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PREFACE 

 

Discipline "Quantum geometry, spectroscopy and dynamics of 

resonances" is an elective discipline in the cycle of professional training of 

postgraduate or PhD students (third level of education) in the specialty 104- 

Physics and Astronomy. 

It is aimed at Acquisition (providing) of a number of competencies, in 

particular, the achievement of relevant knowledge, understanding and the ability 

to use the methods of quantum geometry and dynamics of resonances, the ability 

to develop new and improve existing mathematical methods of analysis, 

modeling and forecasting based on fractal geometry and elements of the chaos 

theory of regular and chaotic dynamics ( evolution) of complex systems, the 

ability to develop fundamentally new and improve existing modern 

computational methods and algorithms of quantum mechanics, geometry and 

electrodynamics for analysis, modeling and prediction of the properties of 

classical and quantum systems with pronounced resonant behavior. mastering 

the modern apparatus of fractal geometry and chaos theory. 

Competencies that must be acquired or developed include; i) K11 Ability 

to analyze and identify a complex of major problems in a certain field of modern 

physics and, in particular, optics and spectroscopy of atoms, multi-charged ions, 

molecular, quantum, laser systems, solid bodies, as well as the atmosphere and 

ocean; Ability to develop new and improve existing methods of describing 

optical and spectroscopic properties of solids based on methods of quantum 

mechanics, quantum chemistry of solids, as well as methods of relativistic 

quantum theory; ii) K12 The ability to create physical, mathematical and 

computer models in optics and spectroscopy of physical systems with the 

implementation of effective algorithms and specialized software; Ability to 

acquire new fundamental knowledge in optics and spectroscopy of atoms, 

molecules, solids, laser systems, as well as geophysical systems (atmosphere 

and ocean).These methodical instructions are for self-studying work of the 

second-year PhD students and tests performance in the discipline “Quantum 

Geometry and Dynamics of Resonances”.  

The main topic is a Resonance dynamics for quantum systems in an 

electromagnetic field. Methods for calculating energies and widths of Stark 

resonances  (Look Syllabus of the discipline, edition 2023) 



 

I. Topic: The theory of resonances for quantum systems in the 

electromagnetic field. Theory of the Stark effect 

Topic: Теорія резонансів для  квантових систем в електромагнітному полі.  

Теорія ефекта Штарка,  (Л 2.3; 2.5а) 

1 Introduction 

An external electric field shifts and broadens the bound state atomic levels.  

The   standard quantum -mechanical approach relates complex eigenenergies 

(EE) 2/+= iEE r
 and complex eigenfunctions (EF) to the shape resonances [1-

51].  The field effects drastically increase upon going from one excited level to 

another. The highest levels overlap forming a “new continuum” with lowered 

boundary. The calculation difficulties inherent to the standard  quantum 

mechanical approach are well known. Here one should mention the well-known 

Dyson phenomenon. The Wentzel-Kramers-Brillouin (WKB) approximation 

overcomes these difficulties for the states lying far from the “ new continuum” 

boundary. Some  modifications  of the WKB  method [1] are introduced in 

Stebbings and Dunning (1983), Kondratovich and  Ostrovsky (1982, 1984), 

Popov et al (1988, 1990) and Glushkov, Ivanov and Letokhov (1975, 1992),  

where the first theoretical estimation of the effectiviness of the selective 

ionization of the  Rydberg atom using electric and laser  fields has been fulfilled. 

The usual WKB  approximation applicability  is substantiated in the  case of a 

relatively weak  electric field [23]. One can show that the standard form of the 

WKB  method applicability condition can be reformulated as the requirement 

that the examined resonances  be well separated one from other. The  same is so 

regarding  the widespread asymptotic phase method (Damburg and Kolosov 

1976), based on  the Breit-Wigner parameterization for the asymptotic phase 

shift dependence on scattering energy and the method by Luc-Koenig and 

Bachelier, who have used a normalization constant [18]. Different calculational 

procedures are used in the Pade and then Borel summation of the divergent 

Rayleigh-Schrödinger perturbation theory (PT) series (Franceschini et al 1985, 

Popov et al 1990) and in the sufficiently exact numerical solution  of the  

difference equations  following from expansion of the  wave function over finite 

basis  (Benassi ans Grecchi 1980, Maquet et al 1983, Kolosov 1987, Telnov 

1989, Anokhin-Ivanov 1994), complex-scaling method [1-25].  It should be 



 

noted that the latter has been extensively used to describe the resonance 

behavior in different atomic and even molecular systems.  Its mathematical 

foundation is linked with the theory of dilatation analyticity. Surely, though the 

