonite is a:

- 1. Carbonate mineral;
- 2. Sulfate mineral;
- 3. Hydroxide.

9. The most common class of minerals is:

- A) carbonates;
- B) silicates;
- C) sulfates;
- D) nitrates.

10. Formation of icicle-like structures hanging from the ceiling of a cave downward is called:

- 1. Stalagmite;
- 2. Stalactite;
- 3. Pegmatite.

4.6 Task for laboratory work "minerals" (for distance learning.)

The sequential number corresponds to the variant number.

Minerals should be characterized (described) according to the scheme you have in the "IDENTIFIER," which is in the GEOLOGY PRACTICUM and in the MUDL program in the laboratory work "Minerals" at the end of the topic.

Be sure to indicate which class the mineral belongs to.

Upload the work to the PROGRAM.

- 1. Biotite, sulfur, talc, microcline, diamond.
- 2. Chlorite, serpentine, labradorite, pyrite, quartz.
- 3. Corundum, chalcopyrite, muscovite, asbestos, topaz.
- 4. Kaolinite, nepheline, olivine, augite, phosphorite.
- 5. Garnet, orthoclase, hornblende, apatite, gypsum.
- 6. Siderite, halite, limonite, biotite, albite.
- 7. Tourmaline, opal, fluorite, calcite, talc.
- 8. Labradorite, limonite, anhydrite, kaolinite, chlorite.
- 9. Garnet, phosphorite, asbestos, anorthite, glauconite.
- 10. Sulfur, pyrite, labradorite, orthoclase, gypsum.

- 11. Halite, limonite, opal, chalcopyrite, corundum.
- 12. Quartz, garnet, hematite, kaolinite, graphite.
- 13. Halite, labradorite, fluorite, quartz, chalcopyrite.
- 14. Kaolinite, hornblende, tourmaline, garnet, anhydrite.
- 15. Gypsum, alabaster, dolomite, Iceland spar, fluorite.
- 16. Calcite, marcasite, limonite, corundum (red), halite.
- 17. Asbestos, serpentinite, garnet, phosphorite, apatite.
- 18. Olivine, calcite, corundum (blue), marcasite, hornblende.
- 19. Talc, apatite, tourmaline, anhydrite, gypsum.
- 20. Fluorite, limonite, corundum (fine-grained), quartz, halite.
- 21. Diamond, nepheline, biotite, kaolinite, serpentinite.
- 22. Talc, garnet, apatite, tourmaline, diamond.
- 23. Topaz, labradorite, microcline, muscovite, asbestos.
- 24. Corundum (blue), orthoclase, chlorite, muscovite, pyrite, garnet.
- 25. Diamond, labradorite, muscovite, kaolinite, tourmaline.

1. Bahrov M.V., Bokov V.O., Chervan I.G. Geology. Kyiv: Lybid, 2000.

2. Balan H.K., Seleznova L.V., Ivanenko O.G. Fundamentals of Geophysics: Textbook. Odesa: Ecology, 2006. 96 p.

3. Balan H.K., Seleznova L.V., Boryk S.A. Earth, Its Structure and Relief: Textbook for Students of the "Ecology" Educational Program. Odesa: AO BAKHVA, 2001. 115 p.

4. Balan A.K., Zakharova M.V., Seleznyova L.V., Grashchenkova T.V. Fundamentals of Geology and Geomorphology. Workbook for laboratory classes in the discipline "Geology with Basics of Geomorphology". It includes brief summaries on the history of Earth's crust development, its composition and structure, relief, and the main consequences of Earth's movements. Odessa, 2014, 112 p.

5. Bondarchuk V.H. Geology for Everyone. Kyiv: Rad. shk., 2000.

6. Pavlyshyn V.I., Dovhy S.O. Mineralogy: Textbook. Kyiv: KNT, 2008. 536 p.

7. Pavlyshyn V.I., Dovhy S.O. Mineralogy. Part 2. Kyiv: KNT, 2013. 528 p.

8. Paran'ko I.S., Sivoronov A.O., Mamedov O.I. Geology with Basics of Geomorphology: Textbook. Kryvyi Rih: Mineral, 2008. 373 p.

9. Rudko H.I., Adamenko O.M., Chepizhko O.V., Krochak M.D. Geology with Basics of Geomorphology: Textbook for Students of Environmental and Geographical Specialties of Higher Educational Institutions. Chernivtsi: Bukrek, 2010. 400 p.

10. Tykhonenko D.H., Dehtiariov V.V., Shchukovskyi M.A. et al. Geology with Basics of Mineralogy. Kyiv: Vysha osvita, 2003.

SUPPLEMENTS

SUPPLEMENT A MINERAL IDENTIFICATION

Mineral identification is conveniently initiated with hardness as a constant value for most minerals, independent of the size of the specimens or the grain size in the rock (Table A.1).

