МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ Одеський державний екологічний університет

Methodical instructions for practical work, test performance, distance learning of PhD students in the discipline "QUANTUM GEOMETRY AND SPECTROSCOPY AND DYNAMICS OF RESONANCES", Part 3. (Training of PhD students of the specialty: 104 – "Physics and Astronomy" and others)

> «Затверджено» на засіданні групи забезпечення спеціальності Протокол №6 від 13/06/2023 Голова групи забезпечення

<u>выя</u> проф. Глушков О.В.

«Затверджено» на зас. каф.математики та квантової механіки Протокол №13 від 13/06/2023 Зав. кафедри математики та квантової механіки

ини проф. Глушков О.В.

УДК 584.2 G31 ББК 23.131

Methodical instructions for practical work, test performance, distance learning of PhD students in the discipline "Quantum Geometry, Spectroscopy and Dynamics of Resonances", Part 3. Zeeman Resonances (Training specialty: 104 - "Physics and Astronomy" and others)

Compiler:

Glushkov O.V., D.f.-m.s.(Hab.Dr.), prof., Head of the department of mathematics and quantum mechanics(OSENU)

Khetselius O.Yu., D.f.-m.s.(Hab.Dr.), prof., prof. of the department of mathematics and quantum mechanics(OSENU)

Svinarenko A.A., D.f.-m.s.(Hab.Dr.), prof., prof. of the department of mathematics and quantum mechanics(OSENU)

Ignatenko a.V., C.f.-m.s.(PhD), assoc.-prof. of the department of mathematics and quantum mechanics(OSENU)

Editor:

Glushkov O.V., D.f.-m.s.(Hab.Dr.), prof., prof. of the department of mathematics and quantum mechanics(OSENU)

PREFACE

Discipline "Quantum geometry, spectroscopy and dynamics of resonances" is an elective discipline in the cycle of professional training of postgraduate or PhD students (third level of education) in the specialty 104-Physics and Astronomy.

It is aimed at Acquisition (providing) of a number of competencies, in particular, the achievement of relevant knowledge, understanding and the ability to use the methods of quantum geometry and dynamics of resonances, the ability to develop new and improve existing mathematical methods of analysis, modeling and forecasting based on fractal geometry and elements of the chaos theory of regular and chaotic dynamics (evolution) of complex systems, the ability to develop fundamentally new and improve existing modern computational methods and algorithms of quantum mechanics, geometry and electrodynamics for analysis, modeling and prediction of the properties of classical and quantum systems with pronounced resonant behavior. mastering the modern apparatus of fractal geometry and chaos theory.

Competencies that must be acquired or developed include; i) K11 Ability to analyze and identify a complex of major problems in a certain field of modern physics and, in particular, optics and spectroscopy of atoms, multi-charged ions, molecular, quantum, laser systems, solid bodies, as well as the atmosphere and ocean; Ability to develop new and improve existing methods of describing optical and spectroscopic properties of solids based on methods of quantum mechanics, quantum chemistry of solids, as well as methods of relativistic quantum theory; ii) K12 The ability to create physical, mathematical and computer models in optics and spectroscopy of physical systems with the implementation of effective algorithms and specialized software; Ability to acquire new fundamental knowledge in optics and spectroscopy of atoms, molecules, solids, laser systems, as well as geophysical systems (atmosphere and ocean).

These methodical instructions are for self-studying work of the secondyear PhD students and tests performance in the discipline "Quantum Geometry and Dynamics of Resonances".

The main topic is a Resonance dynamics for quantum systems in an electromagnetic field. Methods for calculating energies and widths of Stark resonances (Look Syllabus of the discipline, edition 2023)

I. Topic: Theory of the Zeeman effect for atoms (hydrogen and others) in a magnetic field. The Glushkov-Ivanov perturbation theory method. An atom in the intersection of electric and magnetic fields

Торіс: Теорія ефекта Зеємана для атомів (водень та інші) в магнітному полі. Метод операторної теорії збурень Глушкова-Іванова. Атом у скрещениях електричному та магнітному полях (Л2.56)

1. Introduction

In this work spectroscopy of atoms in the magnetic field as well as in the crossed external electric and magnetic fields is investigated on the basis of the operator perturbation theory. As a novel element within the operator perturbation theory, we use more flexible functions for model function, which imitates an electric field. In a case of the crossed electric and magnetic fields we develop more effective finite differences numerical scheme. As illustration, some advanced data for the hydrogen atom in the electric and crossed external electric and magnetic fields are listed. Advanced data for hydrogen atom are listed.

From the standard quantum mechanics it is well known that the external electric field shifts and broadens the bound state atomic levels. One should note that the usual quantum-mechanical approach relates complex eigen-energies (EE) $E=E_r+0,5$ iG and complex eigen-functions (EF) to the shape resonances [1-6]. The calculation difficulties in the standard quantum mechanical approach are well known and described in many Refs. Let us remind that the usual quasiclassical WKB approximation overcomes these difficulties for the states, lying far from "new continuum " boundary and, as rule, is applied in the case of a relatively weak electric field. The same is regarding the widespread asymptotic phase method (c.f.[2]). Quite another calculation procedures are used in the Borel summation of the difference equations following from expansion of the wave function over finite basis [2,3,9,10].