Hamiltonian of an atom in a DC electric field is not a dilatational analytic 

operator, Reinhardt has performed the numerical experiments on the 

diagonalization of the complex-scaled Stark Hamiltonian for a hydrogen with a 

real L basis set.  The same method has been used by Cerjan et al. to get new data 

on the ground and low-excited states of a hydrogen atom in a DC and AC fields. 

Farrelly and Reinhardt have used the complex coordinate rotation method in 

combination with numerical integration of the separated equation. Ivanov-Ho  

have applied the method for the Dirac Hamiltonian. Different applications are 

reviewed in Refs. [1-15].    

Rao, Liu and Li (1994)  have studied theoretically the DC strong-field Stark 

resonances  by a complex-scaling plus B-spline approach and shown that the 

high accuracy is attributed to the good stationarity behavior of  eight trajectories 

with a well-adjusted 8-spline basis. Rao and Li (1995) have also studied the 

behavior of the resonances of a hydrogen atom in parallel magnetic and electric 

fields with a complex scaling plus B-spline method too and received a consistent 

data on the corresponding resonance parameters in dependence upon the ratio of 

the magnetic-field strength to the electric-field strength. It is worth to remind 

that the similar approaches have been developed to describe the Zeemane 

resonances. Namely, for hydrogen atoms in pure magnetic fields, the properties 

of resonant states were calculated by the complex scaling, the R matrix, the 

operator PT (OPT) and other methods (look, for example, [4-7]. The 

generalization of methods to account for the resonance interference, non-H and 

relativistic effects is still an important problem, though here a definite progress 

has been reached  too. One should mention such approaches as a model potential 

method, quantum defect approximation, the OPT, complex scaling plus B-spline 

method etc [1-19, 24-28].  Regarding the quantum chaos phenomenon in atoms 

in electromagnetic fields (note that this topic should not be considered here. Let 

us only note that the approach presented below together with the various 

methods of the theory of chaos in options has been effectively used to describe 

the chaotic behavior of the hydrogen and non-H atoms in the magnetic and 

microwave fields.  

Here a consistent uniform quantum-mechanical approach to the solution of 

the non-stationary state problems including the DC strong-field Stark effect and 



 

also scattering problem is presented. It allows calculation of complex EE and 

especially is destined for investigation of the spectral region near the new 

continuum boundary. The essence of the method is the inclusion of the well 

known “distorted waves approximation” method in the frame of the formally 

exact PT. The zero-order Hamiltonian H0 of this PT possesses only stationary 

bound and scattering  states. To overcome formal difficulties, we define the 

zero-order Hamiltonian by the set of orthogonal eigenfunctions (EF) and EE 

without specifying the explicit form of the corresponding zeroth-order potential. 

To ensure rapid PT convergence, a physically reasonable spectrum (EE and EF)  

must be chosen as the zero order, similar to the “distorted waves” method [3]. In 

a case of the optimal zeroth-order spectrum, the PT smallness parameter is of the 

order of Е , where   and E are the field width and bound energy of the state 

level examined. The successive PT corrections can be expressed through the 

matrix elements of the total Hamiltonian calculated between the zeroth-order 

basis functions. This method is called the OPT. We will define H0 so that it 

coincides with the total Hamiltonian H at  0  ( is the electric field strength.) 

Let us emphasize that perturbation in our theory does not coincide with the 

electric field potential though they disappear   simultaneously. We also present a 

generalization of the OPT for calculation of the DC strong field Stark effect in 

the non-H atoms in an electric field [3]. The difference between the atomic and 

Coulomb field is taken into account by introducing the quantum defects on a 

parabolic basis. The results of calculation of the Stark resonance energies and 

widths for the H and sodium atoms are listed and compared with other 

theoretical and experimental data.  

