
1 
 

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE 

ODESSA STATE ENVIRONMENTAL UNIVERSITY 

 

 

 

 

 

 

 

 

 

 

 

 

A.V. Glushkov, O.Y. Khetselius, A.A. Svinarenko  
  

 

 

MATHEMATICAL PHYSICS OF CLASSICAL AND QUANTUM 

SYSTEMS. Part 2 
 

 

Textbook 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Odesa  

Odessa State Environmental University 

2022   



2 
 

UDK 539.184:539.27 

G51 
 

 

Glushkov A.V., Khetselius O.Y., Svinarenko A.A. 

 G51 Mathematical Physics of Classical and Quantum Systems. P.2: TEXTBOOK.  Odesa: 

Odessa State Environmental University, 2022. 210p. 

ISBN  

 

 

 
In the textbook "Mathematical Physics of Classical and Quantum Systems", part 2, the 

basic issues of modern mathematical physics of quantum systems, elements of quantum ge-

ometry, algebra, mechanics, electrodynamics in the aspects of determining energy parameters 

of quantum systems and calculation of dynamic, energy and spectral characteristics of energy 

levels of atoms are described and ions, etc. 

It can be used by  PhD students (magisters (partly) and scientific workers) of the spe-

cialities: 113-"Applied Mathematics", and 111-"Mathematics”, 104- “Physics and 

Astronomy", and so on. 
 

Reviewers: 
Dr of Sci., Prof. P.O.Kondratenko, Dr of Sci., Prof. A.V. Tjurin, Dr of Sci., Prof. V.G. Shevchuk 

    
 

UDK 539.184:539.27 

 

 

Recommended by the Methodical Council of the Odessa State Environmental University of the 

Ministry of Education and Science of Ukraine as lectures notes  

(protocol No.2 оf 26.10.2022) 
 

 

 

 

 

 

 

 

 

 

 

 

 

ISBN  
 

                                                                                   © Glushkov A.V., Khetselius O.Y., Svinarenko A.A., 2022, 

                                                                              © Odessa State Environmental University, 2022 

 



3 
 

CONTENTS 
Introduction…………………………………………………………………..6   

List of abbreviations,constants, units used………………………………….8  

CHAPTER 1. RELATIVISTIC ENERGY APPROACH IN 

MATHEMATICAL PHYSICS OF   RADIATIVE AND 

AUTOIONIZATION PROCESSES IN HEAVY FINITE FERMI-

SYSTEMS                                                                                                9 

1.1 The relativistic Dirac equation for an electron in an external field……….9 

1.2 QED perturbation theory method for calculation of heavy atoms and mul-

ticharged ions          12 

1.3 Definition of basis of relativistic wave functions    12 

1.4 Nuclear finite size and radiation QED effects     16 

1.5 The one-particle optimized gauge-invariant representation   17 

1.6 Energy approach to calculating radiative transition probabilities  22 

1.6.1 General remarks         22 

1.6.2 Imaginary part of the secular matrix      24 

1.6.3 Energy approach to calculating autoionization widths for atoms  29 

References           32 

CHAPTER 2. RELATIVISTIC ENERGY APPROACH TO             

RADIATIVE AND AUTOIONIZATION PROCESSES IN                

HEAVY FINITE FERMI-SYSTEMS (ATOMS AND IONS): 

APPLICATIONS          43 

2.1 Radiative transition probabilities and oscillator strengths for  

transitions in spectra of some heavy atoms and ions    43 

2.2 Radiative transition probabilities and oscillator strengths for  

transitions in spectra of Zn-like multicharged ions     47 

2.3 Radiative transition probabilities and autoionization widths for  

Ne-like multicharged ions        48 

2.4 Autoionization resonances widths in YbI and TmI atoms   53 

2.5 The Tm, U autoionization resonance decay in a weak electric field  

and laser photoionization method of isotope separation    58 

2.6 Conclusions          63 

References           64 

CHAPTER 3. OPTIMIZED RELATIVISTIC MANY-BODY 

PERTURBATION THEORY IN CALCULATIONS OF ENERGY AND 

SPECTRAL CHARACTERISTICS OF RELATIVISTIC ATOMS AND 

MULTICHARGED IONS                             92 

3.1. Introduction            92 



4 
 

3.2. Relativistic many-body perturbation theory with the Dirac-Kohn- 

Sham zeroth approximation………………………………………………….97 

3. 2.1 The Dirac-Kohn-Sham zeroth approximation and nuclear potential 97  

3.2.2. QED corrections……………………………………………………… 102 

3.3. Construction of the optimal one-quasi-electron representation…………103 

3.4. Relativistic energy approach to computing oscillator strengths for 

multicharged ions……………………………………………………………..110  

3.5. Results and Conclusions…………………………………………………112 

References           115 

CHAPTER 4. ADVANCED QUANTUM APPROACH IN RADIATIVE & 

COLLISIONAL SPECTROSCOPY OF MULTICHARGED IONS……129  

4.1 Introduction……………………………………………………………….129 

4.2 Radiative and collisional spectroscopy of multicharged ions:  Relativistic 

many-body perturbation theory and relativistic energy approach……………131  

4.2.1 Relativistic many-body perturbation theory with Dirac-Debye shielding 

model zeroth approximation………………………………………………….131 

4.2.2 Relativistic energy approach in radiative and collisional spectroscopy of 

multicharged ions…………………………………………………………….135 

4.5. Results and Conclusions…………………………………………………139 

References           148 

CHAPTER 5.  HYPERFINE AND ELECTROWEAK INTERACTION IN 

HEAVY FINITE FERMI-SYSTEMS AND PARITY NON-

CONSERVATION EFFECT……………………………………………….162   

5. 1 Introduction…………………………………………………………….162 

5.2. Relativistic nuclear-RMBPT formalism in theory of heavy finite Fermi-

systems………………………………………………………………………..164 

5.3. Results and Conclusions…………………………………………………171 

References           176 

CHAPTER 6. GAUGE-INVARIANT QED PERTURBATION THEORY 

APPROACH TO CALCULATING NUCLEAR ELECTRIC 

QUADRUPOLE MOMENTS, HYPERFINE STRUCTURE CONSTANTS 

FOR HEAVY ATOMS AND IONS: SUPERATOM PACKAGE……….188 

6.1  Introduction……………………………………………………………188 

6.2. QED perturbation theory method for calculation of heavy and superheavy 

ions……………………………………………………………………………190 

6.3. Results and Conclusions…………………………………………………197 

References           205 

Index…………………………………………………………………………..208 

 



5 
 

INTRODUCTION 

 

The discipline "Mathematical Physics of Classical and Quantum Systems. 

Quantum" is an important discipline in the cycle of professional training of 

postgraduate students (third level of education) in specialty 113- Applied 

Mathematics. 

It is aimed at assimilating (assuring) a number of planned competencies, 

including the study of a modern apparatus of quantum geometry and dynamics 

of resonances, as well as new applied (computational) methods and algorithms 

for calculating the fundamental energy (radiation) characteristics of resonances 

(resonance states) of complex classical and quantum systems with possible 

generalizations on various classes of mathematical, physico-chemical, 

cybernetic, socio-economic and ecological systems, use of modern scientific m 

todiv scientific results and achievements that create potentially new knowledge 

in the field of quantum geometry and dynamics rezonsniv. 

The place of discipline in the structural-logical scheme of its teaching: the 

knowledge obtained in the study of this discipline is used in writing dissertation 

papers, the topics of which are related to the study of fundamental energy 

(radiation) characteristics of resonances (resonance states) of complex classical 

and quantum systems with possible generalizations on a variety classes of 

mathematical, physico-chemical, cybernetic, socio-economic and ecological 

systems. 

The basic concepts of discipline are the desirable tools of an experienced 

specialist in the field of applied mathematics. 

The purpose of studying discipline is assimilation (assurance) of a number 

of competencies, in particular, mastering the modern apparatus of quantum 

geometry and resonance dynamics, the ability to develop new and improve 

existing mathematical methods for analysis, modeling and prediction of energy 

(radiation) characteristics of resonances (resonance states) of complex classical 

and quantum systems . After mastering this discipline, the postgraduate student 

must be able to use modern or develop new approaches, in particular, based on 

quantum geometry and resonance dynamics, to analyze, simulate, predict, and 

program the characteristics of resonances (resonance states) of complex classical 

and quantum systems with the formulation of computer experiments. 

It should be noted that the manual widely used new scientific and 

methodological results in the field of quantum geometry and dynamics of 
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resonances, in the vast majority of which are obtained directly by the authors of 

the manual (for example, a description of the relativistic energy approach to the 

description of autoionization and multiphoton resonances in the spectra of 

quantum systems, for example, in the microwave field, etc.), as well as in the 

author's wording, the fundamental fundamental questions, as well as the most 

significant scientific results in the field of quantum geometry and dynamics ing 

resonances obtained international team of leading academic experts. Some 

sections of the textbook contain, as indicated, fundamentally new scientific 

results.  

Among them, particular attention should be paid to the following: 

1). Theoretical bases of the new, precision relativistic method of 

description and calculation of characteristics of multiphoton processes for atoms 

in the field of intensive laser radiation on the basis of CED theory of 

perturbations, the method of relativistic Green's functions, 

2) for the first time in the world based on its quantitative modeling of 

energy and radiation properties of multiphoton resonances in spectra of a 

number of complex atoms, and others. 

In addition, most of the most significant new results and developments 

have been tested and presented at a number of leading professional conferences, 

schools, congresses, including the VI-XXIV International Workshop on 

Quantum Systems in Chemistry and Physics (VI-Upssala, Sveden; XXIII- 

SouthAfrica;, 47th Conference of the European Group Atomic Systems (EGAS-

47, Riga, Latvia, 2015), XXIX International Conference on Photonic, 

Electronic, and Atomic Collisions (ICPEAC, Toledo, Spain, 2015), III, IV, V 

International School and Conference on Photonics (Belgrade, Serbia, 2013-

2015), 21st Central European Workshop on Quantum Optics (Brussels, 

Belgium, 2014), 22nd International Conference on Spectral Lina Shapes (UT 

Space Institute, Tullahoma, USA, 2014), 13th International Conference on 

Artificial Intelligence, Knowledge Engineering and Data Bases (Gdansk, 

Poland, 201 4th edition of the 32nd European Congress on Molecular 

Spectroscopy (Heinrich-Heine-University, Düsseldorf, Germany, 2014), 12th 

International Conference "Dynamical Systems-Theory and Applications" (Lodz, 

Poland, 2013), XVIII International Workshop on Quantum Systems in 

Chemistry and Physics (Paraty-Rio de Janeiro, Brazil, 2013), XI International 

Conference on Atomic and Molecular Pulsed Lasers (Tomsk, Russia, 2013), 

22nd International Laser Physics Workshop (Prague, Czech Republic, 2013), 
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11th International Colloquium on Atomic Spectra and Oscillator Strengths for 

Astrophysical and Laboratory Plasmas (Mons, Belgium, 2013), 2nd Chaotic 

Modeling and Simulation International Conference (Crete, Greece, 2009), 

International Conference on Statistical Physics (Crete, Greece, 2008) and many 

others.  

Taking this opportunity, the authors express their gratitude to the staff of 

the Department of Higher and Applied Mathematics of the ODEKU, at scientific 

and methodological workshops which were devoted to many of the issues 

outlined in the book, as well as Ph.D., associate professor Buyadzhi V.V., Ph.D., 

associate professor Ternovsky V.B. as well as well-known leading foreign 

experts: Prof. E. Brandas (Uppsala, Sweden), Prof. J. Maruani (Paris, France), 

Prof. S.Wilson (Oxford, The UK) for helpful discussions on a number of 

questions and advice on setting out some issues of resonance dynamics. 
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List of abbreviations,constants, units used  

 

MPR –   multiphoton resonance (resonances) 

DE – differential equation (method) 

QED – quantum electrodynamic 

LR – laser radiation  

REF  –  relativistic energy formalism  

RHF – relativistic approximation Hartree-Fok 

PT  –  perturbation theory 

PTDF – many-particle PT with DF zero approximation; 

GF – Green’s function (method) 

АC – alternating current 

DF –   Dirac-Fock (method) 

DKS –  Dirac-Kohn-Sham (method) 

DC – direct current 

LE  –  Lyapunov's exponents 

QP – quasi-particle 

ХС (effects) – exchange-correlation (effects) 

WKB  – WKB approximation 

 

Fundamental constants:  

Speed of light c=2,997925108 м/c;  Elementary charge  e=1,6021910-19 Кл;  

Electron mass m=9,109510-31 кг;   Planck constant ħ=1,0545910-34Джс;  

Rydberg constant R=1,0973732107м-1 Bore radius ħ2/me2=0,5291773 Å;   

Fine-structure constant =e2/ħc,1/=137,03597;  

 

Units.  Everywhere where otherwise indicated, atomic units are used: e=1, ħ=1, 

m=1 (c=137,03597). Atomic units of length, time and velocity: 

ħ2/me2=5,29177310-11 m, ħ3/me4=2,418910-17 s, e2/ħ=2,1877106 m/s. Atomic 

unit of energy (a.u.e.) me4/ħ2=2Ry=27,2116eV=4,359810-18J=2,19475105сm-1 

(me4/2ħ2= Ry – Rydberg). Energy in Coulomb unts (c.u.): 1 c.u.e.=Z2 a.u.e. (Z – 

charge of atomic nucleus). Relativistic units: ħ=1, c=1, m=1, e2=1/137,03597. 
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CHAPTER 1. RELATIVISTIC ENERGY APPROACH IN 

MATHEMATICAL PHYSICS OF TO RADIATIVE AND 

AUTOIONIZATION PROCESSES IN HEAVY FINITE FERMI-

SYSTEMS  

 

1.1 The relativistic Dirac equation for an electron in an external field 

 

As is well known from QED (c.f.  Classical Course of theoretical physics 

[1,2], we follow below) and quantum geometry (see. Eg., [3,4]), the wave equa-

tions of free particles express the properties that, In fact, the general require-

ments associated with the spatio-temporal symmetry.  

Naturally occurring particles is dependent on the physical properties of 

the processes of their interactions. Consistent description of electromagnetic in-

teractions is given by one of the most reasonable physical theories - QED. Of 

course, it should be recalled that this formalism is used to describe the electro-

magnetic interactions of a particle is not capable of strong interactions. These 

particles, of course, are the electrons (and positrons), and thus, for the existing 

theory is available to the whole vast area electron QED.  

The traditional range of tasks in quantum geometry and the theory of 

QED confined to a single particle. This is - the problem in which the number of 

particles does not change, and the interaction can be entered using the concept of 

an external electromagnetic field. In addition to the conditions that enable the 

external field is considered as a given, the limits of applicability of this theory 

are also limited conditions associated with so-called QED radiative corrections. 

Below in this subchapter the relativistic units ħ=1, c=1, m=1, are used; the 

square of the electron charge е2 is replaced by the dimensionless  

(1/==137,03597). 

 One could consider,  following [1], the wave equation of the electron in a 

given external field. As usual, let 

 

( ),AA =   
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- 4-potential of the external electromagnetic field (A- vector, Ф- scalar poten-

tials). Required equation follows from the Dirac equation by replacing the 4-

momentum operator difference p-eA (е – particle charge): 

 

                                            ( )  0=−−  meAp .                             (i1.1) 

 

Here and below we use commonly used in relativistic QED units (see. below). 

where е2 is replaced by . 

Corresponding to the Hamiltonian equation can also be obtained by re-

placing the standard Dirac Hamiltonian: 

 

                                           ++−= emeApH  )( .                        (i1.2) 

 

Naturally, this does not concern the form of radial wavefunctions. In con-

nection with the above, the wave function of the stationary states (in the stand-

ard representation) must be sought in the form of: 

 

                          

( )

( ) ( )
1

2

,
1

jlm

l l

jl m

f r

g r





+ −



 
   = =     −  

                           (i1.3) 

where   

                                             1 2, 2l j l j l=  = − ,  

 

and the exponent of -1 is introduced to simplify the subsequent formulas. 

In classical electrodynamics the electromagnetic interaction is described 

by the well-known expression: 

 

       ej A

−                                            (i1.4a) 

 

density langranzhiana "field + charges" ( A - 4-potential field j - 4-vector current 

density of the particles). The current density satisfies the continuity equation: 
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                         0j

 = ,                            

(i1.4b) 

 

expresses the law of conservation of charge.  

The electromagnetic interaction operator (the integral over the space of 

the interaction Hamiltonian density) has the standard form: 

 

                                                    ( ) xdAjeV 3

int
ˆ= .                                  (i1.5) 

 

 The probability of transition in the quantum system under the influence of 

the perturbation Vint  in the first approximation is given by the formula known 

PT ("golden" rule by Fermi).  

It is usually assumed that the initial and final states of the radiating system 

belong to the discrete spectrum. Then the probability (per unit time) of the tran-

sition i f→  with the emission of a photon is given by the well-known formula: 

 

       ( )
2

2 fi i fd V E E dv   = − − ,              (i1.6) 

 

where v  conventionally denotes the set of variables that characterize the state of 

the photon and runs through a continuous range of values (in this case the pho-

ton wave function is assumed normalized to  -function "scale v "). 

 If the photon is emitted with a certain value of the moment, the only vari-

able is the continuous frequency  . Integration of the formula (1.6) to dv d  

eliminate  -function (replacing   the value i fE E = − ), and then the transi-

tion probability is determined simply by the expression:  

 

               
2

2 fiV = .         (i1.7) 

 

It is assumed that the photon wave function (plane wave) is normalized to 

one photon in the volume 1V =  and dv  - the number of states have accounted 

for the phase volume 
3Vd k .  
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As a result, the probability of emission of a photon with a given momen-

tum can obtain the following well-known expression: 

 

      ( )
( )

3
2

3
2

2
fi i f

d k
d V E E   


= − − ,                   (i1.8) 

or after integration by d : 

 

                  
2

2

2

1

4
fid V do 


= .           (1.9) 

 

As fiV  in (i1.8) is substituted matrix element of the form:  

 

                                                  ( )
1

4
2

fi fiV e e j k




= .                         (i1.10) 

 

Further, it is useful to remind the formulas relating to dipole radiation. 

Recall E1 radiative transitions are the most intense in the atomic spectra, and 

M1 - respectively in nuclear systems. Transition current in this case is the matrix 

element of the operator  

=ĵ , 

 

in which the  -operators are assumed to expansions in the wave functions of 

the stationary states of the electron in this field.  

Substitution 
fiV  gives the well-known expression for the probability of ra-

diation into the solid angle do  of a photon with polarization e :  

 

             ( )
2

2 e j k
2

en fid e do





= ,          (i1.11) 

where  

                        ( ) kr 3j k i

fi f ie d x  −=  .                  (i1.12) 
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Here the summation over photon polarizations is done by averaging over the di-

rections of e (in a plane perpendicular to a given direction n k = ) and then the 

result is multiplied by 2, respectively, to two independent features transverse 

photon polarization.  

As a result, the final expression takes the form:  

 

       ( )
2

2 nj k
2

n fid e do





 =   .               (i1.13) 

  

It is appropriate to recall that, as a rule, first consider the case where the 

photon wavelength    large compared with the size of the radiating system а 

and that is usually associated with the smallness of the particle velocities com-

pared to the speed of light. In the first approximation in a   (corresponding to 

dipole radiation) in the current transition (i1.12) factor 
krie−

  (varies little in the 

area where 
i  or 

f  significantly different from zero) for obvious reasons, is re-

placed by 1. In fact, the change means neglecting photon momentum compared 

with the momenta of the particles in the system . Further, the integral ( )j 0fi  

can be replaced by its non-relativistic expression, ie, a matrix element fi  of the 

electron velocity with respect to the Schrödinger wave functions. Seeking matrix 

element can be expressed as: 

 

                                                 rfi fii = − ,                               (1.14) 

and     

                                                         r dfi fie = ,                                      (i1.15) 

 

where d - the dipole moment of the electron (in its orbital motion). 

As a result, we can come to the following classical formula for the proba-

bility of dipole radiation: 

 

               

3
2

e d
2

en fid do





=              (i1.16) 
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(and direction n appears here in an implicit form: vector e must be perpendicular 

to n). Summation over polarizations gives:   

 

                                        

3
2

nd
2

n fid do





 =   .               (i1.17) 

  

Under d fi  here obviously refers to a matrix element of the dipole mo-

ment of the complete system. 

          Integration of the formula (1.17) in all directions allows to obtain the fol-

lowing well-known expression for the total probability of radiation:  

 

                     

3
24

d
3

fi


 = ,                                (i1.18) 

 

In conventional terms, this formula has the form:  

 

                     

3
2

3

4
d

3
fi

c


 = .           

(i1.19) 

 

Recall that the radiation intensity I is obtained by multiplying the proba-

bility for   that is  

 

                       

4
2

3

4
d .

3
fiI

c


=           (i1.20) 

 

Next, consider the elements of the theory of electric and magnetic multi-

pole radiation.  

In the light of the material presented above, it is convenient to restrict in 

this section considering the emission of a photon with definite values of the an-

gular momentum j  and its projection m  on a chosen direction. 
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As is known, such photons can be of two types - electric and magnetic. 

Consider the electric multipole radiation. 

We assume that the size of the radiating system are small compared with 

the wavelength. Following [1-3], it is possible to perform all the calculations us-

ing the photon wave functions in the momentum representation, ie, presenting a 

4-vector ( )rA  in the form of a Fourier integral. 

The transition matrix element: 

 

             ( ) ( ) ( )
( )

( )
3

3 3

3
r r r r

2

ikr

fi ji fi

d k
V e j A d x e d x j A e 




  −= =       (i1.21) 

 

In order to simplify the notation is convenient to omit the indices jm  of 

the photon wave functions. Next to Ej -photon use wave function (2.vector po-

tential): 

 

                                   ))(|(|
4

)(
2/3

2

jm

э

jm

э

jm YnCYkkA


+−= 



                   (i1.22) 

 

     jm

э

jm CYkk )|(|
4

)(
2/3

2
)( 




 −=


 

 

with an arbitrary gauge constant C equal to, say, 

 

1j
C

j

+
= − . 

 

With this choice in the spatial components of the wave function ( )A  is reduced 

members comprising spherical harmonics of order 1j −  and, accordingly, 
э

jmA


 

comprises only the order of spherical harmonics 1j + , resulting in the corre-

sponding contribution 
fiV  is higher order (in a  ) than the contribution from the 

components
0A   , containing spherical functions of lower order j . That is, it 

should be:  
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( ),0 ,A =   

 

( ) ( )
2

3
2

1 4
k njm

j
Y

j


 



+
 = − −  

 

(is there n= k  ). Substituting this expression into (i1.21) and integrating with 

respect to k , please contact:  

 

               ( ) ( )3

n

1
r n

2

ikr

fi fi jm

j
V e d x do e Y

j






− +
= −   .       (i1.23) 

 

Usually to calculate the inner integral is used decomposition: 

 

                                        ( )
0

k r
4

l
ikr l

l lm lm

l m l

e i g kr Y Y
r r






= =−

   
=    

   
  ,             (i1.24a) 

where  

 

                                                ( ) ( )1 2
2

l lg kr J kr
kr


+= .              (i1.24b) 

 

The final expression for the matrix element of the transition is as follows: 

 

         ( )
( )( )

( )
( )( )

1 2
1

,

2 1 1
1

2 1 !!

j
m эj

fi j m
fi

j j
V i e Q

j j





+
+

−

+ +
= −

+
.        (i1.25) 

 

Here we have introduced the value of  Q(2.e), which are commonly referred 

to as 2j-dipole electric moments of transition of the system, by analogy with cor-

responding classical values: 

 

            
( )( ) ( ) 34 r

r
2 1

э j

j m fi jm
fi

Q r Y d x
j r




 
=  

+  
            (i1.26) 
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Next, consider the magnetic multipole radiation. The photon wave func-

tion of the magnetic type ),0( AA


=
, where A


 is given by: 

 

                                        )()|(|
4

)(
2/3

2

nYkkA jmjm







 −= .                        (i1.27) 

 

Using (1.27), one could obtain for the transition matrix element expres-

sion: 

 

                ( ) ( ) ( )3 kr

nj r   Y n
2

мi

fi fi jmV e d x do e




−= −    .            (i1.28a) 

 

Vector components ( )
Y

м

jm  are expressed in terms of spherical functions of 

order j known formulas (given in [1]). 

Further, as above, using the expansion of (1.43) is appropriate and the 

formula:  

 

( ) ( ) ( ) ( )kr

n

r
Y n 4 Y ,

м мi j

jm j jme do i g kr
r


 − −  

=  
 

  

 

and after substitution 
jg :  

 

( )
( ) ( )

1

2
32 r

j r Y  .
2 1 !!

j

мj j

fi fi jmV ei r d x
j r


+

−  
= −  

+  
  

 

It is necessary to substitute the function definition 
)Y(м

jm :  

 

( )

( )

r 1
Y r .