N⁰	Hardness	Luster	Characteristic Features	Serial number in Table A.2
1	2	3	4	5
		With metallic luster	Stains hands, not flexible	Nº.1
		With vitreous	Perfect cleavage, colorless, flexible sheets by cleavage	N <u>⁰</u> .20
1	Minerals with a hardness up to 2 inclusive	or silky luster	Green, mica-like, flexible sheets by cleavage	N <u>o</u> .35
	With greasy lusterSoap-like to the touchDull, whiteEarthy, with water plastic	Soap-like to the touch	№.29	
		Dull, white	•	№.32
		With a greasy luster on fracture	Yellow with a shell-like fracture	Nº 2
			Green, fine grains, green streak	N <u>∘</u> . 36
2	Minerals with a hardness above 2	With a glassy	Black, cleaves into thin flakes	Nº. 34
	up to 3 inclusive	or pearly luster	Light, cleaves into thin flakes	№ . 33
			Salty to the taste	№ . 14
			Effervesces with diluted hydrochloric acid	№. 16

Table A.1 - Basic mineral properties determined by hardness

Continuation of Table A.1

1	2	2		1
1	2	3	4	5
		With metallic luster	Golden-yellow, streak greenish-black	Nº 5
			Green, mottled	№30
			Greenish-white, fibrous	№ 31
	Minerals with a hardness greater		White, effervesces in heated hydrochloric acid	№ 17
3	than 3 up to 4, inclusive	With a glassy, silky, or pearly luster	Purple, green, blue, transparent, cubic crystals	№ 15
			White, blue, perfect cleavage, granular	№ 21
			Effervesces in hydrochloric acid when powdered	Nº18
			Yellowish-brown, effervesces in heated hydrochloric acid, turning yellow on the surface	№19
	Minerals with a hardness	With greasy or vitreous luster	Yellow and greenish, transparent	N <u>∘</u> 22
4	greater than 4 up to 5 inclusive	With dull earthy or greasy luster	Brown, opaque, granular	№ 23
			Black streak, magnetic properties	№10
	Minerals with a	With metallic or dull luster	Yellow-brown streak, rust- yellow	Nº13
5	hardness greater than 5 up to 6 inclusive		Reddish streak, cherry-brown	N <u>∘</u> 9
	U IIICIUSIVE	With greasy or silky luster	Subdued sheen, translucent	№12
		SUNY LUSICI	Greasy, oily luster	№ 42

Continuation of Table A.1

1	2	3	4	5
			Greenish or brown streak, perfect cleavage, splintery fracture	N <u>°</u> 28
			Dark green, black, grayish-green streak	Nº27
			Gray, iridescent in blue-green and bluish tones	№ 41
		With vitreous	Greenish-gray, yellowish-green, pink, light streak	N <u>∘</u> 38
		luster	Yellowish, pink, flesh-red, rectangular fractures along cleavage	№ 37
			White, rhombic fractures along cleavage	№ 39
			Gray, dark gray, yellowish, oblique angles along cleavage	Nº40
		Minerals with	Cubic, golden crystals, grayish- green streak. (No. 3)	N <u>∘</u> 3
		metallic luster	Radiating growths of dark golden color	<u>№</u> 4
	Minerals with a hardness between	Minerals with	Hidden crystalline structure, appearing as grains and tabular forms, weakly translucent, sometimes streaked	№ 7
	6 and 7 inclusive	greasy or glassy luster	No cleavage, greasy luster on fracture, glassy luster on faces, conchoidal fracture	№ 6
			Dark green small grains.	N <u>∘</u> 24
		With a dull luster	Various colors, conchoidal fracture	N <u>°</u> 8

Continuation of Table A.1

1	2	3	4	5
	Minerals with a hardness greater than	-	Hardness 7.5, dark-red color, multifaceted	Nº25
				№ 26
		-	Hardness 9.0, barrel-shaped crystals, streaks on cleavage planes, fine- grained, dark	№ 11

As seen from Table A.1, minerals are divided into seven groups based on their hardness. Within each of the first six groups, minerals are further categorized into smaller subgroups based on their luster, with each mineral assigned a specific number against which the most characteristic features distinguishing that mineral from its neighbors in the subgroup are indicated.