2 Complex resonance energy. Methods for calculating energies and widths 

of Stark resonances Operator perturbation theory for Stark effect 

 

2.1 DC strong –field Stark effect for the hydrogen atom 

The Schrödinger equation for the electron function taking into account the 

uniform electric field and field of the nucleus (Coulomb units are used: for 

length, 1 unit is mZeh 22 ; for energy 1 unit is 242 hemZ )  is [3]:  

 



 

                               [-(1 - N/Z) / r+Vm(r) +  z –1/2 - E ]  = 0,                     (1) 

 

where E  is the electron energy, Z is the nucleus charge, N is the number of 

electrons in the atomic core (for the hydrogen atom: Z=1, N=0), Vm is an model 

potential (for the hydrogen atom Vm=0). Firstly, we only deal with the Coulomb 

part of the electron- atomic residue interaction. The non-Coulomb part, as well 

as relativistic effects, can be approximately accounted for next step. The 

separation of  variables in the parabolic coordinates ( ( )xyzrzr 1tan,, −=−=+=  ) 

: 

                                   (, ,  )=f () g()(  )|m|/2 exp(im)/(2)1/2                   (2) 

 

transforms it to the system of two equations for the functions  f, g: 

 

                      f + 
t

m 1|| +  f +[1/2E + (1 - N/Z) / t- 1/4 (t) t ] f = 0,          (3) 

                            g + | |m

t

+1 g + [1/2E+2  / t + 1/4 (t)  t ] g = 0,             (4) 

 

coupled through the constraint on the separation constants: 

 

                                                         121 =+                                                  (5) 

 

For the uniform electric field  

 

                                                          ( )  =t .   

 

In principle, the more realistic models can be considered in the framework of 

our approach. Potential energy in equation (4)  has the barrier. Two turning 

points for the classical motion along the   axis, 1t  and  2t , at a given energy E 

are the solutions of the quadratic equation (
01 , EE ==  ): 

 

t2 ={[ E2
0 - 4 (1-)] 1/2 - E0 }/ ,                           (6) 

 

            t1 ={-[E2
0  - 4 (1-)] 1/2 - E0 }/,   t1< t2                     (7) 

 



 

Here and below t denotes the argument common for the whole equation system. 

To simplify the calculational procedure, the uniform electric field   in (3) and 

(4)  should be substituted by the function [23]: 

          

 (t)  = 1

t
  ( )t

t
−

+
+
















4

4 4
                               (8) 

 

with sufficiently large  (=1.5t2).  

The function ( )t  practically coincides with the constant   in the inner 

barrier motion region (t<t2) and disappears at t>>t2.   

The minimal acceptable value of  introduced in the spatial dependence of 

the electric field, which does not influence the final results, can be established 

experimentally.   

Thus, the final results do not depend on the parameter   (the further 

calculation has entirely confirmed this fact). Besides the pure technical 

convenience, the case of an asymptotically disappearing electric field is more 

realistic from the physical point of view. Now we deal with the asymptotically  

free (without electric field) motion of the ejected electron along the -axis. The 

corresponding  effective wavenumber is: 

 

                                                 k = (Е/2 +/4)1/2.                                          (9) 

 

The scattering states energy spectrum now spreads over the range ( )+− ,2 , 

compared with  ( )+− ,  in the uniform field. In contrast to the case of a free 

atom in scattering states in the presence of the uniform electric field remain 

quantified at any energy E, i.e. only definite values of 
1  are possible.  

The latter are determined by the confinement condition for the motion 

along the -axis. The same is true in our case, but only for  

 

E 







+− 

2

1
,

2

1 . 

 

The motion with larger E is non-quantified, similar to the free atom case.  



 

2.2 Energy and width of the Stark resonance 

The total Hamiltonian ( ) ,,H  does not possess the bound stationary states. 

According to OPT [6, 56-58]), one has to define the zero order Hamiltonian H0, 

so that its spectrum reproduces qualitatively that of the initial one. In contrast to 

H, it must have only stationary states. To calculate the width  of the concrete 

quasistationary state in the lowest PT order one needs only two zeroth–order EF 

of H0: bound state function ( ) ,,Eb  and scattering state function ( ) ,,Es  

with the same EE. We solve a more general problem: a construction of the 

bound  state function along with its complete orthogonal complementary of  

scattering functions E  with  E 







+− ,

2

1
 . First, one has to define the EE of 

the expected bound state. It is the well known problem of states quantification in 

the case of the penetrable barrier [65,66]. Following [57], we solve the system 

(3) and (4) with the total Hamiltonian H  under the conditions: 