1

м

jm jmY
r j j

 
 =    

  +
 

 

After that the transformation of the integral:  
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r j r r jj j

fi jm fi jmY r Y      = −       

 

and finally obtained as a result of the "classical" form [1]:  

 

                            ( )
( )( )

( )
( )( )

1

2

,

2 1 1
1

2 1 !!

j

m мj

fi j m
fi

j j
V i e Q

j j





+

−

+ +
= −

+
,      

(i1.28b) 

 

where we have introduced 2j -dipole magnetic moments of transition:  

 

                                      
( )( ) ( ) 31 4

r j
1 2 1

м j

jm fi jm
fi

Q r Y d x
j j


 =  + +  .       

(i1.29) 

 

 As between the expressions (1.29) and (1.26) there is an obvious analogy, 

in this case, the probability of emission, the formula differs from (1.26) only in 

the replacement of electric magnetic moments.  

The total probability of М1-radiation expressed in terms of this value by 

the standard formula (in conventional units):  

 

         

3
2

3

4
=

3 c
fi


  .           

(i1.30) 

 

where all constants are the standard. 

 

 

1.2 QED perturbation theory method for calculation of heavy atoms and 

multicharged ions 

 

     We present the generalized energy approach (Gell-Mann and Low S-matrix 

formalism) to relativistic calculation of the radiative and autoionization charac-

teristics for multielectron atoms and ions. The approach is based on the Gell-
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Mann and Low S-matrix formalism and the gauge-invariant QED perturbation 

theory (PT) with using the optimized one-quasiparticle representation and an ac-

curate account of the relativistic, correlation and other effects. In relativistic case 

the Gell-Mann and Low formula expresses an energy shift   through the QED 

scattering matrix including the interaction with as the laser field as the photon 

vacuum field. The last case is corresponding to definition of the traditional radi-

ative characteristics for atoms and ions.  

Traditionally an investigation of spectra, spectral, radiative and autoioni-

zation characteristics for  heavy and superheavy elements atoms and mul-

ticharged ions is of a great interest for further development atomic and nuclear 

theories and different applications in the plasma chemistry, astrophysics, laser 

physics, etc. (see Refs. [1–160]). Theoretical methods of calculation of the spec-

troscopic characteristics for heavy atoms and ions may be divided into a few 

main groups. First, the well known, classical multi-configuration Hartree-Fock 

method (as a rule, the relativistic effects are taken into account in the Pauli ap-

proximation or Breit hamiltonian etc.) allowed to get a great number of the use-

ful spectral information about light and not heavy atomic systems, but in fact it 

provides only qualitative description of spectra of the heavy and superheavy 

ions  (see Refs. [34-36]). superheavy ions. Second, the multi-configuration Di-

rac-Fock (MCDF) method (see Refs. [1–12, 40-71]) is the most reliable version 

of calculation for multielectron systems with a large nuclear charge. In these 

calculations the one- and two-particle relativistic effects are taken into account 

practically precisely. The calculation program of Desclaux (the Desclaux pro-

gram, Dirac package) is compiled with proper account of the finiteness of the 

nucleus size. However, a detailed description of the role of the different nuclear 

effects (finite nuclear size etc.) is lacking. Though, in last years there is a great 

progress in this topic. Naturally, the well known relativistic density functional 

Dirac-Kohn-Sham approach [29,30] (see also Refs. [3,4,31-33,119]) should be 

mentioned. 

In a region of the small Z (Z is a charge of the nucleus) the calculation er-

ror in the MCDF approximation is connected mainly with incomplete inclusion 

of the correlation and exchange effects which are weakly dependent on Z. In 

studying the lower states for ions with Z . 40, an expansion into the PT double 

series on the parameters 1/Z, Z (  is the fine structure constant) is often used. 
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It permits an evaluation of the relative contributions of the different expansion 

terms: non-relativistic, relativistic, QED contributions as the functions of Z. 

Nevertheless, the serious problems in calculation of the heavy element spectra 

leads to a necessity of developing new, high exact methods of account for the 

QED effects, in particular, the Lamb shift (LS), self-energy (SE) part of the 

Lamb shift, vacuum polarization (VP) contribution, correction on the nuclear fi-

nite size for superheavy elements and its account for different spectral properties 

of these systems (the energies and constants of the hyperfine structure, deriva-

tives of the one-electron characteristics on nuclear radius, nuclear electric quad-

rupole, magnetic dipole moments etc. (see Refs. [1–19, 45–73])). In this essence 

it should be given special attention to two very general and important computer 

systems for relativistic and QED calculations of atomic and molecular properties 

developed in the Oxford group and known as GRASP (“GRASP”, “Dirac”; 

“BERTHA”, “QED”, “Dirac”) (see [1–19] and references there). In particular, 

the BERTHA program embodies a new formulation of relativistic molecular 

structure theory within the framework of relativistic QED. This leads to a simple 

and transparent formulation of Dirac-Hartree-Fock-Breit (DHFB) self-consistent 

field equations along with algorithms for molecular properties, electron correla-

tion, and higher order QED effects. The DHFB equations are solved by a direct 

method based on a relativistic generalization of the McMurchie-Davidson algo-

rithm for molecular integrals that economizes memory requirements and is not 

significantly more expensive computationally than comparable nonrelativistic 

calculations [6]. 

The useful overview of relativistic electronic structure theory is presented 

in Ref. [1-4] from the point of view of QED. The participation of the negative-

energy states in practical calculations is described from complementary points of 

view, in order to illustrate how they enter into the operation of relativistic mean-

field theories. Examples of the implementation of relativistic electronic structure 

theory are drawn from studies of gauge invariance, many-body PT theory, inner-

shell processes, electron momentum spectroscopy, and relativistic density func-

tional theory. Let us note here that these principal moments are accurately taken 

into account in our theory, presented below. Naturally, a great interest attracts 

the use of many-body PT and QED in molecular electronic structure theory. 

In this chapter we present the basises of the generalized energy approach 

(Gell-Mann and Low S-matrix formalism) to relativistic calculation of the radia-
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tive and autoionization characteristics of atoms and ions. The basises of the rela-

tivistic energy approach to one-electron ions have been considered by Labzov-

sky  et al [89]. Originally the energy approach to radiative and autoionization 

processes in multielectron atoms and ions has been developed by Ivanova-

Ivanov et al (see Refs. [90-116]). The generalized gauge-invariant QED version 

of the energy approach has been further developed by Glushkov-Ivanov-Ivanova 

(see Refs. [117-160]). The approach is based on the Gell-Mann and Low S-

matrix formalism and the gauge-invariant QED PT with using the optimized 

one-quasiparticle representation and an accurate account of the relativistic, cor-

relation, nuclear, radiative effects [117 -160]. In relativistic case the Gell-Mann 

and Low formula expressed an energy shift   through the QED scattering ma-

trix including the interaction with as the photon vacuum field as the laser field. 

In the last  case it has been possible to develop a new effective approach to de-

scribe the interaction of atom with the realistic laser field by means of the radia-

tion emission and absorption lines [121-131]. The first case is corresponding to 

definition of the traditional radiative and autoionization characteristics of mul-

tielectron atoms and ions. The Superatom package (the PC complex of Fortran 

programs) numerically realizes a new method. The wave function zeroth basis is 

found from the Dirac equation with a potential, which includes the ab initio (the 

optimized model potential or DF potentials, the electric and polarization poten-

tials of a nucleus; the Gaussian or Fermi forms of the charge distribution in a 

nucleus are usually used) [117-160]. The correlation corrections of the PT high 

orders are taken into account within the Green functions method (with the use of 

the Feynman diagram’s technique). All correlation corrections of the second or-

der and dominated classes of the higher orders diagrams (electrons screening, 

particle-hole interaction, mass operator iterations) are taken into account.   

Let us describe the key moments of the energy  approach to relativistic 

calculation of  spectra, radiative and autoionization characteristics for the multi-

electron atoms, multicharged ions with an accurate account of the relativistic, 

exchange-correlation and other effects (details can be found in Refs. [90-160]). 

Originally the energy approach to radiative and autoionization processes in mul-

tielectron atoms and ions has been developed by Ivanova-Ivanov et al (see Refs. 

[90-116]). The generalized gauge-invariant QED version of the energy approach 

has been further developed by Glushkov-Ivanov-Ivanova (see Refs. 

[117,121,128]).  
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1.3 Definition of basis of relativistic wave functions 

 

As usual, a multielectron atom is described by the Dirac relativistic Ham-

iltonian (the atomic units are used): 

 

( ).i i j

i i j

H h(r ) V r r


= +                                 (1.1)  

 

Here, h(r) is one-particle Dirac Hamiltonian for electron in a field of the finite 

size nucleus and V is potential of the inter-electron interaction. In order to take 

into account the retarding effect and magnetic interaction in the lowest order on 

parameter 2 ( is the fine structure constant) one could write [4,16]:   

 

( ) ( )
( )

,
i j

i j ij ij

ij

1 α α
V r r exp iω r

r

−
=                           (1.2) 

 

where ij is the transition frequency; i ,j are the Dirac matrices. The zeroth 

order Hamiltonian H0 операторand perturbation operator can be presented in the 

standard form as follows [15-19]:   

 

i
i

ii EaaH = +
0                                       (1.3) 

lkj
ijkl

iijklijj
ij
i aaaaVVaaH +++

+=
2

1
int                       (1.4)  

 

( ) ( )  ( )rrVrrdV Ciij


 −=                          (1.5) 

 

( ) ( ) ( ) ( ) ( )12212121 rrrrVrrrdrdV lkijkl


= ,         (1.6) 

 

where ( )r


  are one-electron functions (Dirac bispinors), Ei – one-electron ener-

gies, VC  is the central field self-consistent potential of the Coulomb type. The 
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latter can be taken in the form of the usual Dirac-Fock potential (with the opti-

mization parameter b; see below) or some model potential, which imitates an ef-

fect of the electron subsystem.  

In many papers (see Refs.[90-116]) Ivanov-Ivanova effective potential 

was successfully used in calculations of the spectroscopic characteristics of one-

quasiparticle atomic systems (i.e. atoms or ions with one valent electron or va-

cancy above the closed electron shells atomic core). This potential VС is usually 

presented as sum of the potentials, which imitate a contribution of the K,L,М… 

shells of the N –electron atomic core (in th Coulomb units) [90]: 

 

Zrrbev rb

K /)]1(1[2 2 +−= −
                          (1.7a) 

 

Zrrbrbbrev br

L /)]0625.025.075.01(1[8 3322 +++−= −
  (1.7b) 

 

ZrrbrbbrNvM /)]1/(11)[10( 3322 +++−−=      (1.7c) 

 

The Coulomb units (C.u.) are simply connected with the traditional atomnic 

units (a.u.) as follows: 1 C.u. length = 1 a.u.Z; 1 C.u. energy = 1 a.u. Z2. It is im-

portant to note that the potential (7) VС has the proper asymptotics:  

 

VС → const, dVС/dr → 0  for  r → 0,               (1.8a) 

 

VС → N/rZ  for  r → .                           (1.8b) 

 

The proper  asymptotical behaviour of VС under r→0 is of a great importance 

for correct definition of position of the quasiparticle orbital nodes and précised 

calculation of the transition probabilities, oscillator strengths, radiation widths 

etc.   

 The Dirac equation potential can also include the electric and polarization 

potentials of a nucleus and exchange-correlation potentials. The usual exact ac-

count of the exchange corrections is provided by using the Dirac-Fock exchange 

potential. The alternative Kohn-Sham (KS) exchange potential is as follows 

[29]:     
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2 1/3( ) (1/ )[3 ( )] .KS

XV r r  = −                             (1.9) 

 

In the local density approximation of the density functional theory (DFT) the 

relativistic potential is: 

[ ( )]
[ ( ), ] ,

( )

X

X

E r
V r r

r

 



=                              (1.10) 

 

where [ ( )]XE r is the exchange energy of the multielectron system corresponding 

to the homogeneous density ( )r , which is obtained from a Hamiltonian having a 

transverse vector potential describing the photons. In this theory the exchange 

potential is [33,119]: 

 

2 1/2

2 1/2

3 [ ( 1) ] 1
[ ( ), ] ( ) { ln },

2 2( 1)

KS

X XV r r V r
 


 

+ +
=  −

+               (1.11) 

where  

2 1/3[3 ( )] /r c  = .                                (1.12) 

 

Here c is the light velocity. The corresponding correlation functional is [29-33]: 

 

1/3[ ( ), ] 0.0333 ln[1 18.3768 ( ) ]CV r r b r = −   +  ,        (1.13) 

 

where b is the optimization parameter (for details see Refs. [119,121]).  

The differential equations for the radial functions F and G (components of the 

Dirac spinor) are: 

 

( ) ( )1 0,
F F

m V G
r r

 


+ + − + − =


                         (1.14a) 

 

( ) ( )1 0,
G G

m V F
r r

 


+ − + − − =


                        (1.14b) 
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where F, G are the large and small components respectively;  is the quantum 

number. At large , the functions F and G vary rapidly at the origin. One could 

write:  

( ) ( ) 1 2 2 2, ,  F r G r r z   − = − .                     (1.15) 

 

This creates difficulties in numerical integration of the equations in the region 

r → 0. To prevent the integration step from becoming too small it is usually con-

venient to turn to new functions isolating the main power dependence: 

 

1
f Fr

−
= ,  

1
g Gr

−
= .                                              (1.16) 

 

The Dirac equations for F and G components are transformed as follows: 

 

' ( | |) / ( 2 / ) ,nf f r ZVg ZE Z g    = − + − − +         (1.17a) 

 

' ( | |) / .ng g r ZVf ZE f   = − − +                (1.17b) 

 

Here En is one-electron energy without the rest energy. The boundary values 

are defined by the first terms of the Taylor expansion: 

 

( )( ) ( )0 2 1 ; 1ng V E r Z f  = − + =  at  0  ,              (1.18a) 

 

( )( )2 20 2 ; 1nf V E Z Z g  = − − =  at  0  .              (1.18b) 

 

The condition f, g→0 at r→  determines the quantified energies of the state  

En. The system of equations (18) is numerically solved by the Runge-Kutt 

method (the separated block in the “Superatom” package [90-160]).  

The self-consistence condition of the continuum state functions means that the 

normalized functions differ by less than 10-6 in relation to their values at the 

maximum point on two neighbour iterations.  
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1.4 Nuclear finite size and radiation QED effects 

 

In order to account for the nuclear finite size effect one could describe the 

charge distribution in the nucleus ( )r  by the following Gaussian function: 

 

( ) ( ) ( )3 2 24 expr R r   = − ,                       (1.19) 

( ) ( )2 3

0 0

1;drr r R drr r R R 
 

= =  ,                      (1.20) 

 

where 
24 ,  and  R R = is the effective nuclear radius. The following simple 

dependence of R on Z is assumed: R=1.60610-13Z1/3 (cm). Such a definition of 

R is rather conventional. We assume it as some zeroth approximation. The Cou-

lomb potential for the spherically symmetric density (r|R) is: 

 

( ) (( ) ( ) ( )' ' 2 ' ' ' '

0

1

r

nucl

r

V r R r dr r r R dr r r R 


= − +  .      (1.21) 

 

It is determined by the following system of differential equations [4]: 

 

( ) ( ) ( ) ( ) ( )' 2 ' '2 ' 2

0

, 1 , 1 , ,

r

nuclV r R r dr r r R r y r R=   

 

( ) ( )2' , , ,y r R r r R=  

 

( ) ( ) ( ) ( )5 2 2

2

8
' , 8 exp 2 , , ,

r
r R r r r r R r R

r
      


= − − = − = −  (1.22) 

 

with the boundary conditions: 

 

 

( ) ( )0, 4nuclV R r= −  , ( )0, 0y R = ,  

( ) 3 2 30, 4 32 .R R  = =                          (1.23) 
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The presented nuclear model was earlier used in many calculations of the atomic 

and nuclear systems [128-160]. It can be improved where necessary. Moreover, 

any relativistic mean field model, nuclear DFT, the HF theory with density de-

pendent forces etc may be here used [119,131-135].  

The procedure for taking into account the QED corrections is given in 

Refs. [3,4,12,90,109]. Procedure for an account of the radiative QED corrections 

is in details given in the refs. [15-18]. Regarding the vacuum polarization effect 

let us note that this effect is usually taken into account in the first PT theory or-

der by means of the Uehling potential.  This potential is usually written as fol-

lows [15,90]): 

 

( ) ( )( ) ( )



−

−
+−




−=



1
2

2
2 ,

3

21
2112exp

3

2
gC

rt

t
tZrtdt

r
rU    (1.24) 

 

where g=r/Z. In our calculation we usually use more exact approach. The  

Uehling potential,  determined as a quadrature (1.24) may be approximated by a 

simple analytical function with high precision. The use of new approximation of 

the Uehling potential permits one to decrease the calculation errors for this term 

down to 0.5 – 1%. The detailed description of this approximation and calcula-

tion scheme of the Lamb shift self-energy part is given in Refs. [3,4,15-

18,90,109]. The alternative potential approach to account of the radiative self-

energy corrections is based on using the corresponding radiative potentials (see 

refs. [45-58]).  

 

1.5 The one-particle optimized gauge-invariant representation 

 

The problem of the searching for the optimal one-electron representation 

is one of the oldest in the theory of multielectron atoms.  Two  decades  ago  

Davidson  had  pointed   the   principal disadvantages of the traditional represen-

tation based on the self-consistent field  approach  and  suggested  the  optimal  

"natural orbitals"  representation.   Nevertheless   there   remain insurmountable 

calculational difficulties in  the  realization  of the Davidson program.  One  of 

the  simplified  recipes  represents, for  example,   the DFT method  [29-33].  
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Unfortunately,  this  method   doesn't provide  a  regular  refinement  procedure  

in  the  case  of  the complicated atom with few quasiparticles (electrons  or  va-

cancies  besides the core  of  closed  shells). Our density functional method, 

based  on  the formally exact QED PT, uses for this purpose  the model  bare  

potential,  constructed  with  accounting   for   the spectroscopic information 

concerning simplest systems with one quasiparticle [90]. 

In the theory of radiative  and  nonradiative  decay  of  the quasistationary 

states of a multielectron atom it is well known an energy approach (see below) , 

based on the adiabatic Gell-Mann and Low formula [89,117,128] for the  energy 

shift E with electrodynamic scattering  matrice. The method is a consistently 

electrodynamic one,  allowing  for  the  uniform consideration of a variety  of  

induced  and spontaneous  processes different by their physical nature [129-

156]. 

For simplicity, let us consider now the one-quasiparticle   system. The multi-

quaiparticle case doesn’t contain principally new moments. In the lowest, sec-

ond order, of the QED PT for the E there is the only one- quasiparticle Feyn-

man  diagram A (fig.1.1), contributing the Im E (the radiation decay width).  

 

 

 

Figure 1.1 a: second other EDPT diagram contributing the imaginary energy 

part related to the radiation transitions. b and c: fourth order  polarization  dia-

grams. 

 

In  the  next, the fourth order there appear diagrams,  whose  contribution  into 

the  ImE  account  for  the  core  polarization   effects. This contribution de-

scribes collective effects and it is dependent upon the  electromagnetic  poten-

tials  gauge  (the  gauge  noninvariant contribution). Let us examine  the  mul-

tielectron  atom  with  one quasiparticle in the  first  excited  state,  connected  

with  the ground state  by  the  radiation  transition.  In  the  zero  QED PT ap-
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proximation  we, as usually (see  ref.[128]),  use  the  one electron bare poten-

tial: 

VN(r)+VC(r),                                         (1.25) 

 

with VN(r) describing the electric potential of the nucleus, VC(r), imitating the 

interaction of the  quasiparticle  (initial  or  any other appearing in the real and 

virtual processes)  with the  core of  closed  shells.  The  perturbation  in  terms  

of  the  second quantization representation reads 
 

-VC(r) +(r) (r)  -  j(x) A(x)                       (1.26) 

 

The core potential VC(r) is  related  to  the  core  electron density C(r) in a 

standard way. The latter fully defines  the one electron representation. Moreo-

ver, all  the  results  of  the approximate calculations are the functionals of the 

density C(r). Here, the lowest order multielectron effects, in  particular,  the 

gauge dependent radiative contribution for the  certain  class  of the photon 

propagator  calibration  is  treating.  This  value  is considered to  be  the  typical  

representative  of  the  electron correlation effects, whose minimization is a  rea-

sonable  criteria in the searching for the optimal one-electron  basis  of  the  PT. 

Besides, this procedure derives an undoubted profit in the routine spectroscopic  

calculations  as  it  provides  the  way   of   the refinement of the atomic charac-

teristics  calculations,  based  on the "first principles"  .  Remember  that  the  

closeness  of  the radiation probabilities calculated with the alternative  forms  of 

the transition operator is commonly used as  a  criterion  of  the multielectron 

calculations quality. It is of special  interest  to verify the compatibility of the 

new  optimization  principle  with the  other  requirements  conditioning  a    

"good"   one-electron representation.  

The imaginary part of the diagram a (fig.1.1)  contribution  in the case of the Lo-

rentz calibration has been presented  previously as a sum of the partial contribu-

tions of -s transitions from the initial state  to the final state s [3,128], 

 

ImE (a) = 
S

Im E (-s; a).                       (1.27) 
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Two  fourth  order  polarization  diagrams  b,c  (fig.1.1)  are considered  in  this  

article.  The  contributions   being   under consideration, are gauge- dependent, 

though  the  results  of  the exact  calculation  of  any  physical  quantity  must  

be    gauge  independent . All the noninvariant  terms  are  multielectron  by their 

nature.  Let us take the photon propagator calibration as follows: 

 

D = DT + CDL , 
 

DT =    / ( k 0

2  - k 2 ), 
 

DL = - kk / ( k 0

2 - k2 ).                                   (1.28) 

 

Here, DT   represents  the  exchange  of  electrons  by  transverse photons, DL 

that by longitudinal ones. The values C=0 and C=1 of  the gauge constant are 

related  to  the  Lorentz  and  to  the  Landau calibrations correspondingly. One 

could calculate the contribution of the a,b,c diagrams (fig.1.1) into the Im E 

taking into account  both the  DT  and DL parts. The A diagram contribution into 

the Im E related to the   -s transition reads as  

 

- e 2

8
 dr1dr2

+ (r1) s
+  (r2) 1

1 2

12

−  

r

sin (s r12 )  (r2) s
 (r1),   (1.29) 

 

for D = DT, and 

 

- e 2

8
 dr1 dr2  

+ (r1) s
+ (r2) {[(1- 1 n12 2 n12 )/ r12 ] sin (s r12 )+s  (1+ 

+  1 n122n12)cos(sr12)}(r2)s(r1),              (1.30) 

 

for D=DL , where s is the  -s transition energy. According to the Grant theo-

rem [1], the D,L contribution vanishes, if  the  one-quasiparticle  functions    

, s satisfy the same Dirac equation. Nevertheless this term is to be retained 

when using the distorted  waves  approximation, for example. Another very im-

portant example  represents  the  formally exact approach based  on  the  bare  

hamiltonian  defined  by  its spectrum without specifying its analytic form  

[129,130].  Here  the noninvariant contribution appears already in the lowest or-
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der. When calculating the forth order contributions some approximations are in-

evitable. These approximations  have  been  formulated  in  Refs.[90, 94,96], 

where the polarization corrections to the state energies have been considered. 

Here, we reproduce briefly the calculational scheme. Let us consider the direct 

polarization diagram as an  example.   