Experimental observation of the Stark effect in a constant (DC) electric field near threshold in hydrogen and alkali atoms led to the discovery of resonances extending into the ionization continuum (c.f.[1]). Calculation of the characteristics of these resonances as well as the Stark resonances in the strong electric field and crossed electric and magnetic fields remains very important problem of as modern atomic physics [1-51].

In this paper we go on our studying of sspectroscopy of atoms in the crossed external electric and magnetic fields. Our method of studying is based on the known formalism of the operator perturbation theory (OPT) [1-3]. According to [1-5], the essence of operator perturbation theory approach is the inclusion of the well known method of "distorted waves approximation" in the frame of the formally exact perturbation theory. As a novel element within the operator perturbation theory, we use more flexible functions for model function, which imitates an electric field. In a case of the crossed electric and magnetic fields we develop more effective finite differences numerical scheme. As illustration, some advanced data for the hydrogen atom in the electric and crossed external electric and magnetic fields are listed.

2. Method of the Glushkov-Ivanov operator perturbation theory

As our approach to strong field DC Stark effect was presented in a series of papers (see, for example, [1-6]), here we are limited only by the key aspects. According to [2,3], the Schrödinger equation for the electronic eigen-function taking into account the uniform DC electric field (the field strength is *F*)and the field of the nucleus (Coulomb units are used: a unit is h^2/Ze^2 *m* and a unit of $mZ^2 e^4/h^2$ for energy) looks like:

$$[-(1 - N/Z) / r + F z - 0.5\Delta - E] \psi = 0 \quad (1)$$

where *E* is the electronic energy, *Z* — charge of nucleus, *N* — the number of electrons in atomic core. Our approach allow to use more adequate forms for the core potential (c.f.[25-27]). According to standard quantum defect theory (c.f.[3]), relation between quantum defect value μ_l , electron energy *E* and principal quantum number *n* is: $\mu_l = n \cdot z^*(-2E)^{-1/2}$. As it is known, in an electric field all the electron states can be classified due to quantum numbers: *n*, *n*₁, *n*₂, *m* (principal, parabolic, azimuthal: $n=n_1+n_2+m+1$). Then the quantum defect in the parabolic co-ordinates $\delta(n_1n_2m)$ is connected with the quantum defect value of the free (*F*=0) atom by the following relation [3]:

$$\delta(n_1 n_2 m) = (1/n) \sum_{l=m}^{n-1} (2l+1) (C_{J,M-m;lm}^{JM})^2 \mu_l$$

$$J = (n-1)/2, \quad M = (n_1 - n_2 + m)/2;$$

After separation of variables, equation (1) in parabolic co-ordinates could be transformed to the system of two equations for the functions f and g:

$$f'' + \frac{|m|+1}{t}f' + [0,5E + (\beta_1 - N/Z) / t - 0,25 F(t) t]f = 0$$
(2)

$$g'' + \frac{|m|+1}{t}g' + [0,5E+\beta_2/t+0,25F(t) t]g = 0$$
(3)

coupled through the constraint on the separation constants: $\beta_1 + \beta_2 = 1$.

For the uniform electric field F(t) = F. In ref. [11], the uniform electric field ε in (3) and (4) was substituted by model function F(t) with parameter τ ($\tau = 1.5 t_2$). To simplify the calculation procedure, the uniform electric field ε in (3) and (4) should be substituted by the function [57,58]:

$$\varepsilon(t) = \frac{1}{t} \varepsilon \left[(t-\tau) \frac{\tau^4}{\tau^4 + t^4} + \tau \right]$$
(4)

th sufficiently large τ (τ =1.5 t_2). The function $\varepsilon(t)$ practically coincides with the constant ε in the inner barrier motion region ($t < t_2$) and disappears at $t >> t_2$. Potential energy in equation (4) has the barrier. Two turning points for the classical motion along the η axis, t_1 and t_2 , at a given energy E are the solutions of the quadratic equation ($\beta = \beta_1, E = E_0$). According to [1-3], one should know two zeroth order EF of the H_0 : bound state function Ψ_{Eb} (ε , v, ϕ) and scattering state function Ψ_{Es} (ε , η , ϕ) with the same EE in order to calculate the width G of the concrete quasi-stationary state in the lowest PT order. Firstly, one would have to define the EE of the expected bound state. It is the well known problem of states quantification in the case of the penetrable barrier. Further one should solve the system (2, 3) system with the total Hamiltonian H using the conditions [11]:

$$f(t) \rightarrow 0 \text{ at } t \Rightarrow \infty$$

 $\partial x(\beta, E) / \partial E = 0$ (5)

with

$$x(\beta, E) = \lim_{t \to \infty} \left[g^2(t) + \left\{ g'(t) / k \right\}^2 \right] t^{m/(m+1)}.$$

These two conditions quantify the bounding energy *E*, with separation constant β_1 . The further procedure for this two-dimensional eigenvalue problem results

in solving of the system of the ordinary differential equations(2, 3) with probe pairs of *E*, β_1 . The bound state EE, eigenvalue β_1 and EF for the zero order Hamiltonian H_0 coincide with those for the total Hamiltonian *H* at $\varepsilon \Rightarrow 0$, where all the states can be classified due to quantum numbers: *n*, n_1 , *l*, *m* (principal, parabolic, azimuthal) that are connected with *E*, β_1 , *m* by the well known expressions.. The scattering states' functions must be orthogonal to the above defined bound state functions and to each other. According to the OPT ideology [11,12], the following form of $g_{E's}$:is possible:

$$g_{E's}(t) = g_1(t) - z_2' g_2(t)$$
(6)

with $f_{E's}$, and $g_1(t)$ satisfying the differential equations (2) and (3). The function $g_2(t)$ satisfies the non-homogeneous differential equation, which differs from (3) only by the right hand term, disappearing at $t \Rightarrow \infty$.