 

                                                   f(t)→ 0 at t   ,                                (10a) 

                                                    x(, E) / E = 0                                 (10b) 

 

with                                 x(, E) = 
t
lim [ g2 (t) + {g(t) / k}2 ] t| m| + 1.          (11) 

 

The first condition ensures the finiteness of motion along the  -axis, the second 

condition minimizes the asymptotic oscillation amplitude for the function 

describing the motion along the  -axis. These two conditions quantify the 

bound energy E and separation constant 
1 . We elaborated a special numerical 

procedure for this two-dimensional eigenvalue problem.  Our procedure deals 

repeatedly with the solving of the system of the ordinary differential equations 

(3) and (4) with probe pairs of  E, 
1 . The corresponding EF: 

 

                  Eb (  ) = fEb () gEb ()( )|m|/2 exp (im)(2)--1/2 .       (12) 

 

Here  ( )tfEb
  is the solution of (3) ( with the just determined E, 

1 ) at ( ) ,0t   and 

( )tgEb
 is the solution of (4) (with the same E, 

1 ) at 
2tt   (inside barrier) and  

( ) 0=tg  otherwise.  These bound state EE, eigenvalue 
1  and EF for the zero-order 



 

Hamiltonian 
0H  coincide  with those  for the total Hamiltonian H  at  0 , 

where all the states can be classified  due  to the quantum numbers mnnn ,,, 21
 

(principal, parabolic, azimuthal) connected with E, 
1 , m by the well known 

expressions. We preserve the mnn ,, 1
 states classification in the non-zero   case. 

The scattering state functions: 

 

           Es  (  ) = f Es () gE’s () ( )|m|/2  exp (im)(2)-1/2     (13) 

 

must be  orthogonal to the above defined bound state function and to each other. 

In addition, these functions must describe the motion of the ejected electron, i.e. 

sEg 
 must satisfy the equation (4) asymptotically. Following the OPT ideology 

[23], we choose the next form of 
sEg 
: 

 

        gEs(t) = g1 (t) - z2 g2(t)                                         (14) 

 

with 
sEf 
 and ( )tg1

 satisfying the differential equations (3) and (4). The function 

( )tg 2
 satisfies the non-homogeneous differential equation, which differs from (4) 

only by the right-hand term, disappearing at t . The total equation system, 

determining the scattering function, reads 

 

        fEs + | |m

t

+1 f Es +[1/2E + (1 - N/Z) / t- 1/4  (t)t] f Es = 0, 

                     g1 + | |m

t

+1 g1 + +[1/2E+2  / t +  1/4 (t)t] g1 = 0,            (15) 

    g2 + | |m

t

+1 g2 + +[1/2E+2  / t +  1/4 (t)t] g2 = 2gEb, 

 

( 121 =+  ). As mentioned above there remains motion quantification for 









+− 

2

1
,

2

1
Е .  At the given E , the only quantum parameter 

1   is determined 

by the natural boundary condition: fEs at t  .  

Of course:  
11  = , 

EbsE ff =
  at EE = ; only this case is needed in the particular 

problem we deal with here. The coefficient 
2z   ensures the orthogonality 

condition 0= sEEb
: 

 



 

                z2  = { dd (+) f 
2

Eb()gEb ()g1 ()}/ 

 

        /{ dd (+) f 
2
Eb()gEb ()g2 () }.                  (16) 

One can check that 

     Es’| E’s  = 0  for  E’E’’ 

 

The imaginary part of state energy in the lowest PT order is  

 

    ImE = /2 = |<Eb |H|Es>|2                           (17)   

 

with the total Hamiltonian H . The state functions 
Eb  and 

Es  are assumed to be 

normalized to 1 and by the ( )kk −  condition, accordingly. The action of H  on 

Eb  is defined unambiguously by (15): 

 

(H-E’) s =2|m|(2) f Es () gEb ()z2’
 exp (im/)/[(2)1/2 (+)], 

 

                     Eb|H| E’s =  dd ()|m| f 
2

Eb()f2
 Es ()gEb () '

2z .     (18) 

 

The matrix elements 
sEEb H   entering the high- order PT corrections can be 

determined in the same way. All the two-dimensional integrals in (16)-(18) and 

the normalization coefficients can be expressed through the next set of one-

dimensional integrals: 