After the linearization over the gauge constant C, the formal expression for the 

sought for value looks as:   

 

2

1 2 3 4

,

1 1
( | ) ( )

4
ninv

n f m f mn s mn s

e
Im E s b C dr dr dr dr

 

 
     

− = − +
+ −

    

1 2 4 3 1 2 12 3 4 3 34 4 34 34( ) ( ) ( ) ( ) [(1 ) / ] {[ ( )( )] /m s nΨ r Ψ r Ψ r Ψ r r n n r      + + + +  −  −

12 34 3 34 4 34 12 34sin[ ( )] [1 ( )( )] cos[ ( )]}n n nr r n n r r       + + + +  

3 4 2 1( ) ( ) ( ) ( ).m n sΨ r Ψ r Ψ r Ψ r                      (1.31) 

 

and the upper continuum electron states; m  f  indicates the finite number of 

states in the  core  and  the states of the negative  continuum  (accounting  for  

the  electron vacuum  polarization). All  the  vacuum   polarization    and   the 

self-energy corrections to the  sought  for  values  are  omitted. Their  numerical  

smallness  compared with the other  relativistic corrections to  the  different  

atomic  characteristics  had  been verified  by  the  numerous  calculations.   The   

renormalization procedure is not needed here. Nevertheless the second-order  

vacuum polarization and self-energy corrections can be additively   added to the 

complex state  energy. The  remaining  expression  includes summation over the 

bound  and  upper  continuum  atomic  states. To evaluate this  sum,  we use the 

analytic relation  between  the atomic electron Fermi level and the core electron  

density  c (r), appropriate  to the homogeneous nonrelativistic  electron gas (the 

Tomas- Fermi approximation). Now the sum n>f, m<f can be calculated analyti-

cally , its value becomes a  functional  of  the core electron density.  The  result-

ing  expression  looks  as  the correction due to  the  additional  nonlocal  inter-

action  of  the active quasiparticle with  the  closed  shells.  Nevertheless  its cal-

culation is reducible to the  solving  of  the  system  of  the ordinary differential 

equations - the one- dimensional  procedure. The most important refinements 

can be introduced by accounting for the relativistic and the  density   gradient  
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corrections  to  the Tomas-  Fermi  formula  (see  Refs. [3,4]).  The  same  pro-

gram  is realized for the remaining forth order QED PT polarization corrections. 

The minimization of the functional Im Eninv (b+c) leads to the integro- differen-

tial equation for the  c (the Dirac-Fock or Dirac-Kohn-Sham-like equations for 

the electron density) that can be solved using one of the standard numerical 

codes. As a result one can get the optimal PT one-quasi-particle  basis. In con-

crete calculations it is sufficient to use a more simplified procedure, which is re-

duced to the functional minimization using the variation of the correlation po-

tential parameter b in Eq. (13) or (17) [3,4,117,128].   

 

1.6 Energy approach to calculating radiative transition probabilities 

 

1.6.1 General remarks 

 

The energy approach to the calculation of the radiation widths has been 

originally proposed by Ivanov-Ivanova and coworkers [90-116]. In general, this 

approach permits combined consideration of different atomic processes on the 

basis of a consistently relativistic theory. Thus, the tedious procedure of phase 

convention in calculating the matrix elements of different operators is avoided, 

although the final formulae, of course, must coincide with the formulae obtained 

using the traditional method operating with the amplitudes of the processes, 

which is usually called as the amplitude method. The energy approach simplifies 

the analysis of complex atomic processes including processes with the interfer-

ence of different kinds of  channels (i.e. radiation and autoionization ones). 

More advance QED version of the energy approach has been developed by 

Glushkov-Ivanova-Ivanov (see, for example, Refs. [117-128]) and based on the 

Gell-Mann and Low S-matrix formalism and gauge-invariant QED PT. The ad-

vanced approach provides absolutely ab initio treating different atomic process-

es, including radiative transitions and autoionization processes, within the con-

sistent QED theory. Moreover, the corresponding advances approaches have 

been developed in order to solve many actual problems of the laser-atom inter-

action, nuclear physics, ions collision problems etc (see Refs. [147-160]). 

Generally speaking, the majority of complex atomic systems possesses a 

dense energy spectrum of interacting states with essentially relativistic proper-
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ties. In the theory of the non-relativistic atom a convenient field procedure is 

known for calculating the energy shifts   of degenerate states. This procedure 

is connected with the secular matrix M diagonalization [161]. In constructing M, 

the Gell-Mann and Low adiabatic formula for   is used. A similar approach, 

using the Gell-Mann and Low formula with the electrodynamic scattering ma-

trix, is applicable in the relativistic atom theory [89]; the  approach is consistent-

ly electrodynamic. In contrast to the non-relativistic case, the secular matrix el-

ements are already complex in the second order of the electrodynamic PT ( first 

order of the interelectron  interaction). Their imaginary parts are connected with 

the radiation decay ( radiation ) possibility. 

The total energy shift of the state is usually presented in the form: 

 

Re Im Im 2E i E E =  +   = −              (1.32) 

 

where  is interpreted as the level width, and the decay possibility  =  . 

In this approach, the whole calculation of the energies and decay probabilities of 

a non-degenerate excited state is reduced to the calculation and diagonalization 

of the complex matrix M. In the papers of different authors, the Re E  calculation 

procedure has been generalized for the case of nearly degenerate states, whose 

levels form a more or less compact group. One of these variants has been previ-

ously [90-94,105-110,117-121] introduced: for a system with a dense energy 

spectrum, a group of nearly degenerate states is extracted and their matrix M is 

calculated and diagonalized. If the  states are well separated in energy, the ma-

trix M reduces to one term, equal to E . The non-relativistic secular matrix el-

ements are expanded in a PT series for the  interelectron interaction.  

The complex  secular matrix M is represented in the form [12,90,94]:   

 

( ) ( ) ( ) ( )0 1 2 3
.M M M M M= + + +                      (1.33) 

 

where 
( )0

M  is the contribution of the vacuum diagrams of all order of PT, and 

( )1
M , 

( )2
M , 

( )3
M  those of the one-, two- and three- quasiparticle diagrams re-

spectively. 
( )0

M  is a real matrix, proportional to the unit matrix. It determines 

only the general level shift. We have assumed 
( )0

0.M =  The diagonal matrix 
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( )1
M  can be presented as a sum of the independent one-quasiparticle contribu-

tions. For simple systems (such as alkali atoms and ions) the one -quasiparticle  

energies can be taken from the experiment. Substituting these quantities into 

(35) one could have summarised  all the contributions of the one -quasiparticle  

diagrams of all orders of the formally exact QED PT. However, the necessary 

experimental quantities are not often available. The first two order corrections to 

( )2
Re M  have been analyzed previously [90-98,117-128] using Feynman dia-

grams. The contributions of the first-order diagrams have been completely cal-

culated. In the second order, there are two kinds of diagrams: polarization and 

ladder ones.  The polarization diagrams take into  account the  quasiparticle in-

teraction  through the polarizable core, and the ladder diagrams account for  the 

immediate quasiparticle interaction. Some of the ladder diagram contributions  

as well as some of the three-quasiparticle diagram contributions in all PT orders 

have  the same angular symmetry as the two-quasiparticle diagram contributions 

of the first order. These contributions have been  summarized by a modification 

of the central  potential, which  must now include the  screening (anti-screening) 

of the core potential  of each particle by the two others. The additional potential 

modifies the one-quasiparticle orbitals and energies. Then the secular matrix can 

be approximated as follows:  

 

M =
( )1

M +
( )2

M                                       (1.34) 

 

where 
( )1

M  is the modified one-quasiparticle matrix (diagonal), and 
( )2

M  the 

modified two-quasiparticle one. 
( )1

M  is calculated by substituting the modified 

one-quasiparticle energies), and 
( )2

M  by means of the first PT order formulae 

for 
( )2

M , putting the modified radial functions of the one-quasiparticle states in 

the radial  integrals.  

Let us note that in the QED theory, the photon propagator D(12) plays the role 

of this interaction. Naturally (see above) the analytical form of D(12) depends 

on the gauge, in which the electrodynamic potentials are written. In general, the 

results of all approximate calculations depended on the gauge. Naturally the cor-

rect result must be gauge invariant. The gauge dependence of the amplitudes of 

the photoprocesses in the approximate calculations is a well known fact and is in 
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details investigated by Grant, Armstrong, Aymar and Luc-Koenig, Glushkov-

Ivanov [1-4,128]. Grant has investigated the gauge connection with the limiting 

non-relativistic form of the transition operator and has formulated the  condi-

tions for approximate functions of the states, in which the amplitudes  of the 

photoprocesses are gauge invariant. These results remain true in the energy ap-

proach because the final formulae for the probabilities coincide in both ap-

proaches. Glushkov-Ivanov have developed a new QED version of the energy 

approach (see above part 2.4).  

 

1.6.2 Imaginary part of the secular matrix 

 

As it has been indicated (see Eq.(2)) in the QED PT second order the rela-

tivistic and radiation effects are taken into account exchanging the interelectron 

non-relativistic 121 Zr interaction with the operator (2). The radiation processes 

are determined by the imaginary part of the interaction (2) between the active 

quasiparticle and the electrodynamic vacuum of the electronic field. The pres-

ence of the polarizable core can be effectively accounted for by modification of 

(2). This corresponds to a modification of the radiation transition operator in the  

traditional amplitude approach. A local form of the modified transition operator 

has been  previously treated by Hibbert, Migdalec, Ivanova-Ivanov, Glushkov et 

al (see Refs. [78,82,93,94,117-128]).  An integral form of the  additional  polari-

zation interaction,  including the imaginary part, has been deduced on the base  

of the analysis of the second-order ( the QED PT fourth order) polarization dia-

grams (fig.1.1 b,c). In result one could take into account for the corresponding 

corrections to Im E . The detailed description of the accounting for the correla-

tion corrections of the PT high orders within the Green functions method (with 

the use of the Feynman diagram’s technique) is given in Refs. [93,94] (see also 

Refs. [3,4,117-128], where additional details can be found).   

The probability is directly connected with imaginary part of electron en-

ergy of the system, which is defined in the lowest order of perturbation theory as 

follows:  

 

 





−=

fn
fn

nn
nV

e
figaE









  

2

4
)1.;(Im ,                        (1.35) 
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where  −
 fn 

 for electron and  −
 fn

 for vacancy. The potential V is as fol-

lows: 

 

 −= )()1(
sin

)( 121
12

12
221 r)Ψ(rΨ

r

r
r)Ψ(rΨdrdrV *

l2
*
k

*
j1

*
iijkl




      (1.36)  

 

The separated terms of the sum in (38) represent the contributions of different 

channels and a probability of the dipole transition is:  

 

nα

nnn

ω

αα V
π

Г


=
4

1
                                      (1.37) 

 

The corresponding oscillator strength : 

   
152 1067.6/ =

n
Гgf

g 
 ,                            (1.38) 

 

where g is the degeneracy degree,   is a wavelength in angstroms (Ǻ). Under 

calculating the matrix elements (38)  one could use the angle symmetry of the 

task and write the expansion for potential sinr12/r12  on spherical functions as 

follows:  

 

( ) ( ) ( ) ( )


=

++



=



0

212
2

11
2

1

2112

12

2
rrcos

sin
PrJrJ

rrr

r
,           (1.39) 

 

where J –is the Bessel function of first kind and () = 2 + 1. This expansion is 

corresponding to usual multipole one for probability of radiative decay. Substi-

tution of the  expansion (41) to matrix element of interaction gives as follows:  

 

( )( )( )( )  ( ) ( )




 








−


−= 12341

31

312
1

43211234 Q
mm

jj
jjjjV Im  

BrQul

 += QQQ .                                    (1.40) 
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where ji are the entire single electron momentums, тi – their projections; 
CulQ

and  BrQ
are connected with the Coulomb  ( )121 Zr  and Breit magnetic 

( )1 2 12Zr −  parts of the operator (2). The total radiation width of the one-

quasiparticle state is presented in the form: 

 

( ) ( ) ( ) ( )12Im 2 2 1 Im

.

nl j

Cul Br

M j Q n l j nlj

Q Q Q

   


  

  = − = − +

= +


       (1.41) 

 

The individual terms of the 
nlj sum correspond to the partial contribu-

tion of the n l j nlj   →  transitions; 
 is a sum of the contributions of the dif-

ferent multiplicity transitions. The detailed expressions for the Coulomb and 

Breit parts can be found in Refs. [11-16]. The imaginary part CulQ  contains the 

radial R and angular  S  integrals as follows: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1Im 12;43 Im{ 12;43 12;43 12;43 12;43

12;43 12;43 12;43 12;43 }.

CulQ Z R S R S

R S R S

    

   

−= + +

+ +
  (1.42) 

 

In the non-relativistic limit there remains only the first term in (44) depending 

only on the large component ( )f r  of the one-electron Dirac functions:  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )13 2

1 1 2 2

1
Im 12;43 2 1 13 24

2

12

R X X

X dr r f r J r Z f r

  

 

 

 +

= +

= 
           (1.43) 

 

The angular coefficient has only a real part: 

 

( ) ( ) ( ) ( )  
1 3

1 312;43 13 24 13 1 1
0

2 2

j j

S S S S l l   





 
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 − 
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 (1.44) 
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 1 3l l  means that 1,l and 3l  must satisfy the triangle rule and the sum 

1 3l l + +  must be an even number. The rest terms in (44) include the small com-

ponents of the Dirac functions. The tilde designates that the large radial compo-

nent f  must be replaced by the small one g , and instead of , 1i i il l l= −  should 

be taken for i ij l  and 1i il l= +  for i ij l . Only the phase factor of the formulae 

(43)-(45) depends on the orbital momenta 
il . Such a simple form of  the angular 

part of the matrix elements has been derived by Kanjauskas and Rudzikas (1975; 

see Refs. [3,4,90-94]) when calculating Re E .  

The Breit (magnetic) part can be expressed as follows: 

 

, 1 , , 1

Br Br Br BrQ Q Q Q      − += + +                          (1.45) 

 

The corresponding imaginary part (47) is as follows [90]:  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,

1
Im Im{ 12;43 12;43 12;43 12;43

12;43 12;43 12;43 12;43 }.

Br l l

l

l l

Q R S R S
Z

R S R S

    

   

= + +

+ +

   (1.46) 

The angular part 
lS  has the form 

 

( ) ( ) ( ) ( )( )
1

12;43 2 1 13 24 1
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(1.48) 

 

The total probability of a  - pole transition is usually represented as a sum of 

the electric EP  and magnetic MP  parts. The electric (or magnetic)  - pole tran-

sition  →  connects two states with parities which by  (or  +1) units. In our 

designations  
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( ) ( ) ( )

( ) ( ) ( )

, 1 , 1

,

2 2 1 ;

2 2 1 ; .

E E E Cul Br Br
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P j Q Q Q
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    

   

   
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→ = + =
    (1.49) 

 

In the numerical calculations the transition probability , as usually, is expanded 

to the series on the known parameter  as follows:  

 

( )( ) ( ) ( ) ( ) .5λ
1λ,λ

3λBr
λλ

λBr
1λ,λ

λQul
λ

αωQ,αωQ,αωQ,αωQ +
+

+
−

   (1.50) 

 

In a case of the two-quasi-particle states (this case of the Ne-like ions, where the 

excited states are represented as stales with the two quasiparticles – electron and 

vacancy above the closed shells core 1s22s22p6) the corresponding probability 

has the following form (say, transition: ][][j 2121 JjjJj → ):  
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where the electric and magnetic parts are defined above.  

 

 

 

 

1.6.3 Energy approach to calculating autoionization widths for atoms 

 

The autoionization (Auger) width and, accordingly, the autoionization de-

cay probability are defined by the square of an electron interaction matrix ele-

ment having the form [90-94,117,128]:  

 

( )( )( )( )  ( ) ( ) 







−


−=




 1234Re1
31

312
1

43211234
Q

mm

jj
jjjjV    (1.52) 

 

The real part of the electron interaction matrix element is determined using ex-

pansion in terms of Bessel functions: : 
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The Coulomb part Qul

Q  is expressed in terms of radial integrals R , angular co-

efficients S : 
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As a result, the autoionization decay probability is expressed in terms of 

ReQ(1243) matrix elements :  

 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )  = rZrZrfrfrfrfrrdrR 11

24221311

2

2

2

111243Re .   (1.55) 

 

where f is the large component of radial part of single electron state Dirac func-

tion and function Z is :   
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The angular coefficient is defined by standard way as above [3]. The Breit part 

of Q is defined in the similar way as above, but the contribution of our interest is 

a real part. The Breit interaction is known to change considerably the Auger de-

cay dynamics in some cases (see, for example, Refs. [93]).  

The calculation of radial integrals ReR(1243) is reduced to the solution of a 

system of  differential equations [93]:   
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In addition, у3()=ReR(1243), у1()=X(13). The system of differential equa-

tions includes also equations for functions f/ræ-1, g/ræ-1, 
( )1

Z , 
( )2

Z . The formu-

las for the autoionization (Auger) decay probability include the radial integrals 

R(k), where one of the functions describes electron in the continuum state. 

When calculating this integral, the correct normalization of the function k is a 

problem. The correctly normalized function should have the following asymp-

totic at  r→0: 
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When integrating the master system, the function is calculated simultaneously:       

 

( ) ( )  ( )    2
1

2222
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+++= ZgZfrN kkkkk .     (1.59) 

 

It can be shown that at r → , N(r)→Nk, where Nk is the normalization of func-

tions fk, gk of continuous spectrum satisfying the condition (1.60).       

At last, let us note that the calculation is carried out in the jj-coupling 

scheme representation. The transition to the intermediate coupling scheme has 

been realized by diagonalization of the secular matrix. Indeed, only 

ReM should be diagonalized. The imaginary part is converted by means of the 

matrix of eigenvectors  mkC , obtained by diagonalization of ReM : 
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Im mk mi ij jk

ij

M C M C=                           (1.60) 

 

ijM  are the matrix elements in the  jj-coupling scheme, and mkM  in the inter-

mediate coupling scheme representation. This procedure is correct to terms of 

the order of Im ReM M  [128]. 
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CHAPTER 2.  RELATIVISTIC ENERGY APPROACH IN 

MATHEMATICAL PHYSICS OF RADIATIVE AND 

AUTOIONIZATION PROCESSES IN HEAVY FINITE FERMI-

SYSTEMS: APPLICATIONS 

 

2.1 Radiative transition probabilities and oscillator strengths for transitions 

in spectra of some heavy atoms and ions 

 

We have presented (Chapter 1) the generalized energy approach (Gell-

Mann and Low S-matrix formalism) to relativistic calculation of the radiative 

and autoionization characteristics for multielectron atoms and ions. Here the  re-

sults of relativistic calculation of the radiative transitions probabilities, oscilla-

tors strengths, autoionization widths are (some part firstly) presented for a num-

ber of heavy atoms and multicharged ions and discussed from point of view of 

the correct accounting for the relativistic and exchange-correlation effects. The 

data on autoionization processes in heavy atoms and ions can be used for carry-

ing out the optimal schemes of the laser photoionization isotope separation 

method. 

Here we present the calculation results for the probabilities and oscillator 

strengths of the radiative transitions in spectra of the heavy atoms and ions of 

Hg+, Eu, Yb.  Some additional details can be found in Refs. [13,14,80-84,101-

103]. Especial interest to studying these transitions is explained by importance 

of the corresponding data for laser effect research. The collision of atoms of the 

Mendeleyev table second raw with ions of helium (other inert gases) leads to 

creating ions in the excited states that it is important for creating the inverse 

populations and laser effect. Available in the literature data about radiative char-

acteristics are definitely insufficient. An account of the relativistic and correla-

tion effects has a critical role in the cited systems as the studied transitions occur 

in the external shells in a strong field of atom with large nuclear charge (Z=80). 

The corresponding Hg+ states can be treated within the QED PT formalism as 

one- and three-QP states of electrons (6s) and vacancy (5d-1) above the core of 

the closed electron shells  5d106s2. The interaction QP-core is described by the 

potentials (7),(13), which imitate the DF potential. The polarization interaction 

of the QPs through the polarizable core is described by the two-particle effective 

potential [93]. In table 2.1-2.3 we present the energies, electric E1 
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(5d107p(P1/2,P3/2)-5d106s(S1/2), 5d107p(P1/2,P3/2)-5d107s(S1/2)) and E2 

(5d96s2(D5/2,D3/2)- 5d106s (S1/2)) probabilities of the corresponding transitions in 

spectra Hg+, which are calculated within the energy approach and QED PT 

(from refs.[13,14,83,84,120,124]).  

 

Table 2.1 

The energies of the 5d96s2(D5/2,D3/2)- 5d106s (S1/2), 5d107p(P1/2,P3/2)-5d106s(S1/2), 

5d107p(P1/2,P3/2)-5d107s(S1/2),  5d96s2(D5/2,D3/2)- 5d106s (S1/2) transitions in Hg+ 

(Ry): theoretical data – HF, DF, QED PT; experimental data - Moore (NBS, 

Washington). 

Method E6s 7P1/2- 

6S1/2 

7P3/2- 

6S1/2 

7P1/2- 

7S1/2 

7P3/2- 

7S1/2 

D3/2- 

S1/2 

D5/2- 

S1/2 

HF 

DF 

QED PT 

Exp.. 

-1.07 

-1.277 

-1.377 

-1.378 

0.721 

0.904 

0.986 

0.987 

0.721 

0.922 

1.019 

1.020 

0.095 

0.109 

0.114 

0.115 

0.095 

0.127 

0.147 

0.148 

0.863 

0.608 

0.462 

0.461 

0.863 

0.460 

0.325 

0.324 

 

Table 2.2 

Probabilities of the transitions 5d107p(P1/2,P3/2)-5d106s(S1/2), 5d107p(P1/2,P3/2)-

5d107s(S1/2) in Hg+ (in s-1): HF- Hartree-Fock data, DF – Dirac-Fock data, DF 

(Eexp) – DF data with using the experimental transitions energies; QED PT– our 

method; exp. - Moore (NBS, Washington) 

 

 

Method 7P3/2-

6S1/2 

7P1/2- 

6S1/2 

7P3/2- 

7S1/2 

7P1/2- 

7S1/2 

HF 

DF 

DF (Eexp)  

QED PT 

Exp. 

4.75106 

8.45107 

1.17108 

1.49108 

1.53108 

4.75106 

1.67107 

2.04107 

2.31107 

2.35107 

3.65107 

6.89107 

1.10108 

1.41108 

1.44108 

3.65107 

4.71107 

5.52107 

6.33107 

6.37107 
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Table 2.3 

The E2 probabilities of the 5d96s2(D5/2,D3/2)- 5d106s (S1/2) transition in Hg+ (in s-

1): HF- Hartree-Fock data, DF – Dirac-Fock data, DF (Eexp) – DF data with us-

ing the experimental transitions energies; QED PT– our method; exp. - Moore 

(NBS, Washington) 

 

 

Method D3/2- S1/2 D5/2- S1/2 

HF 

DF 

DF (Eexp)  

QED PT 

Exp. 

1360 

257.0 

63.9 

54.53(0,2%) 

53.52.0 

1360 

77.4 

13.3 

11.84 (0,2%) 

11.60.4 

 

 

For comparison we listed the theoretical Hartree-Fock (HF), Dirac-Fock 

(DF) and DF (with fitting to experimental transition energies) values by Ostrov-

sky-Sheynerman and experimental data by Moore (NBS, Washington) (from 

refs.[13,14,83,84,120]) in the tables 2.1-2.3. The standard HF and DF approach-

es in the single-configuration approximations don’t allow to receive the accurate 

results.  

Using the empirical transition energies significantly improve the theoreti-

cal results as it means in fact account of the very important interelectron correla-

tions effects. In the QED PT formalism the corresponding exchange-correlation 

effects (the polarization interaction of the QPS, mutual screening and anti-

screening corrections etc) are taken into account more accurately.  

Let us note that the core polarization correction to the transition probabili-

ties is of a great importance as it changes the probability value on 15-40%. It 

should be also noted that the gauge –noninvariant contribution   to radiation 

width is very small (0,2%; see table 2.2 in the line “QED PT”) that means 

equivalence of the calculation results in the standard amplitude approach with 

using the length and velocity forms for transition operator.  

From other side this is an evidence of the successful choice of the PT ze-

roth approximation and accurate account of the multi-particle correlation effects.   
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Further in table 2.4 we listed the theoretical energies of some transitions in spec-

tra of atoms EuI.  

In table 2.5 we present our results of calculating (column F) the oscillator 

strengths of the electric dipole transitions (table 2.4). Here the optimized DF 

scheme within QED PT has been used.  

For comparison there are also listed the results of calculations within the Cou-

lomb approximation method (columns A,B,C are corresponding to the gauges of 

the photon propagator: Coulomb, Babushkin, Lamdau), multiconfiguration DF 

method (D), experimental data (E1,E2) (from Refs. [13,79,120]). 

 

Table 2.4 

Theoretical transitions energies in EuI (from Refs. [13,79,120]). 