In Ref, [7] it has been presented approach, based on solution of the 2dimensional Schrödinger equation for an atomic system in crossed fields and operator perturbation theory. For definiteness, we consider a dynamics of the complex non-coulomb atomic systems in a static magnetic and electric fields. The hamiltonian of the multi-electron atom in a static magnetic and electric fields is (in atomic units) as follows:

$$I = \frac{1}{2}(p_{\rho}^{2} + l_{z}^{2}/\rho^{2}) + Bl_{z}/2 + (1/8)B^{2}\rho^{2} + (1/2)p_{z}^{2} + Fz + V(r)$$
(7)

where the electric field *F* and magnetic field *B* are taken along the z-axis in a cylindrical system; In atomic units: 1 a.u.*B*=2.35·10⁵T, 1a.u.*F*=5,144·10⁶ kV/cm. For solution of the Schrödinger equation with hamiltonian equations (7) we constructed the finite differences scheme which is in some aspects similar to method [7]. An infinite region is exchanged by a rectangular region: $0 < \rho < L_{\rho}$, $0 < z < L_z$. It has sufficiently large size; inside it a rectangular uniform grid with steps h_{ρ} , h_z was constructed. The external boundary condition, as usually, is: $(\partial \Psi / \partial n)_r = 0$. The knowledge of the asymptotic behaviour of wave function in the infinity allows to get numeral estimates for L_{ρ} , L_z . A wave function has an asymptotic of the kind as: $exp[-(-2E)^{1/2}r]$, where (-*E*) is the ionization energy from stationary state to lowest Landau level. Then *L* can be estimated as $L \sim 9(-2E)^{-1/2}$. The more exact estimate is found empirically. The finite-difference scheme is constructed as follows. The three-point symmetric differences scheme is used for second derivative on z. The derivatives on ρ are approximated by

(2m+1)-point symmetric differences scheme with the use of the Lagrange interpolation formula differentiation. To calculate the values of the width G for resonances in atomic spectra in an electric field and crossed electric and magnetic field one can use the modified operator perturbation theory method (see details in ref.[10,20]). Note that the imaginary part of the state energy in the lowest PT order is: $ImE = G/2 = \pi < \Psi_{Eb} | H | \Psi_{Es} >^2$. with the total Hamiltonian of system in an electric and magnetic field. The state functions Ψ_{Eb} and Ψ_{Es} are assumed to be normalized to unity and by the $\delta(k - k')$ -condition, accordingly. Other calculation details can be found in ref. [7]. Different application are considered in Refs. [21-57].

3. Illustration results and conclusion

As an illustration,, we make computing the energy of the ground state of the hydrogen atom in crossed fields and compare results with data obtained within analytical perturbation theory by TurbinerV (see. [8]) for the case of sufficiently weak fields. Table 1 shows the values of the energy of the ground state of the hydrogen atom (the following designations: $E+E^{//}$ - energy for the case of the electric and magnetic fields are parallel; $E+E^{\perp}$ corresponds to the case of the electric and magnetic fields are perpendicular).

<i>F</i> , <i>B</i>	E + E''	$E+E^{\prime\prime}$	F, B	$E+E^{\prime\prime}$	$E+E^{\perp}$		
10-2	Turbiner	Furbiner theory	10-2	Glushkov-	Turbiner		
	theory			Ivanov Theory	theory		
0,0	-1,000000	-1,000000	0,0	-1,000000	-1,000000		
0,1	-1,000004	-1,000004	0,1	-1,000004	-1,000004		
0,5	-1,000099	-1,000099	0,5	-1,000100	-1,000099		
1,0	-1,000402	-1,000401	1,0	-1,000402	-1,000401		
1,5	-1,000906	-1,000905	1,5	-1,000906	-1,000905		
2,0	-1,001617	-1,001616	2,0	-1,001617	-1,001616		
2,5	-1,002542	-1,002540	2,5	-1,002541	-1,002535		
3,0	-1,003685	-1,003682	3,0	-1,003684	-1,003673		
3,5	-1,005054	-1,005053	3,5	-1,005054	-1,005036		
4,0	-1,0066619	-1,006659	4,0	-1,006686	-1,006627		
4,5	-1,008520	-1,008517	4,5	-1,008519	-1,008464		
5,0	-1,010642	-1,010636	5,0	-1,010638	-1,010556		

Table 1. Energy values (Ry) of the H ground state in electric F (1au=5.14·10⁹ V/cm) and magnetic B (1 au.B=2.35·10⁵ T) fields

Since the considered electric field is sufficiently weak, difference between all data in Table 1 is quite little. At the same time it is clear that the perturbation theory in the standard quantum-mechanical version is correct exclusively for the weak fields, while for strong fields it can lead to substantially inaccurate data. Really, in Table 2 we list the results for the Stark resonances energies and widths of the ground state hydrogen atom in the DC field with the strength ε =0.1 and 0.8 a.u., obtained within the most exact alternative methods and our data (see [2]).