The approximate process of identifying a mineral is as follows: first, the hardness of the mineral is determined, let's assume it is 3. Therefore, the mineral belongs to the second group based on hardness, that is, to the group of minerals with a hardness of 2-3. Then, the luster of the mineral is determined. To do this, a fresh fracture surface is required. Let's assume the mineral has a glassy luster. We refer to subgroup 2 (minerals with glassy or pearly luster). In this subgroup (see Table A.1), there are five numbers: N \circ 36, N \circ 34, N \circ 33, N \circ 14, N \circ 16, each of which has certain characteristic properties. For example, for N \circ 36, the characteristic features are green color and green streak; for N \circ 34, black color and the ability to cleave into thin sheets; for N \circ 33, light color and cleavage into thin sheets; for N \circ 14, salty taste; for N \circ 16, effervescence with weak hydrochloric acid.

It turns out that the identified mineral is not salty and does not cleave into sheets, but effervesces vigorously with weak hydrochloric acid on the fresh surface. A mineral with such properties has $N_{2}16$. Next, we proceed to Table A.2, where the main rock-forming minerals are classified into mineralogical classes, and under this number, we find that this mineral is calcite. By determining all the other properties of the mineral according to the scheme indicated in Table A.2, we finally confirm the correctness of our characterization. A complete mineral characterization according to this scheme includes: name, chemical composition, hardness, luster, color, streak color, cleavage and fracture, crystal form, specific gravity, mode of occurrence in nature, and specific diagnostic properties.

Table A.2 -	Key to	Rock-Forming	Minerals

S/N	Mineral, formula	Crystal form	Hardness Specific gravity,	Hardness Luster (L.) Color (C.)	Cleavage and fracture	Diagnostic features	Origin	Practical
			g/cm3	Streak color (SC.)				
1	2	3	4	5	6	7	8	9
		Γ	1	I Native ele		I	Γ	
1	Graphite, C	Hexagonal plates and flakes	<u>1.0</u> 2.2	L. – Metallic, greasy C. – Steel- grey to black SC. – Greyish- black, lustrous	Fine-grained, perfect cleavage in one direction	Greasy to the touch, stains hands, writes on paper.	Forms in igneous rocks, during reducing processes at high temperatures. Can be a product of coal metamorphism.	Manufacture of pencils, crucibles, electronic devices and more
2	Sulfur, S	Truncated tetrahedra, tetragonal crystals	<u>1.5</u> 2.0-2.1	L. – Greasy C. – Yellow SC. – Weak, pale-yellow	Conchoidal, earthy, imperfect cleavage	Soft, yellow to greenish-brown color. Becomes charged when rubbed, flammable.	Forms during the decomposition of sulfurous compounds in the presence of organic matter. Emanates from volcanic vents with vapor and hydrogen sulfide. Can be produced from	Used in rubber, chemical, textile (bleaching fabrics) industries, medicine, electrical engineering.

							the	
							decomposition	
							-	
				TT C 16	1		of sulfides.	
				II. Sulfi				
3	Pyrite (iron sulfide), FeS2	Cubic crystals	<u>6.0-6.5</u>	L. – Strong	Uneven,	Differs from	Forms in	Production of
			4.9-5.2	metallic	conchoidal,	chalcopyrite by	contact-	sulfuric acid.
				C. – Straw-	imperfect	its straw-yellow	metamorphic	
				yellow,	cleavage	color, high	rocks, from the	
				golden		hardness, and	decomposition	
				SC. –		crystal form	of animal and	
				Greenish-		with striations	plant remains in	
				black		on the faces.	sedimentary	
							rocks, during	
							hydrothermal	
							processes.	
4	Marcasite (spear pyrite),	Radial-rayed	6.0-6.5	L. –	Uneven	Greenish tint on	Forms from	Production of
	FeS2	aggregates,	4.5-4.9	Metallic,		fresh	surface acidic	sulfuric acid.
		tabular		dull		fracture, crystals	and low-	
		or spear-		C. – Pale		different from	temperature	
		shaped crystals		greenish-		pyrite.	hydrothermal	
		and comb-like		yellow		15	solutions.	
		twins		SC. –			Common in	
				Greenish-			sedimentary	
				gray			rocks.	
5	Chalcopyrite (copper	Tetrahedra	3.5-4.0	L. – Strong	Uneven, very	Has a blue,	The mineral has	The most
0	pyrite), CuFeS2	(individual	4.1-4.3	metallic,	imperfect	pinkish-purple	magmatic,	important
	pyrice); eurob2	crystals are	1.1 1.5	sometimes	cleavage	tarnish;	hydrothermal	copper ore.
		rare)		with	eleuvuge	distinguished	origins. Found	copper ore.
		iuro)		iridescent		from pyrite by	in cavities	
				tarnish		hardness and	within	
				C. – Brass-		color	pegmatites	
				yellow,		COIOI	pogmanes	
				•				
				greenish-			1	