 

N Transition Wavelength (in Å) 

1 4f7(8S)6s2 8S7/2 →4f7(8S)6s6p 8P5/2 4661,88 

 4f7(8S)6s2 8S7/2 →4f7(8S)6s6p 8P7/2 4627,22 

3 4f7(8S)6s2 8S7/2 →4f7(8S)6s6p 8P9/2 4592,03 

4 4f7(8S)6s2 8S7/2 →4f7(8S)6s7p 8P5/2 2743,28 

5 4f7(8S)6s2 8S7/2 →4f7(8S)6s7p 8P9/2 2738,57 

6 4f7(8S)6s2 8S7/2 →4f7(8S)6s7p 8P7/2 2731,37 

7 4f7(8S)6s2 8S7/2 →4f7(8S)6s8p 8P9/2 2471,14 

8 4f7(8S)6s2 8S7/2 →4f7(8S)6s8p 8P7/2 2461,78 

9 4f7(8S)6s2 8S7/2 →4f7(8S)6s8p 8P5/2 2560,50 

 

 

An analysis of the listed data shows that Аthe Coulomb approximation results in 

different photon propagator gauges significantly differ from each other. In the 

QED energy approach this difference is not more that 0.1%  for the Coulomb 

and Babushkin gauges.  The contribution provided by the polarization and 

screening effects is very important for EuI (~35%). In table 2.6 we present theo-

retical and experimental data for the oscillator strengths of the ytterbium YbI 

low-lying states (from Refs.[101-104,124]. 
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Table 2.5 

The oscillator strengths of the E1 transitions in EuI (table 2.4): theoretical data - 

the Coulomb approximation method (columns A,B,C are corresponding to the 

gauges of the photon propagator: Coulomb, Babushkin, Lamdau), multiconfigu-

ration DF method (column D)4 experimanmtal data (columns E1,E2). 

 

 

N A B C D E1 E2 F 

1 0,205 0,264 0,469 0,280 0,433 0,49 0,478 

2 0,272 0,350 0,622 0,374 0,588 0,59 0,591 

3 0,342 0,439 0,781 0,540 0,740 0,74 0,740 

4 0,0228 0,0293 0,052  0,012  0,015 

5 0,0381    0,0024  0,028 

6 0,0303    0,0047  0,022 

7 0,0157    0,0015  0,0017 

8 0,0098    0,0060  0,0063 

9 0,0075    0,0045  0,0049 

 

The presented data confirm a complexity of the studied object. The simple Cou-

lomb approximation may hardly provide the necessary accuracy. All conclusions 

regarding the role of the correlation and gauge-noninvariant contributions are 

similar to previous case of the Eu atom. 

Table 2.6 

The oscillator strengths f of the ytterbium low-lying states transitions: Experi-

ment – column E; theoretical data – the Coulomb approximation (CA; Coulomb 

gauge of the photon propagator); multiconfiguration DF method (column D); 

QED PT (column F). 

Transition    (A) f, CA f ,DF f, QED 

PT 

fexp 

4f146s2 1S0 - 

4f146s6p 1P1 

3987,9 1,82 1,65 1,36a;  

1,48b 

1,2; 1,38; 

1,12; 

4f146s2 1S0 – 

4f146s7p 1P1 

2464,5 1,19 0,59 0,33a;  

0,38b 

0,22 

Note: a – calculation with the optimized wave functions; 

         b – calculation with the non-optimized wave functions; 
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2.2 Radiative transition probabilities and oscillator strengths for transitions 

in spectra of Zn-like multicharged ions 

 

Here we present the results of calculating probabilities of the magnetic di-

pole (M1) and electric quadrupole (E2) forbidden transitions for Zn-like mul-

ticharged ions (Z=32-92). In all calculations by QED PT it has been used the 

Ivanov-Ivanova model potential (7) with defining its parameter within above de-

scribed an initio QED procedure. In fact this potential imitated the self-

consistent Dirac-Fock potential. In table 2.7 we present the energy approach 

(EA; QED PT) oscillator strengths of the 4s2(1S0 )- 4s4p (1P0
1) transition in the 

Zn-like multicharged ions, . For comparison we listed in this table the theoretical 

Hartree-Fock (HF), Dirac-Fock (DF), DF (with fitting to experimental transition 

energies) and model potential (MP) data [85,118,119]. 

Table 2.7 

The experimental and theoretical values of the oscillator strengths of 4s2(1S0 )- 

4s4p ( 1P0
1 ) transition in the Zn-like ions.  

Ion Method Е Lf  Vf  

 

 
+Ga  

DF 0.3351 1.89 1.98 

HF 0.2984 2.30 2.01 

DF 

(Eexp) 

0.3221 1.97 1.95 

MP 0.3076 1.68 1.73 

EA 0.3220 1.862 1.861 

Exp. 0.3221 1.85   0.15 1.85   0.15 

 
+3As  

 

DF  0.5247  1.87 1.86 

EA 0.5142 1.575 1.574 

Exp.  0.5141  1.56   0.23 1.56   0.23 

 +34Gd  DF  

EA 

4.6685 

4.6294 

1.12 

1.01 

1.10 

0.99 
+40Yb  DF 

EA 

6.2564 

5.1788 

1.12 

0.97 

1.10 

0.96 
+40Au  DF 

EA 

9.6361 

9,5256 

1.18 

1.02 

1.15 

1.01 
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+52Pb  DF 

EA 

11.1153 

10.9715 

1.21 

1.13 

1.18 

1.13 

 
+62U  

DF 17.8584 1.37 1.36 

HF 17.6087 1.41 1.47 

EA 17.6285 1.33 1.33 

Exp.  -  1.31  0.05 1.31  0.05 

 

Analysis of the obtained data allows to make the following conclusions. Firstly, 

one can see that the energy approach (within QED PT) provides physically rea-

sonable agreement with experiment. Secondly, we have checked that the results 

for oscillator strengths, obtained within our approach in different photon propa-

gator gauges (Coulomb, Babushkin, Landau gauges)  are practically equal, that 

is provided by using an effective QED energy procedure [4].  

Thirdly, calculation has confirmed the great role of the interelectron correlation 

effects of the second and higher QED PT orders, namely, effects of the inte-

relectron polarization interaction and mutual screening.  

In table 2.8, 2.9 we present  the M1 and E2 transitions probabilities in some Zn-

like ions (our calculation) for transitions:  (a) ( ) ( )0

1

30

2

3 4444 PpsPps → ; (b) 

( ) ( )0

2

30

1

1 4444 PpsPps →  [85,118,119].   

Table 2.8 

The probabilities of the forbidden M1 and E2 transitions in spectra of some ions 

of ZnI isoelectronic sequence (our data): (a) ( ) ( )0

1

30

2

3 4444 PpsPps →  (b) 

( ) ( )0

2

30

1

1 4444 PpsPps →   

Transition M1 (a) E2 (a) M1 (b) E2 (b) 
+Ga  0.009(1) 0.065(-3) 0.053(1) 0.39(0) 
+3As  0.051(1) 0.018(-2) 0.015(2) 0.022(1) 
+34Gd  0.081(6) 0.118(4) 0.047(6) 0.047(5) 
+40Yb  0.039(7) 0.399(5) 0.145(6) 0.026(6) 
+49Au  0.028(8) 0.104(6) 0.119(7) 0.029(7) 
+52Pb  0.047(8) 0.067(7) 0.215(7) 0.058(7) 

+62U  0.036(9) 0.059(8) 0.128(8) 0.101(8) 
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One could note that the M1 and E2 transition probabilities values are quicly in-

crease with the growth of the nuclear charge of ion. Under transition from the 

Zn-like ion of As to the Zn-like uranium this growth is about 8 orders.  

 

 

2.3 Radiative transition probabilities and autoionization widths for Ne-like 

multicharged ions 

 

In tables 2.9 and 2.10 we present the values of probabilities of the radia-

tion transitions between levels of the configurations 2s22p53s,3d,4s,4d and 

2s2p63p,4p in the Ne-like ions of the Ni XIX and Br XXVI (in s-1; total angle  

Table 2.9 

Probabilities of radiation transitions between levels of the configurations 

2s22p53s,3d,4s,4d and 2s2p63p,4p in the Ne-like ion of  Ni XIX (in s-1; total an-

gle moment  J=1): a – the MCDF method; b- relativistic PT with the empirical 

zeroth approximation  (RPTMP);  c1 – our QED PT data  (without correlation 

corrections); c2 – our QED PT data (with an account for the correlation correc-

tions); exp.- experimental data (see text). 

Level J=1 Exp.  а-

MCDF 

b-

RPTMP 

с1-QED 

PT  

с2-QED 

PT  

2p3/23s1/2 7.6+11 9.5+11 1.3+12 9.7+11 8.1+11 

2p1/23s1/2 6.0+11 1.8+12 1.0+12 7.6+11 6.2+11 

2p3/23d3/2 1.4+11 2.2+11 1.5+11 1.7+11 1.4+11 

2p3/23d5/2 1.2+13 2.1+13 1.2+13 1.5+13 1.2+13 

2p1/23d3/2 3.2+13 4.8+13 3.6+13 4.0+13 3.3+13 

2s1/2 3p1/2 - - 8.5+11 9.5+11 8.1+11 

2s1/2 3p3/2 - - 5.1+12 5.6+12 4.7+12 

2p3/24s1/2 3.3+11 - 3.6+11 4.1+11 3.4+11 

2p1/24s1/2 2.0+11 - 3.0+11 3.1+11 2.4+11 

2p3/24d3/2 4.5+10 - 5.2+10 5.4+10 4.8+10 

2p3/24d5/2 8.3+12 - 8.3+12 9.2+12 8.2+12 

2p1/24d3/2 8.1+12 - 7.9+12 8.9+12 8.0+12 

2s1/24p1/2   - 6.3+11 5.7+11 

2s1/24p3/2   - 2.7+12 2.4+12 
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Table 2.10 

Probabilities of radiation transitions between levels of the configurations 

2s22p53s,3d,4s,4d and 2s2p63p,4p in the Ne-like ion of  Br XXVI (in s-1; total 

angle moment  J=1): a – the DF method; b- RPTMP; c1,2 – our QED PT data  

(without and with account for correlation corrections);  exp.- experimental data 

[1-4,8-11,15,18,20,21]. 

Level J=1 Exp.  а-

MCDF 

b-

RPTMP 

с1-QED 

PT  

с2-QED 

PT  

2p3/23s1/2 4.5+12 6.2+12 4.4+12 5.5+12 4.4+12 

2p1/23s1/2 3.1+12 4.8+12 2.8+12 3.6+12 2.7+12 

2p3/23d3/2 2.8+11 3.9+11 2.9+11 3.5+11 2.8+11 

2p3/23d5/2 6.1+13 8.0+13 6.3+13 7.5+13 6.1+13 

2p1/23d3/2 8.6+13 9.5+13 8.7+13 9.9+13 8.6+13 

2s1/2 3p1/2 3.9+12 - 4.2+12 4.7+12 4.0+12 

2s1/2 3p3/2 1.4+13 - 1.5+13 1.8+13 1.4+13 

2p3/24s1/2 1.1+12 - 1.2+12 1.5+12 1.1+12 

2p1/24s1/2 2.1+12 - 2.5+12 2.8+12 2.3+12 

2p3/24d3/2 2.8+10 - 7.3+10 6.9+10 6.3+10 

2p3/24d5/2 - - 2.8+13 2.7+13 2.3+13 

2p1/24d3/2 2.0+13 - 2.2+13 2.3+13 2.0+13 

2s1/24p1/2 2.5+12 - - 2.9+12 2.6+12 

2s1/24p3/2 7.1+12 - - 8.9+12 8.0+12 

 

moment  J=1): a – the MCDF method; b- relativistic PT with the empirical ze-

roth approximation  (RPTMP); c1 – our QED PT data  (without correlation cor-

rections); c2 – our QED PT data (with an account for the correlation correc-

tions); exp.- experimental data [13-15, 84,93,94, 108-114].  
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Analysis of the obtained data allows to make the following conclusions. Firstly, 

one can see that the energy (QED PT) [117,128, 13-15] approach provides phys-

ically reasonable agreement with experiment and significantly more advantage 

able in comparison with standard Dirac-Fock method and little better than the 

relativistic PT with model zeroth approximation (RPTMP) method [93,94], 

though the last (RPTMP) results hitherto are considered as the most acceptable 

(see refs. [3,4,93,94,108-114]). 

Secondly, we have checked that the results for the transition probabilities, 

obtained within our approach in different photon propagator gauges (Coulomb, 

Babushkin, Landau gauges)  are practically equal, that is provided by using an 

effective QED energy procedure [128]. Thirdly, calculation has confirmed the 

great role of the inter electron correlation effects of the second and higher PT 

orders, namely, effects of the inter electron polarization interaction and mutual 

screening.  

Further let us describe some calculated data for autoionization decay 

probabilities in the spectra of the multicharged ions on example of the Fe ion 

with one vacancy above the core 1s22s22p63s23p6. This ion of a great interest be-

cause of the high complexness of the spectrum and great actuality for astrophys-

ical applications [3,4,86-88,93,94].  As the final state of the studied system after 

autoionization decay is the three-quasiparticle, the general number of the decay 

channels is sufficiently large, so we are limited only by summarized probability 

of the autoionization decay for the state 1s22s22p63s23p6 with definite quantum 

numbers of vacancies n1l1 and  n2l2. The detailed information about total number 

of channels is presented in ref. [91,117]. In table 2.11 we present values of the 

“i-f” transitions energies, calculated  by us within ab initio QED PT, and also 

results of calculations within the MCDF (by Klapish et al), relativistic PT (RPT) 

with empirical zeroth approximation (by Ivanov et al) and available experi-

mental data (see Refs.[3,4,91-94,117]).  

Analysis of the data in table 2.11 allows to make the following conclusions. 

Firstly, the accurate account of the complicated inter-electron (vacancy) correla-

tions plays a critical role not only for acceptable quantitative agreement between 

theory and experiment, however, it is of the principal importance for right inter-

pretation of the corresponding transitions in the spectra. 
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Table 2.11 

The “i-f” transitions energies (in 102 cm-1) , calculated   within ab initio QED 

PT, MCDF  and available experimental data. 

 

N i f Exp.[15] MCDF RPT  QED 

PT 

1 1s2s22p63s23p 1s 22s22p63s2 577000 577500 577200 577148 

2 1s2s22p63s23p2 1s 22s22p63s23p 575700 576230 575910 575820 

3 1s2s22p63s23p3 1s 22s22p63s23p2 574400 575040 574940 574532 

4 1s2s22p63s23p4 1s 22s22p63s23p3 573400 573920 574360 573937 

5 1s2s22p63s23p5 1s 22s22p63s23p4 572400 572860 573520 572845 

6 1s2s22p63s23p6 1s 22s22p63s23p5 571430 571886 572550 572124 

 

Secondly, usually acceptable [14] interpretation of the experimental highly ion-

ized iron spectra, probably, is not fully correct because of the high complexness 

these spectra and, besides, using the DF calculation results for the corresponding 

interpretation. In fact in our opinion, the experimental data, in particular, for the 

“5” and “6” transitions (see table 2.11) are probably not correct and correspond-

ing to other transitions. The difference between the RPT and QED PT data is 

connected with using the a little different basises of the relativistic wave func-

tions. In ab initio approach calculation it has been used the QED procedure 

[128]. In refs. [93,94] it has been used the empirical zeroth approximation, 

which naturally accounts for the main (not all) part of the inter-particle correla-

tions contribution. In  table 2.12 we listed the values for probabilities of decay of 

the FeX states with vacancy 1s½ , obtained within our approach (QED PT) with 

using the optimized basises (OB) of the one-quasiparticle wave functions and 

calculation data within the RPT with empirical zeroth approximation (without 

optimization of basises (WOB) of the wave functions) [128].   

The analysis of the presented data in the table 2.2 shows that the QED PT  

results are less than the corresponding data from [94] at ~5%. This fact can be 

explained by using specially optimized basises of the one-quasiparticle wave 
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functions (more full account of multi-body exchange-correlation effects) in the 

EA  scheme. 

Table 2.12 

 

Probabilities of decay of the FeX states with vacancy 1s ½ :  QED PT –OB (A- 

QED PT data); RPT-WOB (B). 

 

                 n2l2 

method A            B A            B A            B A 

n1l1 2s 2p 3s 3p 

2s 399+14    42+14  131+14    14+15 130+14  

14+14 

198+14 

2p    264+15    28+15 158+14  

17+14 

722+14 

3s   834+12  

90+12 

243+13 

3p    612+13 

 

  Note: the mantissa and decimal order of value are given: 42+14=0.421014; 

In refs. [91] it had been used the formalism of relativistic PT with the empirical 

zeroth approximation, and optimization of the one-quasi-particle wave functions 

basises is not specially fulfilled, though using the empirical information about 

corresponding one-quasiparticle atomic ion allows indirectly take into account 

the correlation corrections.  

 

2.4 Autoionization resonances widths in YbI and TmI atoms 

 

In table 2.14 we present the experimental data (Letokhov et al [101]) and 

theoretical results for energies and widths of the autoionization states of the 7s6p 

configuration on YbI(account from the ground state: 6s2 Yb): E1,1- data by 

Ivanov et al (EA-RPTMP method);  E2,2- EA-QED PT data [101-107,126-

129].    

Table 2.13 

Energies E (cm-1) and widths  (cm-1) of the YbI 7s6p configuration states 
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Ter

m 

Theory Experiment 

E1          1    E2       2         Eexp exp 

3P0
0 59800  0,70 59450  1,25 59130,5 1,1 

3P1
0 60000  3,00 60315  1,10 60428,7 0,95 

3P2
0 62600  0,70 62587  1,51 62529,1 1,6 

1P1
0 63600  1,80 63613  2,48 63655,8 2,6 

 

An analysis shows quite physically reasonable agreement between the values of 

energies E1, E2, Eexp, however, the values of the widths 1, exp significantly 

differ. In our opinion, this fact is explained by insufficiently exact estimates of 

the radial integrals, using the non-optimized basises and some other additional 

calculation approximations.  

 

The EA-QEDPT values [117,128] for widths are significantly closer to experi-

mental data. It is connected with using more optimized basises of the orbitals 

and more accurate accounting for the important multi-body exchange-correlation 

effects. In table 2.14, 2.15 the autoionization states energies and widths for YbI 

with doubly excited valent shell are listed [101-107,126-129]: E1,1- data by 

Ivanov et al (EA-RPTMP method);  E2,2- EA-QED PT data.   

 

The presented EA-RPTMP and EA-QEDPT data for the energies are in the 

physically reasonable agreement with experimental data. 

 

Table 2.14 

Energies (in 102 cm-1) of autoionization states for Yb with 2-excited valent shell 

Conf. J 
Theory 

Eexp  
    E1 E2 

6p1/2
2  0  -1067 -1064 -1062,7 

6p3/2
2  0  - 920 - 918 — 
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2  - 987 -1004  -1008,9 

6p1/26p3/2  
1 

2 

 -1054 -1050 -1049 

 -1032 -1036 -1039,5 

6p1/25d3/2  
1 

2 

 -1077 -1072 — 

 -1075 -1069 — 

6p1/25d5/2  
2 

3 

 -1007 -1004 — 

 -1119 -1115 — 

6p3/25d3/2  

0 

1 

2 

3 

 -1020 -1017    — 

 -1014 -1012 — 

 - 914 - 913 — 

 -1039 -1035     — 

6p3/25d5/2  
1 

2 

 - 949 - 948 — 

 -1118 -1116 — 

6p3/25d5/2  
3 

4 

 - 963 - 962 — 

 -1062 -1061  — 

5d3/2
2  

0 

2 

 - 981 - 982 — 

 -1034 -1032 -101076 

5d5/2
2  

0 

2 

4 

 - 961 - 963 — 

 - 970 - 968 — 

 - 861 - 859 — 

5d3/25d5/2  

1 

2 

3 

4 

 - 980 - 982 — 

 - 994 - 995 -99463 

 -1030 -1032   -103247 

 -1024 -1026 — 

7s1/26p1/2  
0 

1 

 - 889 -886,4 — 

 - 887 -  886 — 

7s1/26p3/2  
1 

2 

 - 851 - 849 — 

 - 861 -860  — 
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Table 2.15 

The widths (cm-1) of autoionization states for Yb with doubly excited valent 

shell 

Configurations J Term 1    2 Configurations  J Term 1      2 

         6p2
3/2 

      0 1S0   5.4   5.69 6p3/25d3/2           2 1D2
0 0.20  0.52 

                        1 

      6p3/25d5/2    3 

1P1
0 

1F3
0 

 
 5.7   5.95 5d3/25d5/2             1 3P1 1(-4)  8(-4) 

1.60  1.98    5d2
5/2           0 1S0 3.30    3.63 

          5d2
3/2      0 3P0  0.01  0.05 

    5d2
5/2           2 

                      4 

3P2 
1G4 

0.40    0.73 

0.90    1.74 

   Note: 0.0008=8(-4) 

 

However, comparison of the corresponding results for widths demonstrates 

again sufficiently large discrepancy. Analysis shows too that the state 5d3/25d5/2, 

(J=1) is really autoionizative (hitherto this question remained opened).  Its 

anormal smallness can be explained by the fact that its decay is forbidden in the 

nonrelativistic limit. Further we consider the thulium atom, which is of a great 

interest for many physical and chemical applications [104-106]. In fig.2.1 we 

present position of nearly lying ionization limits 4f-136snl  of the thulium atom  

Tm and scheme of autoionization decay of the Tm Rydberg states 4f136snl 

[106,127]. Note that the availability of two pairs of near-lying ionization limits 

(with vacancy states 4f71/2 and 4f51/2) in the thulium atom provides two main 

types of the autoionization resonance decay [104-106,127].  
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Figure 2.1 The position of nealy lying ionization limits 4f-136snl  of the thulium 

atom  Tm and scheme of autoionization decay of the Tm Rydberg states 4f136snl 

These decays are as follows:   

(BFD)  4f-1
5/2 6s1/2 (J12) nl - 4f-1

7/2 6s1/2 [J12'] Tm+ + leje,  n>7,  J12=2; 3, 

J12'=3; 4 

 

(ROD)  4f-1j6s1/2(J12)nl-4f-1j6s1/2[J12']Tm++leje, n>25, J12=3, J12'=2;4 

j=5/2,7/2 

 

Here the ROD means the reorientation autoionization resonance decay 

(new type of the autoionization decay developed Ivanov-Letokhov et al 

[101,106,127]), and the BFD means the traditional Beutler-Fano autoionization 

decay. The states 4f-1
5/2 6s1/2(J12=3)nl undergo simultaneously both BFD and 

ROD. Let us note that contrary to the BFD, the ROD is a low energy process 

preserving all the single electron quantum numbers of atomic residue: 4f-1j and 

6s1/2 . The ROD can be of the monopole or quadruple character. We mean here 

the multi-polarity of the inter-quasi-particle interaction causing the autoioniza-

tion resonance decay. The states with J12=2;4 do not undergo the ROD. Never-

theless, their admixing with states undergoing the ROD can significantly ampli-

fy the monopole ROD. For Rydberg series, the only possible autoionization res-

onance decay is the reorientation one. In table 2.16-2.19 we listed our calculated 
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values of the energies (E2) and widths (2) for the autoionization states Tm 

][)3(64 2/12/1
13

2/7
Jnssf , ][)3(64 2/1

13
2/7

Jnpsf j  and ][)2(64 2/12/1
13

2/5
Jnssf , 

][)3(64 2/12/1
13

2/5
Jnssf  Tm [120,127]. For comparison we also present the results 

of calculation by Ivanov etal (energy – E1; width -1) [104-106]. Let us note 

that for the first states (see tables 2.16-2.18) the autoionization decay can be on-

ly realized by means of the ROD channel.  