 

                                I1 = dt fb
2(t)t|m| ,                               I2 = dt fb

2(t)t|m|+1, 

          I3 = dt  gb (t) g1 (t) t
|m| ,         I4= dt gb(t)g1(t)t

|m|+1, 

            I5 = dt  gb (t) g2 (t) t
|m| ,        I6 = dt  gb(t) g2(t)t

|m|+1, 

                        I7 = dt gb 
2 (t) t|m| ,                      I8 = dt gb

2 (t)t|m|+1,            (19) 

 

calculated with  the arbitrary normalized functions 
Ebf ,

Ebg ,
2f ,

2g , and 
Ebff =1

, 

Ebgg =1
. In this notation 

 

]/[32 8172

2

8

2

1

22

2 IIIIIINz s +=  , 

 



 

                                ]/[][ 526132412 IIIIIIIIz ++=                                    (20) 

with 

             N2
s=

t
limX(t)/{22|m|+1[ g2

s()X2(t) + gs2()]} ,        

 

                            X(t)={E/2 + ( -N/Z )/t -Е t/4}1/2                                 (21) 

 

Remember that arbitrary normalized state functions are assumed in (20) and 

(21). The whole calculational procedure at known resonance energy E and 

separation parameter 
1  has been reduced to the solution of one system of the 

ordinary differential equations. This master system includes the differential 

equations for the state functions  
Ebf , 

Ebg , 
Esf , 

Esg , as well as the equations for the 

integrals 
81 II − . Thus, our calculational procedure is one-dimensional. The 

procedure is sufficiently simple and realized as the numerical code with using 

the fourth-order Runge–Kutta method of solving the differential equations (the 

atomic code “Superatom-ISAN-Stark”).  

 

 

II. Task options for self-sufficient work 

 

Task Option 1. 

 

1). Give the key definitions of a theoretical approach to definition of the   energy 

and spectral characteristics of the Stark resonances using the standard  quantum-

mechanical amplitude approach  and new formalism of operator perturbation 

theory by Glushkov-Ivanov: i) mathematical and physical essense of quantum-

mechanical amplitude approach  , ii) mathematical and physical essense of 

operator perturbation theory by Glushkov-Ivanov: iii) calculation of the Stark 

resonances energies and widths s, iv) calculation of the ionization cross section 

in a presence of DC electric field,  v) analysis of the role of correlation effects 

and value of the field strength,   

 Explain all definitions in theory of Stark resonances for atomic systems in 

DC electric field on the example of the hydrogen, helium and any alkali atom  , 

preliminarily describing the corresponding spectrum of a free system , i.e. 

without an external electric field. 



 

2).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

the Stark resonances energies and widths of any alkali atom, say Li.  To perform 

its pracrical realization (using Fortran Power Station , Version 4.0; PC Code: 

“Superatom-Stark” for quantum system from the first task of the option (all 

necessary numerical parameters should be self-taken).   

 

Task Option 2. 

 

1). Give the key definitions of a theoretical approach to definition of the   energy 

and spectral characteristics of the Stark resonances using the standard  quantum-

mechanical amplitude approach  and new formalism of operator perturbation 

theory by Glushkov-Ivanov: i) mathematical and physical essense of quantum-

mechanical amplitude approach  , ii) mathematical and physical essense of 

operator perturbation theory by Glushkov-Ivanov: iii) calculation of the Stark 

resonances energies and widths s, iv) calculation of the ionization cross section 

in a presence of DC electric field,  v) analysis of the role of correlation effects 

and value of the field strength;  Explain all definitions in theory of Stark 

resonances for atomic systems in DC electric field on the example of the 

hydrogen, helium and any alkali atom  , preliminarily describing the 

corresponding spectrum of a free system , i.e. without an external electric field. 

2).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

the Stark resonances energies and widths of any alkali atom, say Na.  To 

perform its pracrical realization (using Fortran Power Station , Version 4.0; PC 

Code: “Superatom-Stark” for quantum system from the first task of the option 

(all necessary numerical parameters should be self-taken).   

 

Task Option 3. 