Table 2. The energies and widths of the Stark resonances of the H ground state (F=0.1, 0.8 a.u.). Notation: (A) Hehenberger, H.V. McIntosh and E. Brändas, (B) Farrelly and Reinhardt, (C) Rao, Liu and Li [18], (D) Glushkov-Ivanov, the standard OPT method; (E)- Popov et al; (F) – our data

F,	Method	Er, a.u.	Γ/2, a.u.
a.u.			
0.10	А	-0.52743	$0.725 \cdot 10^{-2}$
	С	-0.527418	0.7269.10-2
	D	-0.527419	0.2269.10-2
	Е	-0.527	$0.227 \cdot 10^{-2}$
	F	-0.527418	$0.7269 \cdot 10^{-2}$
0.80	В	-0.6304	0.5023
	С	-0.630415	0.50232
	D	-0.630416	0.50232
	F	-0.630415	0.50231

The comparison of our data (Table 2: F) with earlier similar results, obtained within the summation of divergent PT series, the numerical solution with expansion of the wave function over finite basis, a complex scaling plus B-spline calculation, the standard OPT one (Table 2: A-E) shows quite acceptable agreement. We believe that the OPT method with new elements will be especially efficient for atoms in the strong crossed electric and magnetic fields, where the standard methods (usual perturbation theory etc) deal with great principal and computational problems). procedure is sufficiently simple and realized as the numerical code with using the fourth-order Runge–Kutta method of solving the differential equations (the atomic code "Superatom-ISAN-Stark").

II. Task options for self-sufficient work

Task Option 1.

1). Give the key definitions of a theoretical approach to definition of the energy and spectral characteristics of the **Zeemane resonances** using the standard quantum-mechanical amplitude approach and new formalism of operator perturbation theory by Glushkov-Ivanov: i) mathematical and physical essense of quantum-mechanical amplitude approach , ii) mathematical and physical essense of operator perturbation theory by Glushkov-Ivanov: iii) calculation of the Zeeman and mixed resonances energies and widths s, iv) calculation of the ionization cross section in a presence of DC magnetic field, v) analysis of the role of correlation effects and value of the field strength,

Explain all definitions in theory of **Zeeman** resonances for atomic systems in magnetic field on the example of the hydrogen, helium and any alkali atom , preliminarily describing the corresponding spectrum of a free system , i.e. without an external magnetic field

2).To apply the operator perturbation theory by Glushkov-Ivanov for computing the **Zeeman resonances** energies and widths of any alkali atom, say **sodium Na.** Consaide the case of mixed electric and magnetic field. To perform its pracrical realization (using Fortran Power Station , Version 4.0; PC Code: "Superatom-Stark" for quantum system from the first task of the option (all necessary numerical parameters should be self-taken).

Task Option 2.

1). Give the key definitions of a theoretical approach to definition of the energy and spectral characteristics of the **Zeemane resonances** using the standard quantum-mechanical amplitude approach and new formalism of operator perturbation theory by Glushkov-Ivanov: i) mathematical and physical essense of quantum-mechanical amplitude approach , ii) mathematical and physical essense of operator perturbation theory by Glushkov-Ivanov: iii) calculation of the Zeeman and mixed resonances energies and widths s, iv) calculation of the ionization cross section in a presence of DC magnetic field, v) analysis of the role of correlation effects and value of the field strength, Explain all definitions in theory of **Zeeman** resonances for atomic systems in magnetic field on the example of the hydrogen, helium and any alkali atom , preliminarily describing the corresponding spectrum of a free system , i.e. without an external magnetic field

2).To apply the operator perturbation theory by Glushkov-Ivanov for computing the **Zeeman resonances** energies and widths of any alkali atom, say **lithium Li.** Consaide the case of mixed electric and magnetic field. To perform its pracrical realization (using Fortran Power Station, Version 4.0; PC Code: "Superatom-Stark" for quantum system from the first task of the option (all necessary numerical parameters should be self-taken).

Task Option 3.

1). Give the key definitions of a theoretical approach to definition of the energy and spectral characteristics of the **Zeemane resonances** using the standard quantum-mechanical amplitude approach and new formalism of operator perturbation theory by Glushkov-Ivanov: i) mathematical and physical essense of quantum-mechanical amplitude approach , ii) mathematical and physical essense of operator perturbation theory by Glushkov-Ivanov: iii) calculation of the Zeeman and mixed resonances energies and widths s, iv) calculation of the ionization cross section in a presence of **DC magnetic field**, v) analysis of the role of correlation effects and value of the field strength,

Explain all definitions in theory of **Zeeman** resonances for atomic systems in magnetic field on the example of the hydrogen, helium and any alkali atom , preliminarily describing the corresponding spectrum of a free system , i.e. without an external magnetic field

2).To apply the operator perturbation theory by Glushkov-Ivanov for computing the **Zeeman resonances** energies and widths of any alkali atom, say **rubidum Rb.** Consaide the case of mixed electric and magnetic field. To perform its pracrical realization (using Fortran Power Station , Version 4.0; PC Code: "Superatom-Stark" for quantum system from the first task of the option (all necessary numerical parameters should be self-taken).