 

Table 2.16 

The energies (in 10 cm-1) and widths (cm-1) of the autoionization states Tm 

][)3(64 2/12/1
13

2/7
Jnssf  

 J=5/2 J=5/2 J=7/2 J=7/2 

N  1           2              E1           E2 2          E2 

25 

30 

1.18(-5)   1.29(-5) 

5.77(-6)    6.72(-6) 

     4985        4964,3 

     4995        4974.3 

1.63(-2) 

4.21(-3) 

4967.3 

4976.5 

 

 

Table 2.17 

The energies (in 10 cm-1) and widths (cm-1) of the autoionization states Tm 

][)3(64 2/1
13

2/7
Jnpsf j  

(j,J) (3/2,3/2) (1/2,5/2) (3/2,5/2) 

N 2         E2        2         E2        2         E2 

25 

30 

  5.24(-5)   4966,1 

  3.76(-5)   4975,5 

   1.196(-1)   4965 

   9.23(-2)     4975,1 

  1.95(-1)   4966,5 

  1.08(-1)   4975,7 

(j,J) (1/2,7/2) (3/2,7/2) (3/2,9/2) 

N 2         E2        2         E2        2         E2 

25 

30 

  3.82(-2)   4964.0 

  2.54(-2)   4974.1 

     3.56(-1)   4966,6 

     2.34(-1)   4975,8 

   4.05(-1)   4966,9 

   2.67(-1)   4975,9 

 

For the states in table 2.19 the autoionization decay can occur through both 

ROD and BFD channels, however it becomes to be possible only for states with 

n>25. A comparison of the presented theoretical data leads to conclusions, 

which were made for the ytterbium atom autoionization states. In conclusion of 

this point let us underline that the precized data on characteristics of the   
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Table 2.18 

The energies (in 10 cm-1) and widths (cm-1) of the autoionization states Tm 

][)2(64 2/12/1
13

2/5
Jnssf  

 J=3/2 J=3/2 J=5/2 J=5/2 

n       1         2         Е1         Е2 2 Е2 

10 

15 

25 

30 

4.23(-3)   4.61(-3) 

2.26(-4)    2.47(-4) 

2.48(-5)    2.75(-5) 

1.22(-5)    1.43(-5) 

     5482       5464 

     5763       5745 

     5838       5821 

     5847       5829 

5.33(-3) 

4.62(-4) 

5.61(-5) 

2.66(-5) 

5453 

5748 

5823 

5830 

 

Table 2.19 

The energies (in 10 cm-1) and widths (cm-1) of the autoionization states Tm 

][)3(64 2/12/1
13

2/5
Jnssf  

 Г2     J=5/2 2         J=7/2 

n      ( ROD)      ( BFD)     (Total)         ( ROD)      ( BFD)     (Total)         

10 

15 

25 

30 

                       4.81(-3)     4.81(-3)          

                       2.73(-4)     2.73(-4) 

    1.41(-2)     2.96(-5)     1.42(-2)          

    3.41(-3)     1.56(-5)     3.42(-3) 

                        5.61(-3)     5.61(-3)          

                        4.86(-4)     4.86(-4) 

      1.51(-5)     5.54(-5)     7.05(-5)          

      6.10(-6)     2.92(-5)     3.53(-5) 

 

auotionization states for heavy atoms and ions (in our case, lanthanides atoms) 

are important not only from the point of view of the development of the 

advanced relativistic theory, however, from the point of view of the different 

apllications in laser physics, astrophysics, physics of plasma and development of 

new laser ionization technologies for the separation of the heavy isotopes, 

nuclear isomers etc.  

 

2.5 The Tm, U autoionization resonance decay in a weak electric field and 

laser photoionization method of isotope separation 

 

Now it is well known that the laser photoionization method is one of the 

most perspective methods for the sensing single atomic particles, separating iso-

topes, nuclear isomers and nuclear reactions products (see Refs. [162-191]). The 
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standard laser ionization (ALVIS) scheme may be realized by means of the mul-

ti-step excitation  and ionization of atoms by laser pulse. The scheme of selec-

tive ionization of atoms, based on the selective resonance excitation of atoms by 

laser radiation into states near ionization boundary and further photo-ionization 

of the excited states by additional laser radiation, has been at first proposed and 

realized by Letokhov et al (see Refs. [162,172]). Naturally, this scheme if of a 

great interest in problem of the  laser separation of isotopes and nuclear isomers. 

However, a significant disadvantage of the two-step selective ionization of at-

oms by laser radiation method is a great difference between cross-sections of 

resonant excitement exc and photo-ionization  ion   ([exc/ion]>104108). It re-

quires using very intensive laser radiation for the excited atom ionization. The 

situation is more simplified for autoionization resonances in the atomic spectra, 

but detailed data about characteristics of these levels are often absent. Main 

problems here are connected with difficulties of theoretical studying and calcu-

lating the autoionization resonance characteristics (see above). An account of 

complex relativistic and correlation effects (continuum states, exchange-

correlation effects etc) by means of the traditional quantum-mechanical methods 

is not possible hitherto [1-4].  

In a number of papers (see Refs. [172,175,191]) a possibility of the selec-

tive ionization of atoms, based on the selective resonance excitation of atoms by 

laser radiation into states near ionization boundary and further ionization decay 

of excited atoms by external electric field, has been considered. Electric field 

changes the electron spectra so that the part of discrete spectra levels (near the 

ionization boundary)  moves into continuum and other levels become the autoi-

onization ones.  

The probability of their autoionization decay quickly increases with 

growth of the main quantum number. The most optimal situation is when atom 

is excited to state, which has the autoionization probability more than the radia-

tion decay probability.  

To receive a précised information about optimal laser photoionization 

scheme, it is necessary to carry out an accurate calculation of the process of se-

quent atomic excitation by laser field (it’s known trivial task) and probability of 

ionization of the atoms in the highly excited states (autoionization states) by 

electric field.  
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As a rule, non-relativistic approximation has been earlier used [175]. 

More consistent approach to solution of such a problem must be based on the 

relativistic models [117-160], as the most interesting elements for laser isotope 

separation are heavy isotopes, where a role of relativistic corrections is often 

very dramatic. Below we use a relativistic energy approach for numeral calcula-

tion of the autoionization resonances decay in the external DC electric field 

[126-128].  

It should be also noted that studying the autoionization in an external DC 

electric field represents an undoubted interest for experimental laser spectrosco-

py, in controlling the population and decay kinetics of excited states or the selec-

tive ionization under laser radiation action [191]. One could mention a great role 

of the autoionization resonances in many processes in plasma and gases. The 

corresponding data can be  very useful for carrying out optimal isotope separa-

tion scheme. Really, according to Ref. [191], an effective optimized isotope sep-

aration scheme can be based on the selective laser excitation of the isotope atom 

into the excited Rydberg states and further DC electric field ionization or autoi-

onization. In this case the velocity of ionization is significantly higher than the 

corresponding value in the usual regime (see Refs. [172,175]). A result, the ef-

fectiveness of the laser photoionization scheme of isotope separation is signifi-

cantly increased. As example let us consider a process of the uranium U and thu-

lium Tm isotopes separation  [72,120,151,152].  

The necessary ionization step: excitation of the uranium and thulium at-

oms into the Rydberg states: 5f37s2np, 5f36d7sns (U: electron external shell con-

figuration) and 4f136sns, 4f136snp (Tm). Principal quantum number n may be 

equal 10-50.   The further step is an autoionization decay in an external DC elec-

tric field. It should be noted that the excitation and ionization cross-sections of 

ground and low excited state for these atoms by laser pulse are as follows: the 

excitation cross-section exc=1 ~10-13-10-11 cm2, ionization cross-section from 

excited state: ion=2~10-18-10-17cm2, from ground state 2~10-19cm2 [175,191]. 

For selective photoionization scheme with excitation to Rydberg ns, np states 

with n=10-50 and further ionization by the DC electric field (see below) the cal-

culated cross-section values are as follows: 2~10-1512 cm2. It means that the 

selective photoionization scheme with using the Rydberg states (autoionization 

resonances) and ionization by external electric field is more effective for studied 
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isotopes from the energetic point of view. But it is arisen a problem with the ion-

ization output (here it may be less than 100%, so it is necessary to search the op-

timal levels). To get the corresponding data on probabilities of ionization by ex-

ternal DC electric field, one could use a consistent relativistic quantum approach 

to calculation of the autoionization resonance decay in the external DC electric 

field [126-127,151,152].  

Probability of the ionization (autoionization width) for highly excited at-

oms by electric field is given by the full flow of probability through the plane, 

which is perpendicular to z-axe. Calculation of the probability requires a solu-

tion of the axially symmetrical problem, when a potential barrier separates two 

classically allowed regions. To define the wave functions and electron state en-

ergies in an electric field, one needs to carry out the diagonalization of energy 

matrice, calculated between states with the same n [126-129].  

The diagonalization of the complex energy matrix leads to complex ener-

gy correction: ReE -iГ/2 ,   where Re E is the level shift and  Г is the level 

width, including the radiation and autoionization widths  simultaneously. If the 

effects of the autoionization resonance decay are included in the matrix M, then 

Г presents only the autoionization width of the state.  

Only Re M is diagonalized. The imaginary part is converted by means of 

the matrix of eigen-vectors {Cmk} The eigen vectors are obtained by diagonaliza-

tion of ReM  (see formular (62)). The other details of calculation procedure can 

be found in Refs. [117-160]. From physical point of view, especially interesting 

effects occur in the complex heavy atom when its broad autoionization reso-

nances mix with much narrower resonances of opposite parity by means the ex-

ternal electric field. Here the most interesting feature is an effect of electric field 

on the autoionization resonances in the heavy isotopes (the last step of the laser 

photoionization scheme).  

Authors of paper [126,128] have predicted new effect, connected with be-

haviour of the Tm autoionization resonances in an external electric field and dis-

covered a drastic broadening of the reorientation type autoionization resonances 

already in a weak electric field.  We have carried out the same calculation, but 

with the use of the relativistic energy approach. It is easy understand that any 

two states of different parity can be mixed by the external electric field. The 

mixing leads to redistribution of the autoionization widths. In the case of degen-
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erate or near-degenerate resonances this effect becomes observable even at a 

moderately weak field. In the case of the thulium one could deal with reorienta-

tionally decaying ns and np series, converging to the same ionization limit, i.e. 

they are nearly degenerate states of different parity. Among them one can find 

some pairs of ns and np states with widths Г, differing by several orders (see fig. 

2.1).  

As example, we consider the f-1
7/2 6s(3)25s[5/2]  state,  decaying  due to 

the quadruple interaction and  f-1
7/2 6s(3)25p1/2[5/2] undergoing to the monopole 

ROD. In table 2.20 we present the calculated values of the energy E, autoioniza-

tion width Г for the 4f7-1/26s(3)ns,np Tm states (n=25) for different values of the 

DC electric field strength . A strong change of the autoionization resonance 

width occurs at a moderately weak electric field and presented data are fully cor-

responding to the pioneering data by Glushkov-Ivanov [126].    

 

Table 2.20 

The calculated values of the autoionization width Г (cm-1) for the 4f7-

1/26s(3)ns,np Tm states (n=25) for different values of DC electric field strength 

. (Vcm-1) 

State  4f13
7/2 6s1/2 (3) 

25s [5/2] 

 

4f13
7/2 6s1/2 (3) 

25p1/2 [5/2] 

 

Г,  = 0 1,291D – 05 1,196D – 01 

Г,  = 50 1,847D – 04 1,194D – 01 

Г,  = 100 7,130D – 04 1,189D – 01 

Г,  = 150 1,330D –03 1,182D - 01 

 

 

The same effect is firstly discovered by us for the uranium isotopes. We have 

calculated the energies and widths for higher members of the uranium Rydberg 

series (members accessed from 32.899,79 cm-1 level). Excitation sequence: 

6056,81+6098,10+(5880-5890) Å. For 5f37s2np (n=40-44) levels the following 

results are obtained: i). For =0 Vcm-1, configuration 5f37s242p,  E=49877,49    

(experimental value [13]: 49877,5);  Г(5f37s242p)=1,794D-01; Г(5f37s242s)= 

2,702D-05; ii). For  = 100 Vcm-1; Г(5f37s242p)=1,675D-01; Г(5f37s242s)= 
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5,913D-04. So, we have here a strong change of the autoionization resonance 

width at a moderately weak electric field too. In conclusion let us underline here 

that the detailed spectroscopic information about autoionization resonances is 

needed to optimize the excitation and ionization of the atom. An optimal scheme 

presumes a compromise between high excitation probability and high decay rate 

that determines the lower and upper boundaries for the autoionization resonanc-

es decay rate. The use of the autoionization decay (for example, the ROD chan-

nel) essentially increases the possibilities of such a compromise. As example, 

here we briefly consider possible optimal laser photoionization scheme of the 

uranium isotope separation. As usually [151,152], the optimization procedure of 

the laser photoionization scheme is in a searching the optimal form of the laser 

pulse to provide a maximum of excited particles in the separation scheme (natu-

rally this is one of the possible versions).  

The whole separation process is described by the density matrice equa-

tions system [191]. The laser photoionization scheme for U isotopes includes the 

following steps: i). Laser excitation of the 235U isotopes from the ground 

5f36d7s2-5L6
o state and low lying metastable 5f36d7s2-5K5

o state with energy 

620,32 см-1; ii). Transition into the autoionization state with doubly excited ex-

ternal shell and then ionization by the DC electric field.   

In figure 2.2 we present the results of numerical modelling the optimal 

form of laser pulse in the laser photoionization sensor scheme for the uranium 

isotopes (from Ref. [151]). The following notations are used:  pulse + dotted 

line is the optimal form of the laser pulse; curves (1) x1 ,(2) x2  are populations of 

the ground and excited (n=42) states. 

At the first step of the laser photoionization scheme the  -pulse provides 

a maximally possible level of excitation for the upper states. At the last step an 

external DC electric field ionization must be realized earlier than the parasitic 

spontaneous relaxation processes (resonant re-charging etc. [175,191]) begin to 

destroy and change  the reached level of atomic excitation. Using the DC elec-

tric filed ionization mechanism significantly increases the output of charged par-

ticles, improves in whole the energetics of the laser photoionization sensor 

scheme and its optimality. It is possible to accept the special measures to pro-

vide very high ionization output (approaching to 100%) that requires using spe-

cially separated autoionization levels. 
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Figure 2.2 Results of numerical modelling for the optimal form of laser pulse in 

the laser photoionization sensor scheme for the uranium isotopes:  pulse + dot-

ted line is the optimal form of the laser pulse; curves (1) x1 and (2) x2  are the 

populations of the ground and excited  states. 

 

General analysis shows [191] that described laser photoionization scheme is 

more perspective for uranium in comparison to traditional two- and three-step 

laser photoionization schemes with ionization by laser pulse at the final step 

[175,180-190]. 

 

2.6 Conclusions 

 

We presented the generalized QED energy approach to relativistic calcu-

lation of the radiative and autoionization characteristics for multielectron atoms 

and ions. The approach is based on the Gell-Mann and Low S-matrix formalism 

and the gauge-invariant QED perturbation theory (PT) with using the optimized 

one-quasiparticle representation and an accurate account of the relativistic, cor-

relation, nuclear and even radiative effects. In relativistic case the Gell-Mann 

and Low formula expressed an energy shift through the QED scattering matrix 

including the interaction with as the laser field as the photon vacuum field. The 

last case is corresponding to definition of the traditional radiative characteristics 

of atoms and ions. The results of relativistic calculation of the radiative transi-
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tions probabilities, oscillators strengths, autoionization widths are (some part 

firstly) presented for a number of heavy atoms and multicharged ions and dis-

cussed from the point of view of the correct accounting for the relativistic and 

exchange-correlation effects. Besides, some important possible applications, in 

particular, searching optimal schemes for laser photoionization isotope separa-

tion method with using the autoionization and DC electric field ionization 

mechanisms are briefly considered.   
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CHAPTER 3. OPTIMIZED RELATIVISTIC MANY-BODY 

PERTURBATION THEORY IN CALCULATIONS OF ENERGY AND 

SPECTRAL CHARACTERISTICS OF RELATIVISTIC ATOMS AND 

MULTICHARGED IONS 

 

3.1 Introduction 

 

In this chapter the radiative transitions wavelengths and oscillator 

strengths for some Li-like multicharged ions are calculated within the relativistic 

many-body perturbation theory with the optimized Dirac-Kohn-Sham zeroth ap-

proximation and an effective taking the relativistic, exchange-correlation, nucle-

ar, radiative effects into account. There have been considered all correlation cor-

rections of the second order and dominated classes of the higher orders diagrams 

(3.electrons screening, mass operator iterations etc). The method includes the 

generalized Glushkov-Ivanov-Ivanova procedure (3.relativistic energy ap-

proach) for generation of the optimal basis set of relativistic electron wave func-

tions with fulfilment of the gauge invariance principle. To reach the latter we fo-

cus on accurate consideration of the QED perturbation theory fourth order (3.a 

second order of the atomic perturbation theory) Feynman diagrams, whose con-

tribution into imaginary part of radiation width Im E for the multi-electron ions 

accounts for multi-body correlation effects. A minimization of the functional 

ImE leads to integral-differential Dirac-Kohn-Sham-like density functional 

equations. The magnetic inter-electron interaction is accounted for in the lowest 

order on 2 (3. is the fine structure constant) parameter. The Lamb shift polari-

zation part is taken into account in the modified Uehling-Serber approximation. 

Comparisons of our results on the radiative transition wavelengths and oscillator 

strengths for some transition in spectra of the Li-like multicharged ions (3.the 

nuclear charge Z=21-30) with other comparable 

The study of spectroscopic and structural properties of the multicharged 

ions has a subject of significant interest for many physical, astrophysical and 

chemical applications. The levels energies, transitions probabilities, oscillator 

strengths  and so on are very important in atomic physics (3.spectroscopy, spec-

tral lines theory), astrophysics, plasma physics, laser physics, quantum electron-

ics. They are very much needed in research of thermonuclear reactions, where 
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the ionic radiation is one of the primary loss mechanisms and so on.  The spec-

tral lines belonging to the radiation of many multicharged ions have been identi-

fied in both solar flares and nonflaring solar active regions, observed in high-

temperature plasmas, such as pinches and laser-produced plasmas, and in beam-

foil spectra. The multiple observations of satellite lines of the He-, Li-, Be-like 

multicharged ions  in the solar corona and in laboratory plasmas have empha-

sized the need for accurate values of the energetic and spectroscopic parameters 

for multicharged ions. The experiments on the definition of hyperfine splitting 

also enable to refine the deduction of nuclear magnetic moments of different iso-

topes and to check an accuracy of the various computational  models employed 

for the theoretical description of the nuclear effects. Generally speaking, study-

ing the spectra, radiative transition oscillator strengths, hyperfine structure pa-

rameters and so on for heavy elements and multicharged ions is of a great signif-

icance  for the further development of atomic and nuclear theories and spectros-

copy of multicharged ions (3.see, for example, Refs. [1-120]). To obtain an ac-

curate transition oscillator strengths,  hyperfine structure parameters and so on, 

accurate wave functions must be used for both the initial and finial states.  

The accurate calculation of energetic and spectroscopic properties for the 

multicharged ions over the past decades has been driven primarily by the steady 

development of quantum theory, on the one hand, and increasing computing 

power, on the other hand. As a rule, the most accurate calculations have been 

performed for the simple, few-electron atomic systems, such as the helium atom 

and its isoelectronic ions.  Newly developed quantum approaches as well as ad-

vanced traditional quantum chemical methods  have been approbated on few-

electron atomic systems. Theoretical calculations have concentrated mainly on 

obtaining accurate transition wavelengths and oscillator strengths which are 

necessary for multiple applications. On the other hand, these calculations made 

it possible to check the quality and accuracy of the atomic wave functions.  

Many theoretical methods including multiconfiguration Hartree–Fock 

(3.HF) method (3.for example, by Sundholm, Olsen and Fischer et al), configu-

ration-interaction methods, multiconfiguration Dirac–Fock (3.DF),  many-body 

perturbation theory (3.MBPT) and its relativistic MBPT version (3.RMBPT) 

(3.in particular, by Lindgren and coworkers), method of variational wave func-

tion in the Hylleraas coordinates and so on (3.see [9-59] and Refs. therein)  have 



94 
 

been developed for accurate calculations of spectroscopic characteristics of few-

electron atoms and multi-charged ions.   

Let us mention the extended optimal level (3.EOL) version of the MCDF 

method, which was used to calculate the transitions in the GRASPVU program 

package. The multi-configuration relativistic HF and DF approaches are the 

most reliable versions of calculation for multi-electron systems with a large nu-

clear charge. Usually, in these calculations the one- and two-body relativistic ef-

fects are taken into account practically precisely. Special attention should be 

given to three very general and important computer systems for relativistic and 

QED calculations of atomic and molecular properties developed by Oxford and 

German-Russian groups etc (3.“GRASP”, “Dirac”; “BERTHA”, “QED”, “Di-

rac”) (3.see [9-59] and Refs. therein). For example, the BERTHA program em-

bodies a new formulation of relativistic atomic and molecular structure theory 

within the framework of relativistic quantum electrodynamics (3.QED). This 

leads to a simple and transparent formulation of the Dirac-Hartree-Fock-Breit 

self-consistent field equations along with algorithms for molecular properties, 

electron correlation, and higher order QED effects.  

These equations are solved by a direct method based on a relativistic gen-

eralization of the McMurchie-Davidson algorithm for corresponding integrals 

that economizes memory requirements and is not significantly more expensive 

computationally than comparable nonrelativistic calculations. The useful over-

view of the relativistic electronic structure theory is presented in refs. 

[23,24,109-120] from the QED point of view. The next important step is an ade-

quate taking into account the QED corrections. This topic has been a subject of 

intensive theoretical and experimental interest (3.see, for example, [81-97]).  

In many calculations of characteristics of the atomic elementary processes 

it has been shown that an adequate description of these characteristics requires 

using the optimized wave functions in order to provide obtaining more accurate 

spectral data and simultaneously solving the convergence problems, for exam-

ple, in the method of configurational interaction or any version of the atomic or 

molecular perturbation theories [1-22,117-152]. We would like to mention that 

one of the first most effective attempts to construct optimal one-quasiparticle 

representation in quantum chemistry belonged to outstanding Swedish scientist 

Per-Olov Löwdin in 1955 (3.see, c.g., [1-4]). He introduced the concept 

https://en.wikipedia.org/wiki/Per-Olov_L%C3%B6wdin
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of natural orbitals to describe the unique set of orthonormal one-electron func-

tions that are intrinsic to the N-electron wave function.  

Subsequently many scientists, including  Davidson  et al [6,15,16],   pointed   

the   principal disadvantages of the traditional representation based on the self-

consistent field  approach  and  suggested  the  optimal  "natural orbitals"  repre-

sentation.  

Davidson et al have introduced the frozen natural orbital approach. The 

main advantage here is that the state vectors are obtained much "cleaner" than in 

the self-consistent field  representation, which simplifies the actual calculation 

of the energy matrix and matrix elements of other operators. Nevertheless, there 

remain insurmountable calculational difficulties in  the full realization  of the 

Davidson program.  

In the last years new ideas to problem of optimal representation were 

proposed (3.see details in Refs.[1-22]). A great interest attracts an advanced 

frozen natural orbital concept for ionized states within equation of motion-

coupled clusted approach. It is necessary to note that one  of the  simplified  rec-

ipes is  the Kohn-Sham density functional  method  [13,14]. Unfortunately,  this  

method doesn't provide  a  full regular  refinement  procedure  in a case of the 

complicated atomic systems with several quasiparticles (3.electrons  or 

vacancies above a core of the closed electron shells), though a significant 

progress is achived in the last years. Some alternative recipes for construction of 

the optimal one-quasiparticle representation are presented in a series of papers 

[51-64,69-71].   

One of the most exotic approaches to construction of the  optimal one-

quasiparticle representation includes variation of the gauge constant of 

electromagnetic interaction as adjusting (3.fitting) parameter (3.see, c.g. [28]).  

In our opinion, one of the most consistent and effective methods to obtain the 

optimal represantation was developed by Glushkov-Ivanov [127] within  

relativistic energy approach combined with the RMBPT (3.or QED PT). They 

proposed the fundamental optimization principle, related to the minimization of 

the density functional, which is the contribution of the QED PT fourth-order 

polarization Feynman diagrams (3.or atomic PT second order). For example, 

while treating  the one-quasiparticle atomic systems (3.one electron above or 

vacancy in the closed electron shells core) the contribution of these diagrams is 
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determined by the polarization of the core by the quasi-quasiparticle [127-136]. 

These are the first diagrams in which collective effects manifest themselves and 

their contributions depend on the calibration of the potentials of the 

electromagnetic field (3.gauge-noninvariant contributions). The authors [127] 

calculated the contribution of the polarization diagrams associated with the 

exchange of longitudinal photons in the imaginary part of the energy of the 

excited state. However, the total numerical minimization of the gauge-

noninvariant contribution has not been performed. There was presented a more 

simplified model, based on variation of the Ivanov-Ivanova model potential 

[119,124,132,134] parameter to provide the gauge-noninvariant contribution 

minimization.     

In this chapter for the first time we present the full consistent realization 

of the Glushkov-Ivanov approach within our version of the RMBPT with the op-

timized Dirac-Kohn-Sham (3.DKS) zeroth approximation and apply it to com-

puting the levels energies, oscillator strengths of a number of the radiative tran-

sitions, hyperfine structure parameters for the Li-like multicharged ions. The 

method used is designed for calculations of multi-electron atomic systems with 

accounting for  the relativistic, correlation, nuclear, radiative effects. All correla-

tion corrections of the second order and dominated classes of the higher orders 

diagrams (3.electrons screening, mass operator iterations etc.) have been taken 

into account [93-102]. The magnetic inter-electron interaction is accounted for 

in the lowest order on 2 parameter. The Lamb shift polarization part is taken 

into account in the modified Uehling-Serber approximation. The Lamb shift 

self-energy part is accounted for effectively within the generalized Ivanov-

Ivanova non-perturbative procedure [121,122]. Comparisons of our results with 

other comparable calculations and with the experimental results will also be giv-

en and discussed. 

There have been sufficiently many reports of theoretical and experimental stud-

ies of energies and oscillator strengths for the Li-like ions and other alkali-like 

ions (3.see, for example, [29–63]). Aglitskii et al  [121] experimentally observed 

the Lα wavelengths of Li-like ions (3.Z = 19–26) in laser-produced plasmas. 