				1.1				
				golden				
				SC. –				
				Greenish-				
				black	-			
		1		III. Oxio		1	Г	
6	Quartz (Transparent rock crystal, violet amethyst, smoky quartz) Chemical Formula: SiO2	Elongated prismatic crystals with pyramidal terminations. Prism faces exhibit cross striations.	<u>7,0</u> 2,6	 H Glassy on faces, greasy on fracture. C White, milky, pink, smoky, black. S No streak.* 	Fracture: Conchoidal, no cleavage.	The characteristic features include the crystal shape, hardness, absence of cleavage, conchoidal fracture, and greasy luster.	The mineral originates from both magmatic and hydrothermal processes. It is commonly found in the cavities of pegmatites. During exogenic processes, it	Transparent varieties are used in optical production and jewelry making, while massive ones find applications in metallurgical and glass industries.
							forms through the dehydration and recrystallization of silicon dioxide.	
7	Chalcedony, SiO2	Chalcedony does not form crystals.	<u>6,5</u> 2,6	B Cloudy, greasy, matte, waxy C Light gray, blue, smoky R Does not leave streaks	Conchoidal, no cleavage	Differs from similar opal and cryptocrystalline fluorite by hardness.	Forms during the crystallization of silicon dioxide, precipitates from low- temperature hydrothermal solutions.	Utilization of banded varieties (agate) in jewelry making, precision mechanics, and horology.
8	Flint SiO2 Al2O3	Does not form	7,0	B. – Matte,	There is no	Opaque,	Formed during	Used as an

		crystals".	2,6	hazy K. – From	cohesion, shell fracture	sparks when struck against	sediment diagenesis,	abrasive, in lighters.
				yellow to black,		steel, emits a distinctive odor.	rock catagenesis,	
				diverse		distilletive odor.	and weathering.	
				R. – Doesn't			and weathering.	
				take risks				
9	Hematite	Flakes,	<u>5,5-6,5</u>	B. – Metallic	Shell-like	Cherry-red	Forms in	High-quality
	(iron luster,	plates, and	4,9-5,3	in	or	and	metamorphic	iron ore.
	cryptocrystalline,	rosettes		crystalline	earthy,	brown streak.	rocks as	
	dull brown iron ore),			forms,	no cohesion		a product of	
	Fe2O3			metallic and			iron hydroxide	
				dull in earthy			dehydration.	
				forms			Sometimes -	
				K. – From			during	
				reddish-			hydrothermal	
				brown to			processes and as	
				iron-black			a	
				P. – Cherry-			result of	
				red, brown			oxidation	
							of magnetic	
					~		iron ore.	
10	Magnetite	Octahedral	<u>5,5-6,5</u>	B. –	Granular,	Strong magnetic	A rock-forming	High-quality
	(magnetic	crystals,	4,9-5,2	Metallic,	imperfect	properties	mineral	iron ore.
	iron ore),	sometimes		dull	cohesion	(affects the	in basic igneous	
	Fe2O4	with		K. – Iron-		compass	rocks.	
		streaks on		black		needle).	Also forms	
		the edges		P. – Black			during contact	
							metamorphism	
							and	
							hydrothermal	
11			0.0		D 1 1 1	TT' 1 1 1	processes.	
11	Corundum	Uneven,	<u>9,0</u>	B. – Glassy	Barrel-shaped	High hardness.	Occurs in	Used for

	(red - ruby, blue - sapphire, dark fine-grained - whetstone),	occasionally on the rhombohedron, imperfect cohesion	3,9-4,0	K. – Blue, gray, brown P. – No streak or gives a white streak, scratches porcelain	and plate-like crystals, solid mass		metamorphic rocks, pegmatite veins, basic and alkaline igneous rocks.	metal polishing, as a whetstone (whetstone), transparent varieties - in jewelry.
				plate <i>Hydroxia</i>	das			
12	Opal, SiO2·nH2O	Does not form crystals	<u>5,5-6,5</u> 2,2-2,3	B. – Greasy, dull, weakly glassy, pearlescent K. – White, yellow, gray, blue, semi- transparent P. – No streak or gives a white streak	Shell-like, no cohesion	Differs from chalcedony in lower hardness and greasy luster.	Forms from aqueous solutions of silica under near- surface conditions.	Noble opal - a gemstone.
13	Limonite (brown iron ore), Fe2O3· nH2O	Does not form crystals	<u>4,0-5,5</u> <u>3</u> ,6-4,0	B. – Dull, semi- metallic K. – Rusty- yellow, brown, dark- brown P. – Yellowish- brown,	Earthy.	Rusty-yellow streak.	Forms in the weathering crust from other iron compounds, precipitates at the bottom of water bodies from solutions of various iron salts with the	Common iron ore.