Task Option 4.

1). Give the key definitions of a theoretical approach to definition of the energy and spectral characteristics of the Zeemane resonances using the standard quantum-mechanical amplitude approach and new formalism of operator perturbation theory by Glushkov-Ivanov: i) mathematical and physical essense of quantum-mechanical amplitude approach , ii) mathematical and physical essense of operator perturbation theory by Glushkov-Ivanov: iii) calculation of the Zeeman and mixed resonances energies and widths s, iv) calculation of the ionization cross section in a presence of DC magnetic field, v) analysis of the role of correlation effects and value of the field strength,

Explain all definitions in theory of **Zeeman** resonances for atomic systems in magnetic field on the example of the hydrogen, helium and any alkali atom , preliminarily describing the corresponding spectrum of a free system , i.e. without an external magnetic field

2).To apply the operator perturbation theory by Glushkov-Ivanov for computing the **Zeeman resonances** energies and widths of any alkali atom, say **K**. Consaide the case of mixed electric and magnetic field. To perform its pracrical realization (using Fortran Power Station , Version 4.0; PC Code: "Superatom-Stark" for quantum system from the first task of the option (all necessary numerical parameters should be self-taken).

Task Option 5.

1). Give the key definitions of a theoretical approach to definition of the energy and spectral characteristics of the Zeemane resonances using the standard quantum-mechanical amplitude approach and new formalism of operator perturbation theory by Glushkov-Ivanov: i) mathematical and physical essense of quantum-mechanical amplitude approach , ii) mathematical and physical essense of operator perturbation theory by Glushkov-Ivanov: iii) calculation of the **Zeeman and mixed resonances** energies and widths s, iv) calculation of the ionization cross section in a presence of DC magnetic field, v) analysis of the role of correlation effects and value of the field strength,

Explain all definitions in theory of Zeeman resonances for atomic systems in magnetic field on the example of the hydrogen, helium and any alkali atom,

preliminarily describing the corresponding spectrum of a free system , i.e. without an external magnetic field

2).To apply the operator perturbation theory by Glushkov-Ivanov for computing the **Zeeman resonances** energies and widths of any alkali atom, **caseium Cs.** Consaide the case of mixed electric and magnetic field. To perform its pracrical realization (using Fortran Power Station, Version 4.0; PC Code: "Superatom-Stark" for quantum system from the first task of the option (all necessary numerical parameters should be self-taken).

Task Option 6.

1). Give the key definitions of a theoretical approach to definition of the energy and spectral characteristics of the **Zeemane resonances** using the standard quantum-mechanical amplitude approach and new formalism of operator perturbation theory by Glushkov-Ivanov: i) mathematical and physical essense of quantum-mechanical amplitude approach , ii) mathematical and physical essense of operator perturbation theory by Glushkov-Ivanov: iii) calculation of the Zeeman and mixed resonances energies and widths s, iv) calculation of the ionization cross section in a presence of **DC magnetic field**, v) analysis of the role of correlation effects and value of the field strength,

Explain all definitions in theory of **Zeeman resonances** for atomic systems in magnetic field on the example of the hydrogen, helium and any alkali atom , preliminarily describing the corresponding spectrum of a free system , i.e. without an external magnetic field

2).To apply the operator perturbation theory by Glushkov-Ivanov for computing the **Zeeman resonances** energies and widths of any alkali atom, say **francium Fr.** Consaide the case of mixed electric and magnetic field. To perform its pracrical realization (using Fortran Power Station , Version 4.0; PC Code: "Superatom-Stark" for quantum system from the first task of the option (all necessary numerical parameters should be self-taken).