Theoretical approach to studying the spectroscopic characteristics of the heavy 

multicharged ions (3.Li-like ions) within the RMBPT with the model potential 

zeroth approximation is developed by Ivanov-Ivanova [119-125]. Banglin Deng 
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et al [52] presented the calculated wavelengths, oscillator strengths, transition 

probabilities, and line strengths for Li-like ions (3.Z = 7–30) in the framework 

of the relativistic configuration-interaction formalism using MCDF wave func-

tions and considering the Breit interaction, QED and nuclear mass corrections. 

A critical evaluation and compilation of the spectroscopic parameters for Li-like 

ions (3.Z=3-28) was undertaken by Martin and Wiese [153-156]. Bièmont [30] 

applied fully variational nonrelativistic HF wave functions in computing 1s2n2L 

(3.n<8=s,p,d,f; 3<Z<22) Li-like states].  

Chen Chao and Wang Zhi-Wen [48] applied a full core plus correlation 

method with using multiconfiguration interaction wave functions to computing 

the nonrelativistic values of the oscillator strengths for a number of transitions 

into the Rydbers states along the LiI isoelectronic sequence. The Hylleraas-type 

variational method and the 1/Z expansion method have been used also to obtain 

the non-relativistic calculations data on the energies and oscillator strengths of 

1s22s,1s22p for Li-like systems up to Z = 50 [41-51].  Fully relativistic compu-

ting the wavelengths and oscillator strengths from excitation of Li-like ions (3.Z 

= 8–92) have been given by Zhang et al. [53]. Nahar [54] applied the Breit–Pauli 

R-matrix method to calculations of the wavelengths, transition probabilities, and 

oscillator strengths for a number of the Li-like ions with the nuclear charge Z=6-

68. The relativistic quantum defect method has been used by Martin et al [55] to 

calculate the oscillator strengths for a number of radiative transitions between 

low-lying states in the Li-like ions for Z < 45. The energy levels and hyperfine 

constants of neutral lithium were studied by Lindgren[9] within a nonrelativistic 

coupled-cluster method, by Guan-Wang [47] within the effective operator form 

of MBPT  etc. Relativistic all-order MBPT calculations of energies and matrix 

elements for Li and Be+ were reported in Ref. [44]. Wu Xiao-Li et al [50] have 

performed the relativistic MBPT calculation for lithium-like isoelectronic se-

quence (3.Z=3−9) within the DF method with using the finite basis sets of the 

Dirac–Fock equations, constructed by B splines. Consistent QED treatment of 

the levels energies, fine structure etc is presented by the Notre-Dame and St. Pe-

tersburg groups [37,111,112, 115]. Despite a great number of fulfilled works on 

the lithium and Li-like ions, at the present time the systematic studies of the 

wavelengths, radiative rates, oscillator strengths, hyperfine parameters for the 
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Li-like multicharged ions are still needed for the multiple applications, future 

experiments etc.   

 

3.2. Relativistic many-body perturbation theory with the Dirac-Kohn-Sham 

zeroth approximation 

 

3. 2.1. The Dirac-Kohn-Sham zeroth approximation and nuclear potential.   

 

The theoretical basis of the RMBPT with the Dirac-Kohn-Sham zeroth ap-

proximation was widely discussed [26,27,93-102], and here we will only present 

the essential features. We will focus on more detailed presentation of the proce-

dure for construction of an optimal quasiparticle representation within our ver-

sion of the RMBPT. The electron wave functions (3.the PT zeroth basis) in our 

method are naturally found from solution of the relativistic Dirac equation with 

potential, which includes ab initio mean-field DKS potential, electric, polariza-

tion potentials of a nucleus. The charge distribution in the Li-like ion is mod-

elled within the Gauss model, though the alternative nuclear models such as the 

Fermi one, or the independent particle model with the Woods-Saxon and spin-

orbit potentials, and relativistic mean-field theory were earlier used too.  

 We set the charge distribution in the Li-like ion nucleus (3.r) by the 

Gaussian function:  

 

                                        ( ) ( ) ( )223 exp4 rRr −=                           (3.1) 

 

where =4/R2 and R is the effective nucleus radius. The Coulomb potential for 

the spherically symmetric density (3. r ) is: 
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In order to determine the nuclear potential we apply the known method of dif-

ferential equations by Ivanova-Ivanov [119,122]. Calculation of potential (3.2) 

reduces to solving the following system of differential equations: 
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with the corresponding boundary conditions.  

The corresponding derivative of potential on the nuclear radius is as follows:          

 

       ( ) ( ) ( ) ( ) ( ) 

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The derivative of the physical characteristics, corresponding to potential ( )RrW , 

on the nuclear radius is represented by the matrix element:  

 

             
( ) ( ) ( )  ( ) RRrWrGrFrdrRRW
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0

222

            (3.5) 

 

As a rule, the nuclear finite size correction is not correctly taken into account 

within the perturbation theory as a matrix element of two potentials difference. 

It is well known that the functions of a state for two nuclear potentials differ 

significantly in the important region. Calculation of the potentials, their deriva-

tives, matrix elements is reduced to solving the single system (3.in fact 1D pro-

cedure) of differential equations [28,29,119,135]. For example, in order to cal-

culate the potentials W (3.r|R) and W(3.r|R)/R the following system of differ-

ential equations should be solved:  

 

dW(3.r|R)/dr=P(3.r|R)dW(3.r)/ dr , 

 

dP (3.r|R)=r2(3.r|R) , 

 

d[W(3.r|R)/R ]/dr=S(3.r|R)dW(3. r)/dr , 

 

                                    dS(3.r|R)/dr=r2[(3.r|R)/R ]                          (3.6) 
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with known analytical functions W(3.r),  (3.r|R). The boundary values at  r → 

0 are found by expansion to a set on r.   

Further consider the DF type equations for a three-electron system 1s2nlj. As 

usually, the differential equations for the radial functions F and G 

(3.components of the Dirac spinor) are as follows: : 

 

                                   ( ) ( )1 0,
F F

m V G
r r

 


+ + − + − =


 

                                   ( ) ( )1 0,
G G

m V F
r r

 


+ − + − − =


                            (3.7)                                                                                                               

 

where F, G are the large and small components respectively; the fine structure 

constant =1;  is the quantum moment number.  

At large , the functions F and G vary rapidly at the origin; we have:  

 

                                               ( ) ( ) 1, ,  F r G r r −                                        (3.8a) 

 

                                                  
2 2 2z  = −                                              (3.8b) 

 

This creates difficulties in numerical integration of the equations in the region 

r → 0. To prevent the integration step from becoming too small it is usually con-

venient to turn to new functions isolating the main power dependence: 1
f Fr

−
= , 

1
g Gr

−
= . The Dirac equations for F and G components are transformed as fol-

lows (3.in the Coulomb units): 

 

                              ' ( | |) / ( 2 / ) ,nf f r ZVg ZE Z g    = − + − − +                (3.9a) 

 

                                   ' ( | |) / .ng g r ZVf ZE f   = − − +                             (3.9b) 

 

Here En is one-electron energy without the rest energy. The boundary values 

are defined by the first terms of the Taylor expansion: 

 



101 
 

                  ( )( ) ( )0 2 1 ; 1ng V E r Z f  = − + =  at  0  ,          

 

                                 ( )( )2 20 2 ; 1nf V E Z Z g  = − − =  at  0  .           (3.9b) 

 

The condition f, g→0 at r→  determines the quantified energies of the state  

En.  

Formally a potential V(3.r|R) in Eqs. (3.8) includes electric and polarization po-

tentials of the nucleus, VX is the exchange inter-electron interaction (3.in the ze-

roth approximation). The standard Kohn-Sham (3.KS) exchange potential is 

[13]:     

 

                                                 2 1/3( ) (1/ )[3 ( )] .KS

XV r r  = −                             (3.10) 

 

In the local density approximation the relativistic potential is [33]: 

 

                                                   
[ ( )]

[ ( ), ] ,
( )

X

X

E r
V r r

r

 



=                                 (3.11) 

 

where [ ( )]XE r is the exchange energy of the multielectron system corresponding 

to the homogeneous density ( )r , which is obtained from a Hamiltonian having a 

transverse vector potential describing the photons. In this theory the exchange 

potential is [33]: 

 

                                  
2 1/2

2 1/2

3 [ ( 1) ] 1
[ ( ), ] ( ) { ln },

2 2( 1)

KS

X XV r r V r
 


 

+ +
=  −

+
             (3.12) 

 

where 2 1/3[3 ( )] /r c  = , c is the velocity of light. The corresponding one-

quasiparticle correlation potential  

 

                                 1/3[ ( ), ] 0.0333 ln[1 18.3768 ( ) ]CV r r b r = −   +  ,              (3.13) 

 

(3.here  b is the optimization parameter; see below).  

The  perturbation operator contains the relativistic potential of the interelectron 

interaction of the form:  
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                                           ( )
( , ) exp( )

i jrel

e e i j ij ij

ij

1 α α
V r r i r

r
−

−
= ,                         (3.14)  

 

(3.here i ,j are the Dirac matrices, ij is the transition frequency) with the sub-

sequent subtraction of the exchange and correlation potentials. The rest of the 

exchange and correlation effects will be taken into account in the first two or-

ders of the PT [93-102].   

 

 

3.2.2. QED corrections. 

 

 

 A procedure of taking into account the radiative QED corrections is in de-

tails given in the refs. [11,14,20-22]. Regarding the vacuum polarization effect 

let us note that this effect is usually taken into consideration in the first PT theo-

ry order by means of the Uehling-Serber potential. This potential is usually writ-

ten as follows: 

 

( ) ( )( ) ( )



−

−
+−




−=



1
2

2
2 ,

3

21
2112exp

3

2
gC

rt

t
tZrtdt

r
rU                 

(3.15) 

 

where g=r/(3.Z). In our calculation we use more exact approach [93]. The 

Uehling-Serber potential, determined as a quadrature (3.6), may be approximat-

ed with high precision by a simple analytical function. The use of new approxi-

mation of the Uehling-Serber potential permits one to decrease the calculation 

errors for this term down to 0.5 – 1%. A method for calculation of the self-

energy part of the Lamb shift is based on an idea by Ivanov-Ivanova  [119,121]). 

In an atomic system the radiative shift and the relativistic part of energy are, in 

principle, defined by one and the same physical field. It may be supposed that 

there exists some universal function that connects the self -energy correction and 

the relativistic energy. The self-energy correction for the states of a hydrogen-

like ion was presented by Mohr [109]: 
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( ) ( )nljZHF
n

Z
nljZHESE ,027148.0,

3

4

=                    (3.16a) 

 

These results are modified here for the states 1s2 nlj of Li-like ions. It is sup-

posed that for any ion with nlj electron over the core of closed shells the sought 

value may be presented in the form [121]: 

 

( ) ( ) ( )1

3

4

,027148.0, −


= cmnljf
n

nljZESE                     (3.16b) 

 

The parameter =(3.ER)1/4, ER is the relativistic part of the bounding energy of 

the outer electron; the universal function ( )nljf ,  does not depend on the compo-

sition of the closed shells and the actual potential of the nucleus. The procedure 

of generalization for a case of Li-like ions with a finite nucleus consists of the 

following steps: i). calculation of the values ER and   for the states nlj of H-like 

ions with the point nucleus (3.in accordance with the Sommerfeld formula); ii). 

construction of an approximating function ( )nljf ,  by the found reference Z and 

the appropriate ( )nljZHF , ;  

iii). calculation of ER and   for the states nlj of Li-like ions  with a finite nucle-

us; iv). calculation of 
SEE

 for the sought states by the formula (3.43).  The ener-

gies of the states of Li-like ions were calculated twice: with a conventional con-

stant of the fine structure =1/137.03597 and with .1000~ = The results of latter 

calculations were considered as non-relativistic. This permitted isolation of ER 

and  . A detailed evaluation of their accuracy may be made only after a com-

plete calculation of ( )nljZLiEn
SE

, . It may be stated that the above extrapolation 

method is more justified than using the widely spread expansions by the parame-

ter Z.  

 

3.3. Construction of the optimal one-quasi-electron representation 

 

In Ref. [127,128] it has been proposed “ab initio” optimization principle 

for construction of the optimal relativistic orbital basis set. The minimization 

condition of the gauge dependent multielectron contribution of the lowest QED 
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PT corrections to the radiation widths of the atomic levels is used. The details of 

procedure can be found in Ref. [126-134].  

As in Ref. [127, 134], let us examine the multi-electron atomic ion with 

one quasiparticle in the first excited state, connected with the ground state by the 

electric dipole radiation transition. In the QED PT zeroth order we use the one-

electron bare potential VN(3.r)+VX(3.r)+ VC(3.r). As usual, the perturbation oper-

ator is as follows: 

                                               ( ) ( ) ( )XcV r J x A x

− −                           (3.17) 

 

где    A — vector-potential of the electromagnetic field,  J — current operator.  

Figure 1a presents a single B diagram of the second order PT, which contributes 

to the imaginary part of the energy shift (3.or the radiation width of the atomic 

level) ImE. In the fourth order of QED PT, the sought diagrams are   Ad  

(3.direct polarization diagram, Fig. 1b)  и   Aex  (3.exchange polarization dia-

gram, Fig. 1c), describing the effect of polarization of closed electronic shells.  

Further, using the standard S-matrix technique, the contributions to the value 

ImE, corresponding to the various diagrams in Fig. 2.2, are calculated. The 

electron propagator is presented in a standard form.   

. We recall that each electronic line of the diagram is associated with an 

electron propagator: 

 

     
1 2 12 1 2 1 2

1 2 12 1 2 1 2

( , ) exp( ) ( ) ( ),

( , ) exp( ) ( ) ( ),

s s s

s f

s s s

s f

G X X i t r r t t

G X X i t r r t t

  

  

+



+



= − − 

= − 




         (3.18) 

 

The operator 
s + corresponds to the terminal electronic line entering the diagram 

and 
s  - outgoing line; ( )...

n f
m f




  denotes summation over all electronic states 

above (3.below) the Fermi level of electrons in the core, including the upper 

continuum. Each dotted line corresponds to the expression:   D 
. The form 

of a photon propagator D , naturally, is determined by its gauge. For the com-

monly used Coulomb gauge: 
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                                     ( ) +−


−=  1212

12

2
ritiexpd

r

1

8

1
D

           (3.19a) 

 

After integrating by times the dashed line corresponds to the "operator" of the 

interelectron interaction: 

 

                                                   ( )( )2112

2

1exp
1

4



−ri

r

e                         (3.19b) 

 

According to  [127], contribution to ImE of В diagram is represented as fol-

lows: 

 

 

                                      ( ) ( )1 1Im ImE B E s B  = −                           (3.20) 

 

Expression (3.20) is the sum of the partial contributions of the transitions from 

the initial state |  > to the final state | s> (3.the levels  and s are connected by 

an electrically dipole radiative transition). In general, the calibration of the pho-

ton propagator can be written in the following standard form: 

 

                                                           
LT DCDD +=                                    (3.21a) 

 

                                                          ,
22

0 kk
DT

−


=

                         (3.21b) 

 

                                                           ,
22

0 kk

kk
DL

−
=

                                    (3.21c) 

 

where DT  represents the electron exchange by transverse photons, DL — by lon-

gitudinal photons, and C is the gauge constant. 

The contribution of the second-order diagram to the partial radiation width of 

the level  is equal under condition  D=DT   (3.see Refs.[127,128]): 
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                           )()()()()(
8

12212121

2

rrrrDrrdrdr
e

sTs 



++

−       (3.22a) 

 

Similarly, for D=DL the contribution of the second-order diagram to the partial 

radiation width of the level  is equal to:  

 

                        )()()()()(
8

12212121

2

rrrrDrrdrdr
e

sLs 



++

−            (3.22b) 

 

where     

                                         
1 2 1 2 12 12( ) (1 )sin /T sD rr r r  = −                       (3.22c)      

    

 

                                      
1 2 1 12 2 12 12

1 12 2 12 12

( ) [1 ( )( )]sin

[1 ( )( )]cos

L s

s s

D rr n n r

n n r



 

  

   

= − +

+ +

                   (3.22d) 

 

 

It should be recalled that, in view of Grant's well-known theorem, if electronic  

wave functions of the atom , s satisfy the same Dirac equation, then the 

contribution D,, is equal to 0.  

Further one may treat the lowest order multi-electron effects, in particular, 

the gauge dependent radiative contribution for a certain class of the photon 

propagator calibration. The contribution of the QED PT fourth order diagrams A  

(3.Fig.1b,1c)  into the ImE  accounts for the  exchange-polarization   effects. In 

fact it describes the collective effects and is dependent upon the electromagnetic 

potentials gauge (3.the gauge non-invariant contribution). This value is consid-

ered to the typical electron correlation effect, whose minimization is a reasona-

ble criterion in searching the optimal one-electron basis of PT. All the gauge 

non-invariant terms are multi-electron by their nature (3.the particular case of 

the gauge non-invariance manifestation is the non-coincidence of the oscillator 

strengths values, obtained in the approximate calculations with the "length" and 

"velocity" transition operator forms). Quite complicated calculation of contribu-

tion of the QED PT fourth order polarization diagrams into Im E gives the fol-

lowing result [127]:  
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1 2 3 4;
1 1

m (I )
n

n

f mn s m

n

n

v

s
m f

iE s b C drdrdr dr
    

 



 
+ − = − 

+ − 
      

( ) ( ) ( ) ( ) 4
1 2

1

1 2 4 3 3 4  3 34  4 34 1

2

 
1

{ ( /[ ) ]m s nr r r
r

r n n r      



+ + + + −

 −   

( ) ( )12 34 12 34 3 34 4 34[ ] [ 1]( )}n n nsin r r cos r r n n       + ++ +   

 

                               ( ) ( ) ( ) ( )3 4 2 1 .m n sr r r r                                   (3.23) 

 

Here, f is the boundary of the closed shells; n  f indicates the unoccupied bound 

and the upper continuum electron states;  m  f indicates the finite number of 

states in the  core  and  the states of the negative  continuum  (3.accounting  for  

the  electron vacuum  polarization).  The expression (3.23) can be represented in 

the form of terms:                                      

 

 

                                
1 2| | | | /( )mn s

n f
m f

m W ns sn W m    



                  (3.24) 

 

with four different combinations of operators 
1W  and 

2W  (3.see details in Refs. 

[127-129]). The sum over n can be calculated by the method of differential 

equations. The index m numbers a finite number of states occupied in the core 

and the state of the real continuum. The continuum-related part describes the 

vacuum polarization of the electron field and leads to divergent integrals in the 

non-renormalizable theory. Its contribution to the main contribution has an addi-

tional order of smallness (3.Z2). 

The minimization of the density functional ImE leads to the integral dif-

ferential equation for the c, that can be numerically solved. This step allows to 

determine the   optimization parameter b. In Ref. [127] the authors elaborated a 

simplified computational procedure.  Here for the first time we present the full 

consistent realization of the optimization approach within our version of the 

RMBPT. The procedure of minimization of the functional ImEninv  is fulfilled 

under the condition: 
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                                                      ( ) 12 = rrdr c                                     (3.25) 

 

and is reduced  to a chain of the following variations:  

 

              , , , ,c c s sV f f g g X    → → →   

                                      

                                      
i iY Y Z I E    → → → → .                          (3.26) 

 

Here f and g are the large and small components of the Dirac function 

( )s r which are  solutions of the relativistic DKS equation with potential  

 

VN(r) + VC(r) + VX(r) +Vcor(r) . 

 

The first link of the chain of variations is realized with the is performed help of: 

 

                                ( ) ( )


+=
00

21
rrrdrrrd

r
V c

r

cC
                      (3.27a) 

or 

            

( ) ( ) ( ) ( )

( )

2 1/2
2 2/3

1 2 1/2

0

2 1/2
1/3 2/3

2 2 1/2

1 3 [ ( 1) ] 1
( ) { ln } /

2 ( 1) 2

3 [ ( 1) ] 1
... { ln } / [(1 18.3768 ( ) ) ( )] ...,

2 ( 1) 2

r

C c c cc

r

c c c

V r dr r r dr r r X r r
r

X r r r

 
    

 

 
  

 


+ +

     = + + − +
+

+ +
+ + − +  +

+

 

                                                               (3.27b) 

Here X1 and X2 - numerical coefficients. On the next stage we calculate  a first-

order correction by VC for the functions f, fs, g, gs - solutions of the DKS 

equation with the total one-particle potential, which is actually a bispinor of the 

form [13]:  

 

                                     −= 

in
imiiniiiimiin

mnVmnΨmΦ )/(||         (3.28) 
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where  (3.nm) – quantum numbers of one-electron states,   - energy parameter.  

The corresponding components of the bispinor (3.28) satisfy the Dirac type sys-

tem of equations by Glushkov-Ivanov-Ivanova [127] with more complicated 

view, namely:  

 

                         ,/)1(/'
iinCi gVGAZrFZF − =+++−                 

(3.29a)  

 

                          '/ (1 ) / ,
i ii C nG Z G Zr A F V f    ++ − + =                      

(3.29b)                                                                                                                        

         

where functions А are defined by expressions:   

      

 

                                         −=
2)/(1)( ZrVA C .                              (3.30) 

 

Solutions of system (3.29) are represented in the form of quadratures and con-

tain pairs of the fundamental solutions (3.29) without right-hand sides.   

The functions X and Y (3.26) are bilinear combinations of radial functions: 

 

                             ,t t u u

α s α s α s α s{X,Y} {f f r ;g g r ; f g r ;g f r }=                 (3.31) 

 

and their variations are calculated elementary. The contribution (3.24) is deter-

mined by the sum of radial integrals of the type: 

 

 

                            = )()()()()( 3231321321 rrMrrLrZrYrXdrdrdrI          (3.32a) 

where  

                                                         (1) p

1 1 λ{L ,M } Z r ,=                                     (3.32b) 

 

                                                         (2) q

2 2 λ{L ,M } Z r ,=                                     (3.32c) 
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                                                         1/3( ) ( ) v

CZ r r r= ,                                     (3.32d) 

 

Here (1)

λZ , (2)

λZ  are the reduced Bessel functions,  =0,1;  p,q,t,u,v are   some inte-

gers;   

The complete expression for E contains a set of radial integrals of the 

type (3.32a) with rather cumbersome angular coefficients containing 6-j Wigner 

symbols (3.Racah W-coefficients) and 9-j symbols of Fano. The calculation of 

the functions Z and Y and their variations is reduced to a numerical solution of 

the system of differential equations, for which the standard Runge-Kutta numer-

ical procedure of the fourth order (the 'Superatom-ISAN' computational code) is 

used.   

So, the implementation of the minimization principle results in a system 

of integral differential equations, and its solution gives the optimal one-

quasiparticle representation. The system is rather cumbersome and is solved 

with the help of our computational code. 

 

3.4. Relativistic energy approach to computing oscillator strengths for 

multicharged ions.  

 

 

Here we briefly present the key elements of the relativistic energy approach to 

computing radiation widths and oscillator strengths for atomic systems. Let us 

remind that an initial  general energy formalism combined with an empirical 

model potential method in a theory of atoms and  multicharged ions has been 

developed by Ivanov-Ivanova et al [119-125],  further more general ab initio 

gauge-invariant  relativistic approach has been presented in [127,128].  We use 

the optimized version of this formalism with our construction of one-

quasiparticle representation.  In the energy approach [124-126] the imaginary 

part of electron energy shift of an atom is  connected with the radiation decay 

possibility (3.transition  probability). An approach, based on the Gell-Mann and 

Low formula with the QED scattering matrix, is used in treatment of the relativ-

istic atom. The total energy shift of the state is usually presented in the form: 

 

                                                 Re i / 2E E = +                                  (3.33) 
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where  is interpreted as the level width, and the decay probability  

 

P = . 

 

For the -s radiation transition the imaginary part of electron energy in the low-

est order of perturbation theory is determined as [124]:  

 

                                               
| |

[ ]

1
Im

4
n

n n

n f
n f

E V 

 





  

 

= −  ,                            (3.34) 

 

where n is a frequency of the -n radiation, (3.>n>f)  for electron and 

(3.<n<f)   

for vacancy.  