				rusty-yellow			help of bacteria.	
				IV. Halogen co	mpounds	I		
14	Halite (rock salt), NaCl	Cubic crystals	<u>2,5</u> 2,1	B. – Glassy, greasy K. – White, colorless, bluish, pink, gray P. – White	Very perfect cleavage in three directions along the faces of the cube	Salty to taste, very perfect cleavage along the cube	Lagoonal- marine chemical sediment.	Used in chemical and food industries, metallurgy.
15	Fluorite (fluorspar), CaF2	Cubic, octahedral crystals	<u>4,0</u> 3,0-3,2	B. – Glassy K. – Purple, yellow, green, pink, colorless P. – White, colorless	Perfect cleavage	Crystal form, weak glassy luster, cleavage, and hardness.	Forms during hydrothermal processes, sometimes in pneumatolytic veins together with beryl, tourmaline, topaz, and other minerals.	Production of hydrofluoric acid, use in metallurgy as a flux, transparent varieties - in optics.
		1		V. Carbor		Γ	Γ	Γ
16	Calcite (limestone spar, transparent variety – Icelandic spar), CaCO3	Rhombohedral and scalenohedral crystals	<u>3,0</u> 2,7	B. – Glassy, pearly K. – White, gray, yellow, blue, transparent P. – White	Very perfect cleavage in three directions along the rhombohedron	Perfect cleavage along the rhombohedron, low hardness, effervesces with dilute hydrochloric acid.	Forms during hydrothermal processes, as well as during weathering and sediment deposition.	Utilized in the production of lime; transparent varieties are used in optics.
17	Magnesite (magnesium spar), MgCO3	Rhombohedral crystals are rare, occurs mainly in	<u>3,5-4,5</u> 2,9-3,1	B. – Glassy, silky, dull K. – White, gray,	Chalky or earthy in cryptocrystalline varieties, perfect	In powder, resembles chalk. Effervesces with heated	Forms during the metamorphism of basic	Refractory building material; in powdered

18	Dolomite	massive form. Distorted	3,5-4,0	yellowish, creamy, brown P. – White B. – Glassy,	cleavage in crystalline forms.	hydrochloric acid. Effervesces in	magnesium-rich rocks, during hydrothermal processes and diagenesis of limestones, and through sedimentary accumulation. It is a product of weathering of magnesium-rich rocks. It forms as a	form, it is used in medicine.
	(bitter spar), CaCO3 [.] MgCO3	rhombohedral crystals are	2,8-2,9	pearly K. – White,	in three directions along	powder form with	product of the diagenesis of	flux in metallurgy
		rare, occurs mainly in		yellow, gray, greenish	the rhombohedron.	hydrochloric acid.	limestones under the	and as a building
		massive form.		P. – White	monitoricatori.	uciu.	influence of	material.
							magnesium solutions. It is	
							also formed	
							during the metamorphism	
							of sedimentary	
							rocks.	
19	Siderite	Flat and distorted	$\frac{3,5-4,5}{3,7,3,0}$	B. – Glassy,	Perfect cleavage in three	Decomposes with	Forms during	Valuable iron
	(iron spar), FeCO3	rhombohedral	3,7-3,9	pearly K. – Gray,	directions.	with effervescence in	hydrothermal and metasomatic	ore.
	10005	crystals		pea-yellow,	uncenons.	heated	processes (due	
		or y stars		brown		hydrochloric	to solutions	
				P. – White,		acid, turning	containing iron	
				sometimes		yellow	acting on	

				brownish.		due to the formation of ferrous chloride.	limestones). It is also a product of sedimentary accumulation.	
		1		VI. Sulfa		ſ	ſ	
20	Gypsum (light spar, white – alabaster, fibrous – selenite), CaSO4· 2H2O	Tabular, platy crystals, twins resembling "swallowtail", rosettes	<u>2,0</u> 2,3	B. – Glassy with a pearly sheen, silky in fibrous varieties, dull K. – Colorless (transparent), white, pink, yellow, gray P. – White	Prickly in fibrous varieties, very perfect cleavage in one direction.	Crystal form with very perfect cleavage in one direction and low hardness (can be scratched with a fingernail).	Chemical sediment.	Used in construction, sculptural work, and medicine.
21	Anhydrite (anhydrous gypsum), CaSO4	Small tabular crystals	<u>3,0-3,5</u> 2,8-3,0	B. – Glassy, with a pearly sheen K. – White, grayish, blue, pink P. – White	Granular, perfect cleavage in three mutually perpendicular directions	Cannot be scratched by a fingernail like gypsum, and unlike calcite, does not react with acids.	Forms through sedimentary processes.	Used in the production of special cement, artistic products.
				VII. Phosp	hates			
22	Apatite (fluorapatite and chlorapatite), Ca5(F,Cl) [PO4]3	Hexagonal prisms, sometimes tabular crystals	<u>5,0</u> 3,2	B. – Glassy on faces, greasy on fracture, fine-grained masses	Uneven, conchoidal, imperfect cleavage	Characterized by crystal habit and a hardness of 5. Insoluble in hydrochloric acid.	A rock-forming mineral in igneous rocks, also formed at the contact of volcanic rocks	Utilized in the production of mineral phosphorus fertilizers.