References

- 1. Glushkov A.V., Atom in electromagnetic field.-Kiev: KNT, 2005.-400P.
- Glushkov A.V., Operator Perturbation Theory for Atomic Systems in a Strong DC Electric Field//Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology. Series: Frontiers in Theoretical Physics and Chemistry, Eds. M.Hotokka, J.Maruani, E. Brändas, G.Delgado-Barrio (Springer).-2013.-Vol. 27.-P.161-178.
- Glushkov A.V., Ivanov L.N. DC Strong-Field Stark-Effect: Consistent Quantum-mechanical Approach // J. Phys. B: At. Mol. Opt. Phys.-1993.-Vol.26, N16.- P.L379-L386.
- Glushkov A.V., Ambrosov S.V., Ignatenko A.V., Korchevsky D.A., DC Strong Field Stark effect for non-hydrogenic atoms: consistent quantum mechanical approach // Int. Journ. Quant. Chem.-2004.-Vol.99,N5.-P.936-949.
- 5. Glushkov A.V.,Lepikh Ya.I.,Khetselius O.Yu.,Fedchuk A.P., Ambrosov S.V , Ignatenko A.V.,Wannier-mott excitons and atoms in a DC elecric field: photoionization, Stark effect, resonances in the ionization continuum// Sensor Electr. and Microsyst. Techn.-2008.-N4.-P.5-11.
- 6. Fedchuk A.P., Glushkov A.V., Lepikh Ya.I., Ignatenko A.V., Kvasikova A.S., Atom of hydrogen and wannier-mott exciton in crossed electric and magnetic fieldst// Photoelectronics.-2014.-Vol.23.-P.176-181.
- 7. Kvasikova A.S., Ignatenko A.V., Florko T.A., Sukharev D.E., Chernyakova Yu.G., Photoeffect and spectroscopy of the hydrogen atom in the crossed dc electric and magnetic field//Photoelectronics.-2011.-Vol.20.-P.71-75.
- 8. Lisitsa V.S. New in Stark and Zeemane effects for Hydrogen Atom// Phys. Uspekhi.- 1987.-Vol.153.- P.379-422.
- 9. Popov V.S., Mur V.D., Sergeev A.V., Weinberg V.M., Strong field Stark effect: perturbation theory and 1/n expansion//Phys. Lett. A.-1990.-V.149.-P.418-424
- 10.Glushkov A.V., Malinovskaya S.V., Prepelitsa G.P., Ignatenko V.M., Manifestation of the new laser-electron nuclear spectral effects in thermalized plasma: QED theory of cooperative laser-electron- nuclear processes// J. Phys.:Conf.Ser.-2005.-Vol.11.-P.199-206.
- 11.Glushkov A.V., Malinovskaya S.V., Ambrosov S., Shpinareva I.M., Troitskaya O., <u>Resonances in quantum systems in strong external fields</u> <u>consistent quantum approach</u>// J. Techn.Phys.-1997.-Vol.38, N2.-P.215-218.
- 12.Glushkov A.V., Malinovskaya S.V., Loboda A., Shpinareva I.M.,Gurnitskaya E., Korchevsky D., Diagnostics of the collisionally pumped plasma and search of the optimal plasma parameters of x-ray lasing: Calculation of electron-collision strengths and rate coefficients for Ne-like plasma// J. Phys.: Conf.Ser.-2005.-Vol.11.-P.188-198.
- 13.Glushkov A.V., Khetselius O.Yu., Loboda A.V., Ignatenko A., Svinarenko

A., Korchevsky D., Lovett L., QED approach to modeling spectra of the multicharged ions in a plasma: Oscillator and electron-ion collision strengths//Spectral Line Shapes. AIP Conference Proceedings.-2008.-Vol.1058.-P.175-177

- 14.Glushkov A.V., Svinarenko A.A., Nuclear quantum optics: Energy approach to multi-photon resonances in nuclei // Sensor Electr. and Microsyst. Techn.-2010.-N2.-P.5-10.
- 15.Glushkov A.V., Energy approach to resonance states of compound superheavy nucleus and EPPP in heavy nuclei collisions// Low Energy Antiproton Phys. AIP Conference Proceedings.-2005.-Vol.796.-P.206-210.
- 16.Malinovskaya S.V., S.V., Dubrovskaya Yu., Vitavetskaya L., Advanced quantum mechanical calculation of the beta decay probabilities// Low Energy Antiproton Phys. AIP Conference Proceedings.-2005.-Vol.796.-P.201-205.
- 17.Glushkov A.V., Ambrosov S.V., Loboda A., Gurnitskaya E.P., Prepelitsa G.P., Consistent QED approach to calculation of electron-collision excitation cross-sections and strengths: Ne-like ions//Int. Journ. Quant. Chem.-2005.-Vol.104, N4 .-P. 562-569.
- 18.Glushkov A.V., Ambrosov S.V., Ignatenko A.V., Korchevsky D.A., DC Strong Field Stark effect for non-hydrogenic atoms: Consistent quantum mechanical approach// Int.Journ. Quant. Chem.-2004.-Vol.99,N6.-P.936-939.
- 19.Glushkov A.V, Malinovskaya S.V, Chernyakova Y.G., Svinarenko A.A., Cooperative laser-electron-nuclear processes: QED calculation of electron satellites spectra for multi-charged ion in laser field// Int. J. Quant. Chem.-2004.-Vol.99.-P.889-893.
- 20.Glushkov A.V, Khetselius O.Yu, Malinovskaya S.V, Optics and spectroscopy of cooperative laser-electron nuclear processes in atomic and molecular systems new trend in quantum optics// Europ. Phys. Journ. ST.-2008.-Vol.160,N1.-P.195-204.
- 21.Glushkov A.V., Dan'kov S.V., Prepelitsa G., Polischuk V.N., Efimov A., <u>Qed theory of nonlinear interaction of the complex atomic systems with laser</u> <u>field multi-photon resonances//</u> Journal of Tech. Phys.-1997.-Vol.38 (2).-P.219-222
- 22.Glushkov A.V., Ambrosov S.V., Loboda A.V., Gurnitskaya E.P., Khetselius O.Yu., QED calculation of heavy multicharged ions with account for the correlation, radiative and nuclear effects// Recent Advances in Theor. Phys. and Chem. Systems.-2006.-Vol.15.-P.285-300.
- 23.Glushkov A.V., <u>Calculation of parameters of the interaction potential</u> <u>between excited alkali atoms and mercury atoms-the Cs-, Fr-Hg interaction//</u> Optika i Spektr.-1994.-Vol.77 (1).-P.5-10.
- 24.Glushkov A.V., Khetselius O.Yu., Gurnitskaya E.P., Korchevsky D.A., Loboda A.V., Prepelitsa G.P., Sensing the electron-collision excitation cross-sections for Ne-like ions of Fe in a plasma in the Debye shileding approximation// Sensor Electr. and Microsyst. Techn.-2007.-N2.-P.9-13