The matrix element V is determined as follows: 

 

                                          

                  
 −= )()1(

sin
)( 121

12

12
221 r)Ψ(rΨ

r

r
r)Ψ(rΨdrdrV *

l2
*
k

*
j1

*
iijkl




       (3.35)   

 

The separated terms of the sum in (3.34) represent the contributions of different 

channels and a probability of the dipole transition is:  

 

                                                           
| |1

.
4

n

n n nV 
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

 =                                      (3.36) 

 

 

The corresponding oscillator strength: gf=2n/6.671015, where g is the degen-

eracy degree,   is a wavelength in angstroms (3.Ǻ). When calculating the ma-

trix elements in (3.13) one should use the angle symmetry and write the expan-

sion for potentials sinr12/r12  in spherical functions as follows [119,120]:                                      

 

                              
( ) ( ) ( ) ( )



=
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
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r

            (3.37) 
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where J  is the Bessel function of first kind and (3.)= 2 + 1. This expansion is 

corresponding to usual multipole one for probability of radiative decay. Substi-

tution of the expansion (3.37) to matrix element of interaction gives as follows:  

 

    ( )( )( )( )  ( ) +








−
−=










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where ji is the total single electron momentums, mi – the projections; QQul is the  

Coulomb part of interaction, QBr - the Breit part. Their detailed definitions are 

presented in Refs. [119-127,134].  

 

3.5. Results and Conclusions 

 

 

Here we present the results of computing the energies (3.wavelengths) and 

oscillator strengths for some transitions in spectra of the Li-like ions (3.Z=21-

30). There are considered radiative transitions from ground state to the low-

excited states 2s1/2 – np1/2,3/2, np1/2,3/2-nd3/2,5/2.  In table 1 we list our computation-

al results on the wavelengths and oscillator strengths gf (3.upper number in the 

line “Our work”: data, obtained without using the optimized basis set and ac-

counting for the exchange-polarization corrections; lower number in the line 

“Our work” – with using the optimized basis set and accounting for the ex-

change-polarization corrections) for 1s22s (3.2S1/2) → 1s23p (3.2P1/2) transitions 

in the Li-like ions with Z=21-30.  

In Table 1 the  data on the wavelengths, oscillator strengths, calculated by  Ban-

glin Deng et al [52] (3.in the framework of the relativistic configuration-

interaction formalism using multiconfiguration DF wave functions and consider-

ing the Breit interaction, QED and nuclear mass corrections),  Zhang et al (3.the 

Dirac-Fock-Slater method and disturbed wave approximation), Martin et al 

(3.the relativistic quantum defect method),Nahar (3.ab initio calculations includ-

ing relativistic effects employing the Breit-Pauli R-matrix method) and the NIST 

data [52-55,153-156] are listed too.   
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Table 1. The calculated  wavelengths, oscillator strengths for 1s22s (3.2S1/2) → 

1s23p (3.2P1/2) transitions in the Li-like ions with Z=21-30; V/L is the  ratios of 

the velocity and length gauges values by Banglin Deng et al [52]; Ninv (3.in %) 

is the  gauge non-invariant contribution (3.this work); 

Z Ref. Wavelength 

(3.A) 

Oscillator 

strength  

(3.gf, 10-1) 

V/L; 

Ninv (3.%) 

21 Banglin Deng et 

al 

16.862 1.2392 V/L=0.117 

 NIST 16.861 1.2404  

 Zhang et al 16.856 1.250  

 Martin et al - 1.24  

 This work 16.860 1.2835 

1.2401 

Ninv=0.10 

22 Banglin Deng et 

al 

15.254 1.2484 V/L=0.128 

 NIST 15.253 1.2489  

 Zhang et al 15.249 1.259  

 Nahar 15.3 1.281  

 Martin et al  1.24  

 This work 15.252 1.2967 

1.2492 

Ninv=0.11 

24 Banglin Deng et 

al 

12.655 1.2644 V/L=0.149 

 NIST 12.665 1.2678  

 Zhang et al 12.647 1.275  

 Nahar 12.7 1.302  

 Martin et al  1.26  

 This work 12.654 1.3140 

1.2652 

Ninv=0.12 

26 Banglin Deng et 

al 

10.664 1.2777 V/L=0.17 

 NIST 10.663 -  

 Zhang et al 10.658 1.288  
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 Martin et al  1.27  

 This work 10.663 1.3282 

1.2796 

Ninv=0.12 

28 Banglin Deng et 

al 

9.104 1.2889 V/L=0.19 

 NIST 9.105 -  

 Zhang et al 9.099 1.299  

 Nahar 9.1 1.339  

 Martin et al  1.28  

 This work 9.103 1.3396 

1.2902 

Ninv=0.14 

30 Banglin Deng et 

al 

7.859 1.2983 V/L=0.21 

 Zhang et al 7.854 1.309  

 Martin et al  1.29  

  This work 7.858 1.3492 

1.2998 

Ninv=0.15 

 

The data by Banglin Deng et al [112] are obtained  in the length gauge, and the  

ratios (3.V/L; in %) of the velocity and length gauges data to  check the accura-

cy of  calculations are listed.  We also present our values of the gauge non-

invariant contribution (3.Ninv; in %).  Comparison of the presented data shows 

that the agreement between the theoretical data and experimental results is more 

or less satisfactory. One could conclude that the approach presented (3.with us-

ing the optimized relativistic PT) can provide sufficiently high accuracy and 

physically reasonable description of the corresponding wavelengths and oscilla-

tor strengths. The fundamental reason for physically reasonable agreement be-

tween theory and experiment is connected with the correct taking the exchange-

polarization effects into account and using the optimized basis set.  

Otherwise, the results, for example, on the oscillator strengths turn out to 

be worse. It should be noted that an estimate of the gauge-non-invariant contri-

butions (3.the difference between the oscillator strengths values calculated with 

using the transition operator in the form of “length” and “velocity”) is about 

0.15%, i.e., the results for oscillator strengths obtained with using different pho-
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ton propagator gauges (3.Coulomb, Babushkin, Landau) are practically equal. 

This is the evidence of a successful choice of the one-quasiparticle representa-

tion. Some difference between the results in Table 1 is also explained by using 

the different schemes of taking into consideration the correlation and radiative 

effects. 

To conclude, let us underline that the important feature of our approach is 

using the optimized one-particle representation and accurate accounting for the 

complex exchange-polarization effects. We believe that the presented consistent 

approach to construction of the optimal one-quasiparticle representation within  

the relativistic many-body PT in the theory of multielectron atomic systems can 

be used with a great efficiency in modern relativistic quantum chemistry, in par-

ticular, in calculations of the spectroscopic characteristics of complex molecular 

systems.  
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CHAPTER 4. ADVANCED QUANTUM APPROACH IN RADIATIVE  

AND COLLISIONAL SPECTROSCOPY OF MULTICHARGED IONS  

4.1 Introduction 

In this chapter an advanced relativistic quantum approach to computing the 

important radiative and collisional characteristics of multicharged ions in the 

Debye plasmas is presented. The approach is based on the relativistic energy 

formalism (4.the Gell-Mann and Low formalism) and relativistic many-body 

perturbation theory (4.PT) with the Dirac-Debye shielding model Hamiltonian 

for electron-nuclear and electron-electron systems. The optimized one-electron 

representation in the PT zeroth approximation is constructed by means of the 

correct treating the gauge dependent multielectron contribution of the lowest PT 

corrections to the radiation widths of atomic levels. The computational results 

for the oscillator strengths and energy shifts due to the plasma's environment ef-

fect, the effective collision strengths for the Be- and Ne-like ions of Fe, Zn and 

Kr embedded to different types of plasmas environment (4.with temperature 

0.02-2 keV and electron density 1016-1024 cm-3) are presented and analyzed. 

The properties of laboratory, thermonuclear (4.tokamak), laser-produced, 

astrophysical plasmas have drawn considerable attention over the last decades 

[1-5]. It is known that multicharged ions play an important role in the diagnos-

tics of a wide variety of plasmas [1-23].  

Electron-ion collisions involving multiply charged ions, as well as various 

radiation and radiation-collisional processes, predetermine the quantitative char-

acteristics of the energy balance of the plasmas [1-4,13-20]. For this reason, the 

plasmas modelers and diagnosticians require absolute cross sections for these 

processes. The cross sections for electron-impact excitation of ions are needed to 

interpret spectroscopic measurements and for simulations of plasmas using col-

lisional-radiative models. Above other important factors to studying electron-

collisional spectroscopy of ions one should mention the known X-ray laser prob-

lem.  

It has stimulated a great number of papers, devoted to modelling the ele-

mentary processes in laser, collisionally pumped plasmas and construction of the 

first VUV and X-ray lasers with using plasmas of Li-, Ne-like ions as an active 
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medium. Very useful data on the X-lasers problem are collected in the papers by 

Ivanova et al (4.see [3,4] and Refs. therein). 

Such well-known atomic methods as the multi-configuration Dirac–Fock, 

R-, T-matrix, relativistic distorted-wave methods, coupled-cluster theories, and 

more simplified approaches such as the quantum defect and Coulomb approxi-

mations, pseudo- and model potential methods, the classical and quasiclassical 

models and others have been intensively applied to problems considered. At pre-

sent time a considerable interest has been encapsulated to studying elementary 

atomic processes in plasmas environments because of the plasmas screening ef-

fect on the plasmas-embedded atomic systems. In many papers the calculations 

of various atomic and ionic systems embedded in the Debye plasmas have been 

performed [13-20, 29-33]; it is well-known that the Debye model is justified on-

ly in the limit of high temperature and low density. However, a development of 

the advanced computational quantum methods and models for the further accu-

rate computing oscillator strengths, electron-collisional strengths and cross-

sections for the atomic ions in plasmas, including the Debye plasmas, remained 

a very actual and difficult problem (4.for example, see [1-42] and Refs. therein) 

. To say strictly, solving of the whole problem requires a development of the 

quantum-electrodynamical approach as the most consistent one to problem of 

the Coulomb many-body system. 

In Refs. [39-42] the fundamentals of an advanced quantum approach to 

studying spectroscopic characteristics of the multicharged ions in the Debye 

plasmas, in particular, computing the electron-ion collision strengths, cross-

sections etc have been presented. The approach is based on the relativistic ener-

gy formalism (4.the Gell-Mann and Low formalism) and relativistic many-body 

perturbation theory (4.PT) with the Debye shielding model Hamiltonian for 

electron-nuclear and electron-electron systems. It is worth to underline that our 

method of the relativistic many-body PT formalism is constructed on the base of 

the same ideas as the well-known PT approach with the model potential zeroth 

approximation by Ivanov-Ivanova et al [43-51]. However there are a few fun-

damental differences. For example, in our case the PT zeroth approximation 

[39,40] is in fact the Dirac-Debye-Hückel one. The optimized one-electron rep-

resentation in the PT zeroth approximation is constructed by means of the cor-

rect treating the gauge dependent multielectron contribution of the lowest PT 
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corrections to the radiation widths of atomic levels [51,52]. In order to calculate 

the radiative and collisional parameters an effective gauge-invariant version of 

relativistic energy approach is used [51-54].  

It is important to note that a model relativistic energy approach in a case of 

a multielectron atom has been developed by Ivanov-Ivanova et al [43-50]. A 

generalized gauge-invariant version of relativistic energy approach in a case of 

the multielectron atomic systems has been developed by Glushkov-Ivanov-

Ivanova (4.see Refs. [51-56]).  

Earlier it has been successfully applied to solve many actual problems of 

modern atomic, nuclear and even molecular optics and spectroscopy etc (4.see 

[57-93] and Refs. therein). The computation results on the oscillator strengths 

and energy shifts due to the plasmas environment effect, the electron-collision 

strengths, collisional excitation and de-excitation rates for the Be- and Ne-like 

ions of argon and nickel for the plasmas environment with the temperature 0.02-

2 keV and the electron density ne= 1016-1024 cm-3 are listed in Refs. [39,41]. In 

this paper, we briefly describe the key points of our approach, focus on some 

subtle details not previously described, and present new results on the oscillator 

strengths, energy shifts, effective collision forces for Be- and Ne-like Fe, Kr, 

and Zn ions  in a plasmas environment with the temperature 0.02-2 keV and 

ne=1022-1024 cm-3. 

4.2 Radiative and collisional spectroscopy of multicharged ions:  Relativistic 

many-body perturbation theory and relativistic energy approach  

4.2.1 Relativistic many-body perturbation theory with Dirac-Debye shielding 

model zeroth approximation 

 In order to calculate different characteristics such as oscillator strengths 

and energy shifts due to the plasmas environment effect, the electron-collision 

strengths, collisional excitation and de-excitation rates etc we use an advanced 

generalized relativistic energy approach combined with the relativistic many-

body PT with the the Dirac- Debye zeroth approximation.  
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 In the theory of non-relativistic atom a convenient field procedure is known 

for calculating the energy shifts E of degenerate states. This procedure is con-

nected with the secular matrix M diagonalization [37,43-48]. In constructing M, 

the Gell-Mann and Low adiabatic formula for E is used. The secular matrix el-

ements are already complex in the PT second order (4.the first order on the in-

ter-electron interaction). The total energy shift of the state is presented in the 

form:  

 

E = ReE + i ImE, 

(4.1) 

Im E = -/2, 

 

where  is interpreted as the level width. Their imaginary parts are connected 

with the radiation decay possibility. It is important to note that the computing 

the energies and radiative transition matrix elements is reduced to calculation 

and the further diagonalization of the complex matrix M and determination of 

matrix of the coefficients with eigen state vectors IK

ivieB ,  [38, 48-51]. To calculate 

all necessary matrix elements one must use the basis set of the one-quasiparticle 

relativistic functions. Numerous calculations of the atomic elementary processes 

characteristics have shown [13-20, 29-33] that their adequate description re-

quires using the optimized wave functions and an accurate accounting for the 

exchange-correlation effects.  

 In Ref. [52] the “ab initio” optimization principle for construction of an ef-

fective one-quasiparticle representation has been proposed. The minimization of 

the gauge dependent multielectron contribution of the lowest QED PT correc-

tions to the radiation widths of atomic levels, determined by the imaginary part 

of an energy shift E, is used. In the fourth order of QED PT there are diagrams 

appearing, whose contribution into the ImE accounts for the polarization ef-

fects. This contribution describes collective effects and it is dependent upon the 

electromagnetic potentials gauge (4.the gauge non-invariant contribution Eninv). 

This value is considered to be the typical representative of the electron correla-

tion effects, whose minimization is a reasonable criterion in the searching for the 

optimal PT one-electron basis. Let us note that this topic has always been of 

fundamental importance in quantum chemistry throughout its development 
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(4.see e.g. Refs. [94-130], where some alternative approaches to optimization 

are presented).  

 The detailed formulation of the relativistic many-body PT with the Debye 

shielding model Dirac Hamiltonian for electron-nuclear and electron-electron 

systems has been earlier presented [39-42]. Here we will focus on the key 

points. The Dirac-Debye shielding model Hamiltonian for electron-nuclear and 

electron-electron subsystems can be defined as follows (4.atomic units are 

used):                                        

            
( )




−
−

+−−−=
ji

ij

ij

ji

i

ii r
r

αα1
r)rZmccpH )exp(]/exp([ 2  ,       (4.2)  

where c is the velocity of light and Z is a charge of the atomic ion nucleus, ij is 

the transition frequency; i ,j are the Dirac matrices. The plasmas environment 

effect is modelled by the shielding parameter  , which describes a shape of the 

long-range potential. The parameter  is connected with the plasmas parameters 

such as temperature T and the charge density n as follows:  

                                         Tkne B/~ 2 .                                               (4.3a) 

Here е is the electron charge and kB is the Boltzmann constant. The density n is 

given as a sum of the electron density Ne and the ion density Nk of the k-th ion 

species with the nuclear charge qk :  

 

                                                 +=
k

kke Nq Nn 2
.                                     (4.3b) 

 

It is worth to note that indeed the Debye screening for the atomic electrons in 

the Coulomb field of nuclear charge is well understood due to the presence of 

the surrounding plasma electrons with high mobility. On the other hand, the con-

tribution due to the Debye screening between electrons would be of smaller 

magnitude orders. Majority of the previous works on the spectroscopy study 

have considered the screening effect only in the electron-nucleus potential where 

the electron-electron interaction potential is truncated at its first term of the 

standard exponential expansion for its dominant contribution [13-18]. However, 
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as the authors [17,35] note, it is also important to take into account the screening 

in the electron- electron interactions for large plasma strengths to achieve more 

realistic results in the search for stability of the atomic structure in the plasma 

environment.  

It is not difficult to make some simple estimates for the shielding parameter. 

For example, under typical laser plasmas conditions of T~ 1keV and n~ 1022 cm-

3 the parameter  is of the order of 0.1 in atomic units; in the EBIT plasmas T~ 

0.05keV, n~1018 cm-3 and ~10-3. We are interested in studying the spectral pa-

rameters of ions in plasmas with the temperature T~ 0.1-1keV (4.106-107K) and 

n~1024-1026 cm-3 (4.~10-2-10-1).  

The formalism of the relativistic many-body PT is further constructed in 

the same way as the PT formalism in Refs. [43-51]. In the PT zeroth approxima-

tion one should use a mean-field potential, which includes the Yukawa-type po-

tential (4.insist of the pure Coulomb one) plus exchange Kohn-Sham potential 

and additionally the modified Lundqvist-Gunnarsson correlation potential 

(4.with the optimization parameter b) as in Refs. [52,53]. As an alternative one 

could use an optimized model potential by Ivanova-Ivanov (4.for Ne-like ions) 

[38,43], which is calibrated by means of the special ab initio procedure within 

the relativistic energy approach [52].  

The most complicated problem of the relativistic PT computing the radiative 

and collisional characteristics of the multielectron multicharged ions is an accu-

rate, precise accounting for the exchange-correlation effects (4.including polari-

zation and screening effects, a continuum pressure and other ones) as the effects 

of the PT second and higher orders . Using the standard Feynman diagram tech-

nique one should consider different kinds of diagrams, in particular, the polari-

zation and ladder ones, which describe the polarization and screening exchange-

correlation effects.  

 An effective approach to accounting for the polarization diagrams contribu-

tions is adding the effective two-quasiparticle polarizable operator into the PT 

first order matrix elements. In Ref. [47] the corresponding non-relativistic polar-

ization functional has been derived. The generalized relativistic expression has 

been derived in the Refs. [53,63] and used in our work. According to Ref. [63], 

the polarization potential (4.“direct” polarization part) is as follows: 
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(4.4)

 

where Х is the numerical coefficient, ( )(0)

c r  is the ionic core electron density. 

The corresponding expression for the “exchange” polarization potential is pre-

sented in Refs. [53,63].  

4.2.2 Relativistic energy approach in radiative and collisional spectroscopy of 

multicharged ions 

 

 The justification of the relativistic energy approach in the scattering prob-

lem is in details described in Refs. [38,42,50-54]. Below we concern the most 

principal points using the results [38,42,50,52]. Further for definiteness, let us 

consider a collisional de-excitation of, say, the Ne-like ion:  

 

                        (2jiv)
-13jie[JiMi], in)→(4.o,sc).                               (4.5) 

 

Here o is the state of the ion with the closed shells (4.ground state of the Ne-

like ion); Ji is the total angular moment of the initial target state; indices iv, ie 

are related to the initial states of a vacancy and an electron; indices in and sc are 

the incident and scattered energies, respectively to the incident and scattered 

electrons. The initial state of the system “atom plus free electron” can be written 

as 

                                           
 = ++

ieiv

ii

iviemm

MJ
mmoiviein CaaaI

,

,
,

|
                          (4.6a) 

where ii

ivie

MJ
mm

C
,
,

is the Clebsh-Gordan coefficient. The final state is as follows:  
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oscaF = +| ,                                            (4.6b) 

where o  is the state of an ion with closed electron shells (4.ground state of Ne-

like ion), |I> represents three-quasiparticle (4.3QP) state , and |F> represents the 

one-quasiparticle (4.1QP) state.  

The scattered part of energy shift Im E appears firstly in the atomic PT 

second order (4.the fourth order of the QED PT) in the form of integral over the 

scattered electron energy sc [50-52]: 

                           

                           )0(/),,,( iGd inieivscscinieivsc −−−−            (4.7a)   

                                                     ),,,( =Im scinieivGΔ E  .                       (4.7b) 

Here G is a definite squired combination of the two-electron matrix elements 

(4.2). As usually, the value  

 

                                                               =-2 ImE                                             

(4.8) 

represents the collisional cross-section if the incident electron eigen-function is 

normalized by the unit flow condition and the scattered electron eigen-function 

is normalized by the energy  function. The collisional de-excitation cross sec-

tion can further defined as follows:  

                       
  +=→

scin iviejj jj

IK

ivieiiviescinsc BJjjjjjIK
,

2

,

,

},,|,|0){12(2)0(      (4.9a) 

 The amplitude like combination in (4.9) has the following form:   

 




++
−−++= iie Jj

ivieiiviescin jjJjjjj )1()1()12)(12(,,|,|0
2/1

   

)},;;(
........

......
),;,()12/({ , scivinieQ

jj

Jjj
iniviescQJ

ivie

iscin
iJi  







++     (4.9b)   

                                                             Coul-Deb BrQ Q Q  = + ,                                   (4.9c) 
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where Coul-Deb BrQ Q +  is the sum of the Coulomb-Debye and Breit matrix elements. 

The part Coul-DebQ
 contains the Slater-like radial R and standard angular S parts as 

follows (4.for example, see details in Refs. [43,47]): 

 

                        ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

Coul-Deb 1243 1243 1243 1243

1243 1243 1243 1243 .

Q R S R S

R S R S

    

   

= + +

+ +

            (4.10) 

 

Here the tilde designates that the large radial Dirac component f  must be re-

placed by the small Dirac component g , and instead of , 1i i il l l= −  should be taken 

for 
i ij l  and 1i il l= +  for 

i ij l . The Breit part is described in details in Refs. [43-

47]. In particular, the Breit (4.magnetic) part is usually expressed as follows: 

 

 

                                                    
, 1 , , 1

Br Br Br BrQ Q Q Q      − += + +                              (4.11a) 

 

where all terms 
, 1 , , 1, ,Br Br BrQ Q Q     − +

 contains the corresponding radial R and angular S 

parts, for example: 

 

 

                             ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, { 12;43 12;43 12;43 12;43

12;43 12;43 12;43 12;43 }.

Br l l

l

l l

Q R S R S

R S R S

    

   

= + +

+ +

     (4.11b) 

 

The detailed expressions for the angular elements are presented in Refs. [39-44]. 

According to the Eq. (4.1), a probability of the radiative transition is direct-

ly connected with imaginary part of electron energy of the system (4.the Ivanov-

Ivanov’s version of the energy approach [37,38,51]), which can be defined in 

the lowest order of the PT as follows:  

 

                                                      

 


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
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Im ,                                (4.12) 
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where  −
 fn 

 for electron and  −
 fn

 for vacancy. The potential V is as follows: 

 

                      
 −= )()1(

sin
)( 121

12

12
221 r)Ψ(rΨ

r

r
r)Ψ(rΨdrdrV *

l2
*
k

*
j1

*
iijkl


      (4.13)  

 

 

The corresponding oscillator strength is defined as:   

 

                                                      152 1067.6/ =
nggf  ,                               (4.14) 

where g is the degeneracy degree,  is a wavelength in angstroms (4.Ǻ).  

The total probability of a  - pole transition is usually represented as a sum 

of the electric EP
 and magnetic MP

 parts. The electric (4.or magnetic)  - pole 

transition n →  connects two states with parities which by  (4. or  +1) units. 

In our designations                   

 

                                     ( ) ( ) ( )2 2 1 ; ,E EP n j Q n n   → = +                         (4.15a) 

  

                                              Coul-Deb

, 1 , 1.
E Br BrQ Q Q Q     − += + +                            (4.15b) 

 

In a case of the two-quasi-particle states (4.for example, in a case of the Ne-like 

ion, where the excited state can be represented as stale with the two quasiparti-

cles – electron and vacancy above the closed shells core 1s22s22p6) the corre-

sponding probability has the following form (4.say, transition: ][][j 2121 JjjJj → ):                        

 

                              ))(11|(
......
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)(])[],[|( 1

112

2121 jP
jjj

JJ
JJjjJjjP 












= ,        (4.16) 

The other details of calculational procedure can be found in Refs. [39-42].The 

modified PC code “Superatom-ISAN” (4.version-93) has been used in all calcu-

lations.  
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4.3. Results and conclusions 

Here we present the results of computing the radiative and collisional character-

istics (energy shifts, oscillator strengths, electron-ion cross-sections and colli-

sion strengths) for the Be-, Ne-like ions of Fe, Zn and Kr embedded to the plas-

mas environment.  It is worth to remind [13-20,29-39] that these multicharged 

ions play an important role in the diagnostics of a wide variety of laboratory, as-

trophysical, thermonuclear plasmas. Firstly, we list our results on energy shifts 

and oscillator strengths for transitions 2s2-2s1/22p1/2,3/2 in spectra of the Be-like 

Ni and Kr. The plasmas parameters are as follows: ne=1022-1024cm-3 , T=0.5-2 

keV (4.i.e. ~0.01-0.3).  In tables 4.1 and 4.2 we list the results of calculation of 

the energy shifts Е (4.cm-1) for 2s2-[2s1/22p1/2,3/2]1 transitions due to the plasmas 

environment effect for the Be-like multicharged ions of Kr, Fe and Zn.  