				1-*1 */				[]
				exhibit			with limestones.	
				strong				
				sugary luster				
				K. –				
				Sometimes				
				colorless,				
				green,				
				yellowish,				
				white,				
				bluish-green,				
				and				
				brownish-				
				green				
				P. – White				
23	Phosphorite,	Does not form	<u>5,0</u>	B. – Dull,	No cleavage	Characteristic	Formed by	Utilized in the
	Ca5(F,Cl)	crystals.	3,2	earthy		nodules,	sedimentary	production of
	[PO4]3 with			K. – Pale		concretions with	processes from	mineral
	impurities of clay and			yellowish,		a radial	phosphorus	phosphorus
	sand.			gray, brown		structure, emits	residues of	fertilizers.
				P. – Gray,		a characteristic	ancient	
				weak		odor.	organisms.	
			VIII.	Island Silicates	(Orthosilicates)		·	
24	Olivine	Crystals are	6,5-7,0	B. – Glassy,	Uneven,	Characteristic	A rock-forming	Transparent
	(peridot),	rare,	3,3-4,1	transparent	imperfect	olive-green	mineral in	varieties -
	(Mg,Fe)2	usually grains	, ,	K. – Olivine-	cleavage	color, clear	ultramafic and	chrysolites -
	[SiO]4			green, bottle-	U	cleavage, grainy	mafic volcanic	are used in
				green,		texture.	rocks.	jewelry
				brownish,				making,
				transparent				olivine rocks
				P. – Does				(dunites) - as
				not leave				a building
				streak				material, in
								the chemical

								industry.
25	Garnet	Isometric	7,0-7,5	B. – Glassy,	Uneven,	Isometric crystal	Forms during	Used as a
	(almandine,	polyhedra	3,5-4,3	sometimes	conchoidal,	form, coloring,	metamorphic,	grinding
	andradite,			greasy	imperfect	high hardness.	sometimes	abrasive
	uvarovite),			K. – Dark	cleavage	U	magmatic	material,
	R"3R"'2			red,	C		processes.	transparent
	[SiO4]3;			brownish			1	varieties - in
	R''3 - Mg, Ca,			P. – Does				jewelry
	Mn, Fe;			not leave				making.
	R'''2 – Al, Fe			streak				U
			L	Ring silic	ates			
26	Complex borosilicate	Triangular	<u>7,0-7,5</u>	B. – Glassy	Prickly, no	Prismatic	Found in granite	Used in radio
	Na(Li,Al)3	elongated	3,0-3,2	K. – Green,	cleavage	trigonal crystal	rocks and	engineering,
	Al6[(OH)4	hexagonal		pink, brown,		form,	pegmatite veins,	transparent
	(BO3)3	prismatic		black,		longitudinal	sometimes in	varieties -
	Si6O18]	crystals with		transparent		striations,	contact-	gemstones.
		longitudinal		P. – White or		hardness, no	metamorphic	
		striations		does not		cleavage.	rocks.	
				leave streak				
				Chain Silicates (Pyroxenes)	1	1	
27	Augite,	Octahedral	6,5	B. – Glassy	Uneven,	Differentiated	A rock-forming	Used in radio
	Ca(Mg,Fe,Al)[(SiAl)2O6]	prismatic,	3,3-3,6	K. – Green,	cleavage visible	from hornblende	mineral in mafic	engineering,
		small		brown, black	on prism faces	by crystal shape,	volcanic and	transparent
		columnar		P. – Light,	at angles close	cleavage, and	metamorphic	varieties -
		crystals		grayish-	to right angles.	hardness.	rocks.	gemstones.
				green				
					ates (Amphiboles)	1	Γ	
28	Hornblende,	Columnar or	<u>5,5-6,0</u>	B. – Silky on	Prickly, perfect	Crystal form	A rock-forming	Used in radio
	General formula	hexagonal	3,1-3,5	cleavage	cleavage in two	(acicular,	mineral in	engineering,
	of amphiboles	prismatic		planes,	directions at an	prismatic),	igneous and	transparent
	R7(OH)2	crystals,		resembling	angle of 124°	cleavage at an	metamorphic	varieties -
	[Si2O11]; R –	radiating		the luster of		angle of 124°.	rocks.	gemstones.
	Ca, Mg, Fe, Na	growth		horn material				