- 25.Svinarenko A.A., Ignatenko A.V., Ternovsky V.B., Nikola V.V., Seredenko S.S., Tkach T.B., Advanced relativistic model potential approach to calculation of radiation transition parameters in spectra of multicharged ions// J. Phys.: Conf. Ser. -2014.-Vol.548.-P. 012047.
- 26.Svinarenko A.A., Khetselius O.Yu., Buyadzhi V.V., Florko T.A., Zaichko P.A., Ponomarenko E.L., Spectroscopy of Rydberg atoms in a Black-body radiation field: Relativistic theory of excitation and ionization// J. Phys.: Conf. Ser.-2014.-Vol. 548.-P. 012048.
- 27.Glushkov A.V., Khetselius O.Yu., Bunuakova Yu.Ya., Buyadzhi V.V, Brusentseva S.V., Zaichko P.A., Sensing interaction dynamics of chaotic systems within a chaos theory and microsystem technology Geomath with application to neurophysiological systems// Sensor Electr. and Microsyst.Techn.-2014.-Vol. 11,N3.-P.62-69.
- 28.Prepelitsa G.P., Glushkov A.V., Lepikh Ya.I., Buyadzhi V.V., Ternovsky V.B., Zaichko P.A., Chaotic dynamics of non-linear processes in atomic and molecular systems in electromagnetic field and semiconductor and fiber laser devices: new approaches, uniformity and charm of chaos// Sensor Electr. and Microsyst.Techn.-2014.-Vol.11,N4.-P.43-57.
- 29.Glushkov A.V., <u>Relativistic and correlation effects in spectra of atomic</u> <u>systems</u>.-Odessa: Astroprint.-2006.-400P.
- 30.Khetselius O.Yu., <u>Hyperfine structure of atomic spectra.-</u>Odessa: Astroprint, 2008.-210P.
- 31.Khetselius O.Yu., Hyperfine structure of radium// Photoelectronics.-2005.-N14.-P.83-85.
- 32.Khetselius O., Spectroscopy of cooperative electron-gamma-nuclear processes in heavy atoms: NEET effect// J. Phys.: Conf. Ser.-2012.-Vol.397.-P.012012
- 33.Khetselius O.Yu., Florko T.A., Svinarenko A.A., Tkach T.B., Radiative and collisional spectroscopy of hyperfine lines of the Li-like heavy ions and Tl atom in an atmosphere of inert gas//Phys.Scripta.-2013.-Vol.T153-P.014037.
- 34.Khetselius O.Yu., Turin A.V., Sukharev D.E., Florko T.A., Estimating of Xray spectra for kaonic atoms as tool for sensing the nuclear structure// Sensor Electr. and Microsyst. Techn.-2009.-N1.-P.30-35.
- 35.Khetselius O.Yu., On possibility of sensing nuclei of the rare isotopes by means of laser spectroscopy of hyperfine structure//Sensor Electr. and Microsyst.Techn.-2008.-Vol.3.-P.28-33.
- 36.Glushkov A., Malinovskaya S., Gurnitskaya E., Khetselius O.Yu., Dubrovskaya Yu., Consistent quantum theory of the recoil induced excitation and ionization in atoms during capture of neutron// Journal of Physics: Conf. Series (IOP).-2006.- Vol.35.-P.425-430.
- 37.Glushkov A.V., Khetselius O.Y., Brusentseva S.V., Zaichko P.A., Ternovsky V.B., Studying interaction dynamics of chaotic systems within a non-linear prediction method: application to neurophysiology// Advances in Neural

Networks, Fuzzy Systems and Artificial Intelligence, Ser: Recent Adv. in Computer Engineering, Ed. J.Balicki.-2014.-Vol.21.-P.69-75.