 

1). Give the key definitions of a theoretical approach to definition of the   energy 

and spectral characteristics of the Stark resonances using the standard  quantum-

mechanical amplitude approach  and new formalism of operator perturbation 

theory by Glushkov-Ivanov: i) mathematical and physical essense of quantum-

mechanical amplitude approach  , ii) mathematical and physical essense of 

operator perturbation theory by Glushkov-Ivanov: iii) calculation of the Stark 

resonances energies and widths s, iv) calculation of the ionization cross section 

in a presence of DC electric field,  v) analysis of the role of correlation effects 

and value of the field strength;   Explain all definitions in theory of Stark 

resonances for atomic systems in DC electric field on the example of the 



 

hydrogen, helium and any alkali atom, preliminarily describing the 

corresponding spectrum of a free system , i.e. without an external electric field. 

2).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

the Stark resonances energies and widths of any alkali atom, say K.  To perform 

its pracrical realization (using Fortran Power Station , Version 4.0; PC Code: 

“Superatom-Stark” for quantum system from the first task of the option (all 

necessary numerical parameters should be self-taken).   

 

Task Option 4. 

 

1). Give the key definitions of a theoretical approach to definition of the   energy 

and spectral characteristics of the Stark resonances using the standard  quantum-

mechanical amplitude approach  and new formalism of operator perturbation 

theory by Glushkov-Ivanov: i) mathematical and physical essense of quantum-

mechanical amplitude approach  , ii) mathematical and physical essense of 

operator perturbation theory by Glushkov-Ivanov: iii) calculation of the Stark 

resonances energies and widths s, iv) calculation of the ionization cross section 

in a presence of DC electric field,  v) analysis of the role of correlation effects 

and value of the field strength;  Explain all definitions in theory of Stark 

resonances for atomic systems in DC electric field on the example of the 

hydrogen, helium and any alkali atom  , preliminarily describing the 

corresponding spectrum of a free system , i.e. without an external electric field. 

2).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

the Stark resonances energies and widths of any alkali atom, say Rb.  To 

perform its pracrical realization (using Fortran Power Station , Version 4.0; PC 

Code: “Superatom-Stark” for quantum system from the first task of the option 

(all necessary numerical parameters should be self-taken).   

 

Task Option 5. 

 

1). Give the key definitions of a theoretical approach to definition of the   energy 

and spectral characteristics of the Stark resonances using the standard  quantum-

mechanical amplitude approach  and new formalism of operator perturbation 

theory by Glushkov-Ivanov: i) mathematical and physical essense of quantum-

mechanical amplitude approach  , ii) mathematical and physical essense of 

operator perturbation theory by Glushkov-Ivanov: iii) calculation of the Stark 

resonances energies and widths s, iv) calculation of the ionization cross section 

in a presence of DC electric field,  v) analysis of the role of correlation effects 

and value of the field strength;   Explain all definitions in theory of Stark 



 

resonances for atomic systems in DC electric field on the example of the 

hydrogen, helium and any alkali atom, preliminarily describing the 

corresponding spectrum of a free system , i.e. without an external electric field. 

2).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

the Stark resonances energies and widths of any alkali atom, say Cs.  To 

perform its pracrical realization (using Fortran Power Station , Version 4.0; PC 

Code: “Superatom-Stark” for quantum system from the first task of the option 

(all necessary numerical parameters should be self-taken).   

 

Task Option 6. 

 

1). Give the key definitions of a theoretical approach to definition of the   energy 

and spectral characteristics of the Stark resonances using the standard  quantum-

mechanical amplitude approach  and new formalism of operator perturbation 

theory by Glushkov-Ivanov: i) mathematical and physical essense of quantum-

mechanical amplitude approach  , ii) mathematical and physical essense of 

operator perturbation theory by Glushkov-Ivanov: iii) calculation of the Stark 

resonances energies and widths s, iv) calculation of the ionization cross section 

in a presence of DC electric field,  v) analysis of the role of correlation effects 

and value of the field strength;   Explain all definitions in theory of Stark 

resonances for atomic systems in DC electric field on the example of the 

hydrogen, helium and any alkali atom, preliminarily describing the 

corresponding spectrum of a free system , i.e. without an external electric field. 

2).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

the Stark resonances energies and widths of any alkali atom, say Fr.  To perform 

its pracrical realization (using Fortran Power Station , Version 4.0; PC Code: 

“Superatom-Stark” for quantum system from the first task of the option (all 

necessary numerical parameters should be self-taken).   
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