				K. – Grayish and dark green, black P. – Greenish or				
				brown				
•			1.0	Sheet Sili		~ .		
29	Talc, Mg3(OH)2[Si4O10]	Very perfect in one direction, splits into thick, non- elastic flakes	<u>1.0</u> . 2.7-2.8	B. – Greasy on cleavage planes, pearly K. – White, yellowish, greenish, bluish P. – White	Sheet-like and scaly	Greasy to the touch, very soft, flakes flexible but not elastic.	Product of metamorphism of magnesian rocks.	Used in rubber, paper industries, medicine, fire-resistant material.
30	Serpentine (serpentine), Mg6(OH)8[Si4O10]	Fibrous and platy crystals, fine grains	<u>3.0-4.0</u> <u>2.5-2.7</u>	B. – Greasy, waxy, silky K. – Ranges from light green, bluish to dark green with yellow spots (resembling snake skin) P. – White, greenish	Earthy in massive forms, scaly in fibrous varieties	Serpentine is distinguished by its coloration, lack of cleavage, and weak greasy luster.	Product of hydrothermal metamorphism of ultrabasic igneous rocks.	Used as a decorative material.
31	Asbestos, Mg6(OH)8[Si4O10]	Fibrous crystals	<u>2.5-3.0</u> 2.22	B. – Silky K. – Greenish- yellow, almost white	Perfect cleavage in one direction in fibrous varieties	Asbestos has a fibrous structure and silky luster.	Product of hydrothermal metamorphism of ultrabasic igneous rocks.	Asbestos is used in the manufacture of fireproof fabrics,

				P. – Does				cardboard,
				not produce				and gaskets.
				streaks				8
32		Crystals are	1,0-2,0	B Dull,	Earthy, dense,	Greasy to the	Product of	I am a
52	Kaolinite (kaolin),	extremely rare,	2,6	matte,	with very	touch, soft,	hydrothermal	ceramicist.
	Al4(OH)8[Si4O10]	usually earthy	2,0	greasy,	perfect cleavage	swells	alterations and	used in
		masses.		pearly in	in one direction	considerably in	surface	construction,
		musses.		flakes	in one uncetion	water.	weathering of	paper
				K White,		water.	feldspars and	industry,
				slightly			other	fireproof
				yellowish or			aluminosilicates.	material.
				grayish			alumnosmeates.	materiai.
				R White				
33	Muscovite (white	Tabular, platy	2,0-3,0	Б. –	Very perfect	Ability to split	A rock-forming	Used as
55	potassium mica), fine-	crystals	$\frac{2,0-3,0}{2,7-3,1}$	D. – Vitreous,	cleavage in one	into thin, elastic	mineral of	electrical
	flaky - sericite,	reaching large	2,7-3,1	iridescent	direction	flakes and	igneous rocks of	insulation and
	KAl2[AlSi3O10](OH,F)2,	sizes.		K. –	unection	scales, light	metamorphic	
	KAI2[AISI3O10](OH,F)2,	SIZES.		K. – Colorless		coloration.	1	refractory material.
				with a slight		coloration.	origin.	materiai.
				U				
				yellowish,				
				pinkish, or				
				grayish hue,				
				transparent				
				P. – Non-				
24		TT 1 1	2020	scratch	X 7 C (0 11		TT 1
34	Biotite (black iron-	Tabular	<u>2,0-3,0</u>	B Glassy,	Very perfect	Greenish-brown	A constituent of	Used as an
	magnesium mica),	hexagonal,	3,0-3,1	iridescent	cleavage in one	coloration,	igneous and	electrical
	K(Mg,Fe)3 [AlSi8O10]	platy crystals		К	direction	cleaves into	metamorphic	insulating and
	(OH,F)2			Transparent,		elastic sheets,	rocks.	refractory
				black or dark		opaque in thick		material.
				green, brown		flakes.		
				R Does not				
				give streaks.				

35	Chlorite, (Fe,Mg)5 Al(OH)8 [AlSi3O10]	Tabular, flaky crystals forming aggregates of solid masses.	<u>2,0-2,5</u> 2,6-2,8	B. – Vitreous, pearly K. – Light and dark grass-green, violet, pink P. – White, light greenish, or	Very perfect cleavage in one direction	Capable of splitting into flexible, resilient flakes, characteristic green color, low hardness	Product of metamorphic transformations of biotite, augite, and hornblende	Chlorites with high iron content (shamozite) are used as iron ore.
				non- receptive to scratches				
36	Glauconite (from the group of hydrous phyllosilicates), K(Fe,Mg)3 (OH)2 [AlSi3O10]· nH2O	Small (up to 1 mm) grains and nodules	<u>2,0-3,0</u> 2,2-2,8	B. – Dim, glassy, oily K. – Dark green (almost black-green) P. – Somewhat greenish	Grainy, uneven	Dark green hue, graininess.	Sediments of marine origin.	Utilized for water softening.
			Frame	Ŭ	aluminosilicates)			
37	Orthoclase, K2O · Al2O2 · 6SiO2	Prismatic pinacoidal crystals	<u>6,0</u> 2,6	B. – Glassy, iridescent K. – White, creamy, bluish-gray, pink, red P. – Does not scratch	Perfect cleavage in two directions at right angles	Rectangular fractures, high hardness, perfect cleavage.	Rock-forming mineral of acidic, intermediate, and alkaline igneous rocks. Product of high- temperature hydrothermal alteration of	Pale-colored varieties are used in porcelain and faience industry.