- 38.Khetselius O.Yu., <u>Quantum Geometry: New approach to quantization of the quasistationary states of Dirac equation for super heavy ion and calculating hyper fine structure parameters</u>// Proc. Int.Geometry Center.-2012.-Vol.5,№ 3-4.-P.39-45.
- 39.Glushkov A.V., Khetselius O.Yu., Svinarenko A.A., <u>Theoretical</u> <u>spectroscopy of autoionization resonances in spectra of lanthanide atoms//</u> Physica Scripta.-2013.-Vol.T153.-P.014029.
- 40.Glushkov A.V., Khetselius O.Yu., Gurnitskaya E.P., Loboda A.V., Sukharev D.E., Relativistic quantum chemistry of heavy ions and hadronic atomic systems: spectra and energy shifts//Theory and Applications of Computational Chemistry. AIP Conference Proceedings.-2009.-Vol.1102.-P.168-171.
- 41.Khetselius O.Yu., Relativistic calculating the spectral lines hyperfine structure parameters for heavy ions//Spectral Line Shapes, AIP Conf. Proceedings.-2008.-Vol.1058.-P.363-365.
- 42.Khetselius O.Yu., Glushkov A.V., Gurnitskaya E.P., Loboda A.V., Mischenko E.V., Florko T.A., Sukharev D.E., Collisional Shift of the Tl hyperfine lines in atmosphere of inert gases// Spectral Line Shapes, AIP Conf. Proc.-2008.-Vol.1058.-P.231-233.
- 43.Khetselius O.Yu., <u>Hyperfine structure of energy levels for isotopes 73Ge</u>, <u>75As</u>, <u>201Hg// Photoelectronics.-2007.-</u>N16.-P.129-132.
- 44.Khetselius O.Y., Gurnitskaya E.P., Sensing the electric and magnetic moments of a nucleus in the N-like ion of Bi// Sensor Electr. and Microsyst. Techn.-2006.-N3.-P.35-39.
- 45.Khetselius O.Y., Gurnitskaya E.P., Sensing the hyperfine structure and nuclear quadrupole moment for radium// Sensor Electr. and Microsyst. Techn.-2006.-N2.-P.25-29.
- 46.Florko T.A., Loboda A.V., Svinarenko A.A., Sensing forbidden transitions in spectra of some heavy atoms and multicharged ions: New theoretical scheme// Sensor Electr. and Microsyst. Techn.-2009.-N3.-P.10-15.
- 47.Sukharev D.E., Khetselius O.Yu., Dubrovskaya Yu.V., Sensing strong interaction effects in spectroscopy of hadronic atoms// Sensor Electr. and Microsyst. Techn.-2009.-N3.-P.16-21.
- 48.Glushkov A.V., Khetselius O.Yu., Kuzakon V., Prepelitsa G.P., Solyanikova E.P., Svinarenko A., Modeling of interaction of the non-linear vibrational systems on the basis of temporal series analyses (application to semiconductor quantum generators)// Dynamical Systems-Theory and Applications.-2011.-BIF110.
- 49. <u>Svinarenko A.A., Nikola L. V.</u>, Prepelitsa G., Tkach T.B, <u>Mischenko E.V.</u>, Auger (autoionization) decay of excited states in spectra of multicharged ions: Relativistic theory//AIP Conf. Proc.-2010.-Vol.1290, N1 P.94-98.

- 50.Glushkov A.V., Khetselius O.Y., Malinovskaya S.V., <u>New laser-electron</u> <u>nuclear effects in the nuclear γ transition spectra in atomic and molecular</u> <u>systems// Frontiers in Quantum Systems in Chemistry and Physics. Series:</u> <u>Progress in Theoretical Chemistry and Physics</u> Eds. S.Wilson, P.J.Grout, J. Maruani, G. Delgado-Barrio, P. Piecuch (Springer).-2008.-Vol.18.-525-541.
- 51.Glushkov A.V., Khetselius O.Yu., Svinarenko A.A., Prepelitsa G.P., Energy approach to atoms in a laser field and quantum dynamics with laser pulses of different shape//In: Coherence and Ultrashort Pulse Laser Emission, Ed. by Dr. F. Duarte (InTech).-2010.-P.159-186.
- 52.Glushkov A.V., Khetselius O., Svinarenko A, Relativistic theory of cooperative muon-γ gamma-nuclear processes: Negative muon capture and metastable nucleus discharge// Advances in the Theory of Quantum Systems in Chemistry and Physics. Ser.: Progress in Theor. Chem. and Phys., Eds. P.Hoggan, E.Brandas, J.Maruani, G. Delgado-Barrio, P.Piecuch (Springer).-2012.-Vol.22.-P.51-68.
- 53.Glushkov A.V., Rusov V.D., Ambrosov S.V., Loboda A., Resonance states of compound super-heavy nucleus and EPPP in heavy nucleus collisions//New projects and new lines of research in nuclear physics. Eds. G.Fazio, F.Hanappe, Singapore : World Scientific.-2003.-P.126-132.
- 54.Glushkov A.V., Operator Perturbation Theory for Atomic Systems in a Strong DC Electric Field//Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology. Series: Frontiers in Theoretical Physics and Chemistry, Eds. M.Hotokka, J.Maruani, E. Brändas, G.Delgado-Barrio (Springer).-2013.-Vol. 27.-P.161-177.
- 55.Glushkov A.V., Khetselius O.Yu., Prepelitsa G., Svinarenko A.A., Geometry of Chaos: Theoretical basis's of a consistent combined approach to treating chaotic dynamical systems and their parameters determination //Proc. of International Geometry Center".-2013.-Vol.6, N1.-P.43-48.
- 56.Malinovskaya S.V., Glushkov A.V., Dubrovskaya Yu.V., Vitavetskaya L.A., Quantum calculation of cooperative muon-nuclear processes: discharge of metastable nuclei during negative muon capture// Recent Advances in the Theory of Chemical and Physical Systems (Springer).-2006.-Vol.15.-P.301-307.
- 57.Glushkov A.V., Khetselius O.Yu., Loboda A.V., Svinarenko A.A., QED approach to atoms in a laser field: Multi-photon resonances and above threshold ionization//Frontiers in Quantum Systems in Chemistry and Physics, Ser.: Progress in Theoretical Chemistry and Physics; Eds. S.Wilson, P.J.Grout, J. Maruani, G. Delgado-Barrio, P. Piecuch (Springer), 2008.-Vol.18.-P.543-560.