							rocks.	
38	Microcline, Composition analogous to orthoclase	Prismatic crystals, similar to orthoclase crystals	<u>6,0</u> 2,6	B. – Glassy or weakly iridescent on cleavage faces K. – Creamy, greenish- gray, pink, green R. – Light	Perfect cleavage in two directions at nearly right angles	Differs from orthoclase in cleavage (angle between cleavage planes is less than right by 20°).	Rock-forming mineral of intermediate, alkaline, igneous rocks. Also forms by metamorphic processes.	Utilized in porcelain and faience industry.
39	Albite (sodium plagioclase), Na(AlSi3O8)	Tabular plate-like crystals, twinning	<u>6,0</u> 2,6	 D. – Glassy, iridescent K. – White, bluish-white R. – White 	Uneven, perfect cleavage in two directions at oblique angles	White color, sometimes with fine streaks on cleavage planes, high hardness.	Forms through magmatic and metasomatic hydrothermal processes (rock-forming mineral).	Has no industrial significance.
40	Anorthite or anorthite (calcium plagioclase), Ca(Al2Si2O8)	Tabular crystals (sometimes encountered)	<u>6,0-6,5</u> 2,7	 D. – Glassy, iridescent K. – Gray, white, bluish, yellowish R. – White 	Distinct cleavage in two directions	Similar to albite, differing only in cleavage.	Rock-forming mineral of basic igneous rocks.	Has no industrial significance.
41	Labradorite (calcium-sodium plagioclase), (Ca,Na) [(Al,Si) AlSi2O8]	Tabular crystals with distinct streaks on cleavage planes	<u>6,0</u> 2,7	 D. – Glassy, iridescent K. – Dark gray, with shimmers (iridescence) 	Perfect cleavage in two directions	Distinctive feature – iridescence.	Rock-forming mineral of alkaline igneous rocks.	Labradorite - precious decorative material.

				R. – White				
42	Nepheline	Small	5,5-6,0	Б. – Glassy	Flatly-	Differs from	Rock-forming	Used in
	(eleolite)	prismatic	2,7	on	convex,	orthoclase and	mineral of	glass
	"oily	crystals		faces, greasy	imperfect	plagioclase	alkaline	industry, for
	stone",	(sometimes		on	cleavage.	by its greasy	igneous rocks.	producing
	KNa3	encountered)		fracture		luster, imperfect	_	soda,
	[AlSiO4]4			K. – Gray,		cleavage.		alumina,
				pink,		Differs from		pigments.
				yellowish-		quartz		
				brown,		by its hardness		
				colorless		and luster.		
				R. – Does				
				not scratch				
				or scratches				
				white				
	Ν	Minerals that do no	t have geol		ce but are included	l in the hardness sca	ale.	
				Native eler		Γ	Γ	
43	Diamond,	Eight and	<u>10,0</u>	Б. – Hard	Perfect cleavage	Differs from	Product of	Used in
	С	twelve-sided	3,5	diamond	in	quartz	crystallization	jewelry
		crystals		K. –	four	by perfect	of ultra-basic	making, for
		(of various		Transparent,	directions	cleavage,	and	manufacturing
		shapes)		colorless,	(along the	high hardness,	basic magmas in	and
				yellow,	octahedron)	and	explosion pipes.	grinding drill
				blue, black		crystal form.		bits.
				R. – Does				
				not scratch				
			0.0	Insular sili		D :00 0		
44	Topaz,	Prismatic	<u>8,0</u>	Б. – Glassy	Uneven,	Differs from	Product of	Used as
	Al2(FOH)2	crystals	3,3-3,6	K. –	perfect cleavage	quartz	crystallization of	gemstone, as
	[SiO4]3			Colorless,	in	by greater	acidic magma in	an abrasive
				blue,	one	hardness,	pegmatites and	material, in
				yellowish,	direction	perfect	processes of	the production
				pink, purple		cleavage,	autometamorphism	of precision

	R. – Does	and stronger	(greisens).	instruments.
	not scratch	luster.		