Table 4.1. Energy shifts Е (4.cm-1) for the 2s2-[2s1/22p1/2,3/2]1 transition in spec-

tra of the Be-like Kr ions for different values of the ne (4.см-3) and T (4.in eV) 

(4.see explanations in text) 

Z/ ne 1022 1023 1024 1022 1023 1024 

Transi-

tion 

kT Li et 

al 

Li 

et al 

Li et 

al 

Our 

data 

Our 

data 

Our 

data 

KrXXX

III 

500 21.3 197.

9 

2191.

9 

27.2 215.

4 

2236.

4 

2s2- 100

0 

15.5 150.

5 

1659.

6 

21.3 169.

1 

1705.

1 

[2s1/22p3/

2]1 

200

0 

11.5 113.

5 

1268.

0 

16.9 128.

3 

1303.

8 

 I-S 4.3 49.5 497.2    

KrXXX

III 

500 24.8 230.

7 

2500.

4 

30.6 247.

8 

2545.

2 

2s2- 100

0 

18.2 171.

7 

1893.

5 

24.0 188.

5 

1936.

8 

[2s1/22p1/

2]1 

200

0 

13.5 129.

5 

1446.

5 

18.4 144.

1 

1482.

7 

 I-S 5.4 56.4 566.3    
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Table 2. Energy shifts Е (4.cm-1) for the 2s2-[2s1/22p1/2,3/2]1 transition in spectra 

of the Be-like Fe and Zn ions for different values of the ne (4.см-3) and T (4.in 

eV) (4.see explanations in text) 

Ion  FeXXI

II 

FeXXIII FeXXIII ZnXX

VII 

ZnXX

VII 

ZnXXVII 

Parameter ne 1022 1023 1024 1022 1023 1024 

Transition kT Our 

data 

Our data Our data Our 

data 

Our 

data 

Our data 

2s2-  500 31.3 344.1 3061.9 29.1 258.1 2747.6 

[2s1/22p3/2]1  1000 23.9 264.3 2379.1 22.8 196.9 2090.2 

 2000 18.8 208.5 1892.8 17.8 155.2 1634.4 

2s2-  500 33.5 366.9 3270.7 30.6 279.5 2994.7 

[2s1/22p1/2]1  1000 24.9 284.2 2536.9 23.0 213.2 2273.8 

 2000 19.5 222.1 2007.8 18.3 168.1 1778.1 

 

The available theoretical data by Yongqiang Li et al and Saha-Frische (4.the 

multiconfiguration Dirac-Fock (4.DF) computation results and the ionic sphere 

(4.I-S) model simulation data from [15,16] and Refs. therein) are also presented 

for the Be-like ion of Kr.  

Table 3. Oscillator strengths gf for the 2s2-[2s1/22p3/2]1 transition in spectra of 

the Be-like ion of Kr for different values of the ne (4.см-3) and T (4.in eV) (4.gf0 

–the gf value for free ion) 

ne  1022 1023 1024  1022 1023 1024 

kT gf0 

[15] 

gf 

[15] 

gf 

[15] 

gf 

[15] 

gfo 

our data 

gf  

our data 

gf  

our data 

gf  

our data 

500 0.13760 0.13760 0.13763 0.13797 0.13789 0.13790 0.13812 0.13854 

1000 0.13672 0.13760 0.13762 0.13788  0.13790 0.13810 0.13839 

2000  0.13760 0.13762 0.13781  0.13789 0.13809 0.13824 

I-S  0.13760 0.13761 0.13768     
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Table 4. Oscillator strengths gf for the 2s2-[2s1/22p3/2]1 transition in spectra of 

the Be-like ions of Fe and Zn for different values of the ne (4.см-3) and T (4.in 

eV) (4.gf0 –the gf value for free ion) 

 

 Be-like ions of Fe Be-like ions of Zn 

 ne 1022 1023 1024 ne 1022 1023 1024 

kT gfo:our 

data 

gf: our 

data 

gf: our 

data 

gf: our 

data 

gfo:our 

data 

gf: our 

data 

gf: our 

data 

gf: our 

data 

500 0.15403 0.15406 0.15431 0.15513 0.14354 0.14356 0.14377 0.14409 

1000  0.15406 0.15428 0.15488  0.14356 0.14375 0.14396 

2000  0.15404 0.15426 0.15467  0.14355 0.14373 0.14383 

 

In tables 4.3 and 4.4 we list the results of computing oscillator strengths 

changes for 2s2-[2s1/22p1/2,3/3]1 transitions in spectra of the Be-like Fe and Zn 

ions at different plasmas parameters: the electron density ne and temperature T. 

The available theoretical data on the oscillator strength changes due to the plas-

mas environment effect by Yongqiang Li etal [15] are also listed for the Be-like 

ion of Kr. The analysis shows that the presented data are in physically reasona-

ble agreement. 

However, some difference can be explained by using different relativistic 

orbital basis and different models for accounting of the plasmas screening effect. 

From the physical point of view, the behavior of the energy shift is naturally ex-

plained, i.e by increasing blue shift of the line because of the increasing the 

plasmas screening effect.  

   In table 4.5 we present the theoretical data on the effective collision strengths 

of the Ne-like Kr26+ ion excitation states for the temperature T=5106 K and the 

electron density ne=1014 cm-3. The Dirac R-matrix (4.RM) calculation data by 

Griffin et al [28] and model potential (4.MP) data [35,36] are listed for compari-

son too. It should be noted that strong compensation of different PT terms is a 

characteristic feature of the states with vacancies in the core. This is one of the 

main reasons for the fact that the accuracy of conventional a priori calculations 

of such states does not always satisfy the requirements arising in many applica-

tions. Summation over jin,jsc in (4.18) spreads over the range 1/2-23/2.   
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Table 4.5. The effective collision strengths of the Kr26+ Ne-like ion excitation 

states for the   temperature T=5106 К and electron density ne=1014 cm-3 (4.see 

text). 

Term  RM   MP Our data 

2p53s (4.3/2,1/2)2  8.29(4.-3)  8.13(4.-3) 8.17(4.-3) 

2p53s (4.3/2,l/2)1  9.36(4.-3)  9.19(4.-3) 9.23(4.-3) 

2p53p (4.3/2,l/2)1  3.49(4.-3)  3.38(4.-3) 3.41(4.-3) 

2p53p (4.3/2,1/2)2  4.30(4.-3)  4.18(4.-3) 4.24(4.-3) 

2p53s (4.1/2,l/2)0  1.32(4.-3)  1.21(4.-3) 1.26(4.-3) 

2p53s (4.1/2,l/2)1  7.69(4.-3)  7.56(4.-3) 7.60(4.-3) 

2p53p (4.3/2,3/2)3  4.03(4.-3)  3.89(4.-3) 3.94(4.-3) 

2p53p (4.3/2,3/2)1  3.14(4.-3)  3.01(4.-3) 3.06(4.-3) 

2p53p (4.3/2,3/2)2  3.36(4.-3)  3.12(4.-3) 3.16(4.-3) 

2p53p (4.3/2,3/2)0  8.67(4.-3)  8.49(4.-3) 8.55(4.-3) 

2p53p (4.1/2,1/2)1  2.69(4.-3)  2.54(4.-3) 2.59(4.-3) 

2p53p (4.1/2,3/2)1  2.80(4.-3)  2.72(4.-3) 2.75(4.-3) 

2p53p (4.1/2,3/2)2  3.27(4.-3)  3.16(4.-3) 3.21(4.-3) 

2p53d (4.3/2,3/2)0  1.24(4.-3)  1.13(4.-3) 1.18(4.-3) 

2p53p (4.1/2.1/2)0  1.71(4.-2)  1.58(4.-2) 1.63(4.-2) 

2p53d (4.3/2,3/2)1  3.45(4.-3)  3.31(4.-3) 3.36(4.-3) 

2p53d (4.3/2,3/2)3  3.80(4.-3)  3.67(4.-3) 3.74(4.-3) 

2p53d (4.3/2,5/2)2  4.13(4.-3)  3.96(4.-3) 4.01(4.-3) 

 

For some levels the corrections due the correlation effects change the results by 

a factor of 2-3,5. Using of the shielding approach and an accounting for the 

highly-lying excited states is quantitatively important for the adequate, physical-

ly reasonable description of the collision strengths. It should be noted that the 

experimental information about the collision strengths for high-charged Ne-like 

ions is very scarce and is extracted from indirect observations. Such experi-

mental information for a few collisional excitations of the Ne-like barium 

ground state has been presented in Refs.[20-22]. 

 Analysis shows that using relativistic energy approach with the optimal Di-

rac-Kohn-Sham one-electron PT basis and shielding model block is quite con-

sistent and effective from the viewpoint of the theory correctness and results ex-
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actness. This fact was surely confirmed by the multiple calculations of the oscil-

lator strengths, radiative widths in atoms and multicharged ions [9,40-42,88-

90,104-106].  

Further we present the results  of computing the radiative and collisional 

characteristics (energy shifts, oscillator strengths, electron-ion cross-sections 

and collision strengths) for the Be-, Ne-like ions of Ar, Ni and Kr (Z=18-36) 

embedded to the plasmas environment. Let us remind (see Ref. 

[11,12,16,28,39]) that the Be- and Ne-like ions play an important role in the di-

agnostics of a wide variety of laboratory, astrophysical, thermonuclear plasmas. 

Firstly, we list our results on energy shifts and oscillator strengths for transitions 

2s2-2s1/22p1/2,3/2 in spectra of the Be-like Ni and Kr. The plasmas parameters are 

as follows: ne=1022-1024cm-3 , T=0.5-2 keV (i.e. ~0.01-0.3). In table 4.6 and 4.7 

we list the results of calculation of the energy shifts Е (cm-1) for 2s2-

[2s1/22p1/2,3/3]1  transitions and oscillator strengths changes for different plasmas 

parameters such as the electron density ne  and temperature T.  

Table 4.6. Energy shifts Е (cm-1) for the 2s2-[2s1/22p3/2]1  transition in spectra 

of the Be-like Ni and Kr ions for different values of the ne (см-3) and T (in eV) 

(see explanations in text) 

        ne 1022 1023 1024 1022 1023 1024 

Z kT Li et al Li et al Li et al Our 

data 

Our 

data 

Our 

data 

NiXX

V 

500 31.3 292.8 2639.6 33.8 300.4 2655.

4 

 1000 23.4 221.6 2030.6 25.7 229.1 2046.

1 

 2000 18.0 172.0 1597.1 20.1 179.8 1612.

5 

 I-S 8.3 86.6 870.9    

KrXX

XIII 

500 21.3 197.9 2191.9 27.2 215.4 2236.

4 

 1000 15.5 150.5 1659.6 21.3 169.1 1705.

1 

 2000 11.5 113.5 1268.0 16.9 128.3 1303.

8 
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There are also presented the available theoretical data by Li etal and Saha-

Frische: the multiconfiguration Dirac-Fock (DF) computation results and ionic 

sphere (I-S) model simulation data (from [11,12,16] and Refs. therein). The 

analysis shows that the presented data are in physically reasonable agreement, 

however, some difference can be explained by using different relativistic orbital 

basis and different models for accounting of the plasmas screening effect.  From 

the physical point of view, the behavior of the energy shift is naturally ex-

plained, i.e by increasing blue shift of the line because of the increasing the 

plasmas screening effect.  

Table 4.6. Oscillator strengths gf for the 2s2-[2s1/22p3/2]1 transition in spectra of 

the Be-like ion of Ni for different values of the ne (см-3) and T (in eV) (gf0 –the 

gf value for free ion) 

ne  1022 1023 1024  1022 1023 1024 

kT gf0 

Li et 

al 

gf 

Li et 

al 

gf 

Li et 

al 

gf 

Li et 

al 

gfo:our 

data 

gf: our 

data 

gf: our 

data 

gf: our 

data 

500 0.1477 0.1477 0.1478 0.1487 0.1480 0.1480 0.1483 0.1495 

100

0 

 0.1477 0.1477 0.1482  0.1480 0.1483 0.1495 

200

0 

 0.1477 0.1477 0.1481  0.1479 0.1482 0.1493 

I-S  0.1477 0.1477 0.1479     

 

Further we present the results of computing the electron-collisional cross-

sections and electron-collision strengths for Ne-like ion of Ar (the part of results 

has been presented in Refs. [28]), but without the plasmas screening effect) and 

compare with the known theoretical data:  relativistic model potential PT 

(RMPPT), relativistic optimized DF PT (ODFPT) [28-30,41,42].  

In table 4.7 we list the electron-collision strengths for Ne-like argon excitation 

from the ground state (E=0.75 keV is the impact electron energy). The corre-

sponding plasmas parameters (-pinch plasmas) are as follows: ne=1016 cm-3, 

and Tе=65 eV.  
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Table 4.7.   The electron-collision strengths for Ne-like Ar excitation from the 

ground state for  impact electron energy 0.75 keV (numbers in brackets denote 

the multiplicative powers of ten) 

 

Transition Level J [41] [29] Present data 

1-2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

2s  2p 

2p3/23s1/2 

2p1/23s1/2 

2p1/23s1/2 

2p3/23p3/2 

2p3/23p3/2 

2p3/23p1/2 

2p3/23p1/2 

2p3/23p3/2 

2p1/23p1/2 

2p1/23p1/2 

2p1/23p3/2 

2p1/23p3/2 

2p3/23p3/2 

2p3/23d3/2 

2p3/23d3/2 

2p3/23d5/2 

2p3/23d5/2 

2p3/23d3/2 

0 

1 

0 

1 

1 

3 

2 

1 

2 

1 

0 

2 

1 

0 

0 

1 

2 

4 

3 

1,303[-03] 

9,017[-03] 

2,587[-04] 

2,241[-02] 

3,456[-03] 

2,911[-03] 

4,795[-03] 

1,033[-03] 

6,451[-03] 

9,641[-04] 

8,794[-04] 

7,814[-03] 

8,561[-04] 

8,670[-02] 

1,136[-03] 

4,129[-03] 

5,227[-03] 

3,512[-03] 

3,994[-03] 

1,415[-03] 

9,224[-03] 

2,724[-04] 

2,342[-02] 

3,635[-03] 

2,998[-03] 

4,922[-03] 

1,213[-03] 

6,535[-03] 

9,993[-04] 

8,927[-04] 

7,978[-03] 

8,723[-04] 

8,735[-02] 

1,244[-03] 

4,327[-03] 

5,546[-03] 

3,678[-03] 

4,133[-03] 

1,498[-03] 

9,286[-03] 

2,783[-04] 

2,394[-02] 

3,699[-03] 

3,065[-03] 

4,988[-03] 

1,254[-03] 

6,597[-03] 

1,088[-03] 

8,992[-04] 

8,113[-03] 

9,005[-04] 

8,802[-02] 

1,296[-03] 

4,389[-03] 

5,601[-03] 

3,714[-03] 

4,185[-03] 

 

It should be noted that the experimental information about the electron-

collisional cross-sections for high-charged Ne-like ions is very scarce and is ex-

tracted from indirect observations.  Such experimental information for a few col-

lisional excitations of the Ne-like barium ground state has been presented in 

Refs.[17-19]. 

Let us note that the PT first order correction is calculated exactly, the high-order 

contributions are taken into account for effectively: polarization interaction of 

two above-core quasi-particles and an effect of their mutual screening (correla-
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tion effects). It is interesting to note that here the plasmas effects do not play a 

critical quantitative role.   

Further we present the results of studying collisional characteristics for the Ne-

like ions in the collisionally pumping plasmas with the parameters Tе=20-40eV 

and density ne=1019-20 cm-3. This system represents a great interest for generation 

of laser radiation in the short-wave spectral range [3,4]. Besides, it is obviously 

more complicated case in comparison with previous one. Here an accurate ac-

count of the excited, Rydberg, autoionization and continuum states can play a 

critical role.   

In table 4.8 we present the theoretical values of the collisional excitation 

rates (CER) and collisional de-excitation rates (CDR) for Ne-like argon transi-

tion between the Rydberg states and from the Rydberg states to the continuum 

states with parameters: ne= 1019-20 cm-3 and electron temperature Tе =20eV  (see 

details in Ref. [28,42]).   

For comparison there are also listed the data by Ivanov et al, obtained 

within the RMPPT approach (without the shielding effect) [28,41,42].   

Here we talk about the Rydberg states which converge to the correspond-

ing lower boundary of continuum -0 (see figure 4.1).  

Table 4.8 The collisional excitation (CER) and de-excitation (CDR) rates (in 

cm3/s) for Ne-like argon in plasmas with parameters: ne= 1019-20 cm-3 and elec-

tron temperature Tе =20eV 

Parameters ne, cm-

3 

RMPPT RMPPT RMPPT Present 

results                                  

Present 

results                                  

Present 

results                                  

Transition  1→2 1→3 2→3 1→2 1→3 2→3 

CDR 

(i→i ;k) 

1.0+19 5.35-10 1.64-10 1.13-09 5.77-10 1.92-10 1.28-09 

 1.0+20 5.51-10 1.60-10 1.12-09 5.94-10 1.78-10 1.25-09 

Transition  2→1 3→1 3→2 2→1 3→1 3→2 

CER 

(i→i ;k) 

1.0+19 5.43-10 5.39-12 2.26-11 5.79-10 1.88-12 2.64-11 

 1.0+20 3.70-10 8.32-12 2.30-11 4.85-10 1.13-11 2.78-11 
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As it is indicated in Ref. [42], the parameter -0 is the third parameter of the 

plasmas environment (together with electron density and temperature).  

In fact it defines the thermalized energy zone of the Rydberg and autoionization 

states which converge to the ionization threshold for each ion in a plasmas. Usu-

ally value 0 can be barely estimated from simple relation: 0 =0.1Те.  

 

 

 

 

 

 

 

 

 

 

Figure 4.1.The Rydberg states zones (Ne-like ion: [Ne,i], nl); 0  is the boundary 

of the thermalized zone, neighboring to continuum; 3   is the ionization potential 

for states nl=3s; i=(0 +i+1  )/2, i=1,2; 

In the consistent theory the final results must not be dependent on the model pa-

rameters, so the concrete value of 0  is usually chosen in such way that an effect 

of its variation in the limits [0.01Те , 0.1Те]   (for Ne-like ions) does not influ-

ence on the final results.  

In table 4.9 we present the theoretical values of the collisional excitation 

(CER) and de-excitation (CDR)  rates (in cm3/s) for Ne-like argon in plasmas 

with the parameters: ne= 1019-20 cm-3 and electron temperature Tе = 40 eV. Anal-

ysis of the presented data allows to conclude that the shielding effects play a 

definite role for the Debye plasmas.  

From other side, an account for the highly-lying excited states is quantita-

tively important for the adequate description of the collision cross-sections.  
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Table 4.9. The collisional excitation (CER) and de-excitation (CDR)  rates (in 

cm3/s) for Ne-like argon in plasmas with parameters: ne= 1019-20 cm-3 and elec-

tron temperature Tе =40eV (our data) 

Parameters ne, cm-3 Present 

results 

Present 

results 

Present 

results 

Transition  1→2 1→3 2→3 

CDR 

(i→i ;k) 

1.0+19 3.18-10 8.45-11 6.81-10 

 1.0+20 5.02-10 1.56-10 4.99-10 

Transition  2→1 3→1 3→2 

CER 

(i→i ;k) 

1.0+19 5.33-10 5.63-10 7.11-11 

 1.0+20 7.67-10 6.94-11 8.93-11 

 

The calculations encourage us to believe that using energy approach combined 

with the relativistic many-body PT with the optimal one-electron basis is quite 

consistent and effective tool from the point of view of the theory correctness and 

results exactness. This fact was surely confirmed by other calculations of the os-

cillator strengths, radiative widths, hyperfine structure constants for atoms and 

multicharged ions (see Refs. [28-30, 49-54]).  

To conclude, we have presented an effective quantum approach in radiative 

and collisional spectroscopy of the multicharged ions in plasmas to compute the 

important radiative and elementary collisional process characteristics. It is based 

on the generalized relativistic energy approach and relativistic optimized many-

body PT with the Debye shielding model Hamiltonian for electron-nuclear and 

electron-electron systems. The approach is universal and, generally speaking, 

can be applied to quantum systems of other nature. Its application is especially 

perspective when the experimental information about corresponding properties 

and systems is very scarce. We have presented some calculation results on oscil-

lator and effective collision strengths for the Be-and Ne-like ions of Kr, Fe and 

Zn in plasmas. The obtained data can be used in different applications, namely, 

in astrophysical analysis, laboratory, thermonuclear plasmas diagnostics, fusion 

research, laser physics, quantum electronics etc. 
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CHAPTER 5.  HYPERFINE AND ELECTROWEAK INTERACTION IN 

HEAVY FINITE FERMI-SYSTEMS AND PARITY NON-

CONSERVATION EFFECT   

        

5. 1 Introduction 

 

The consistent theoretical approach, namely, nuclear-relativistic many-body per-

turbation theory is applied to study of the hyperfine and electroweak interaction 

parameters, parity non-conservation effect in heavy atomic systems. In fact the 

nuclear-relativistic many-body perturbation theory is based on the combining ab 

initio perturbation theory formalism for electron subsystem,  nuclear relativistic 

middle-field model for nuclear subsystem and an energy approach for compu-

ting radiation transition amplitude and allows to fulfil computing the finite Fer-

mi-systems (5.atomic systems) with taking into account the relativistic, correla-

tion, nuclear, radiative effects. The important feature is the correct accounting 

for the inter electron correlations, nuclear, Breit and QED radiative corrections.  

All correlation corrections of the second order and dominated classes of the 

higher orders diagrams are taken into account.  

The results of accurate calculation of the hyperfine structure parameters 

for the caesium are listed.   There are presented the values of the nuclear spin 

dependent corrections to the PNC 133Cs: 6s-7s amplitude, calculated on the basis 

of different theoretical methods. The estimated values of a weak charge QW for 

different heavy atoms (5.133Cs, 173Yb and others) are presented and compared 

with alternative theoretical data 

The parity non-conservation (5.PNC) or violation experiments in atomic 

physics provide an important possibility to deduce information on the Standard 

Model independent of high-energy physics experiments [1-12]. The recent LEP 

experiments are fulfilled [1,2], that yield extremely accurate values for Z-boson 

properties.  

In the last two decades a status of the Standard model has been strength-

ened by different experimental achievements of particle physics. It should be 

mentioned Higgs boson discovery, measurement of CP violations in the K-, B- 

mesons, evidence of accelerated expansion of the universe, determination of the 
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fraction of dark energy and dark matter in the universe, etc. From the other side,   

there are a number of the serious factors which clearly points to some new  

physics beyond the Standard model despite the desperate lack of direct experi-

mental evidence. One could remind that the density of matter included into the 

Standard model is approximately 5% of the energy density of the universe; be-

sides, neutrinos in the Standard model are massless, and there are no neutrino 

oscillations (5.not to mention gravity). As it is known, the Standard model can 

be divided into three sectors: the calibration sector, the fragrance sector, and the 

symmetry-breaking sector. While the first two sectors are being actively studied 

in accelerator experiments (5.LEP, SLD, BELLE, etc.), the sector of spontane-

ous symmetry breaking is now attracting close attention, as it may give clear 

hints of existence in New Physics experiments beyond the Standard model. The 

observation of a static electric dipole moment of a many-electron atom which 

violates parity, P, and time reversal, T , symmetry, represents a great fundamen-

tal interest in a search of these hints. The detailed review of these topics can be 

found in Refs. [1-91].  

     Atomic optical and Stark pumping PNC measurements have been fulfilled in 

a whole number of heavy atoms, namely, in caesium (5.0.35 % accuracy [1]), 

thallium (5.1.7 %), bismuth (5.2 %), Pb (5.1.2 %) etc. The atomic optical tests of 

the Standard model provide important constraints on possible extensions of the 

SM. A recent analysis [2] of parity-violating electron-nucleus scattering meas-

urements combined with atomic PNC measurements placed tight constraints on 

the weak neutral-current lepton-quark interactions at low energy, improving the 

lower bound on the scale of relevant new physics to ~ TeV. The precise meas-

urement of the PNC amplitudes in Cs [1] led to an experimental value of the 

small contribution from the nuclear-spin dependent PNC accurate to 14%. So, 

form the one side there is very actual necessity of the further development and 

increasing of the theoretical approaches accuracy and carrying out new atomic 

optical and Stark pumping PNC experiments.   

     The different methods have been used in calculation of the hyperfine struc-

ture parameters, PNC effect. The most popular multiconfiguration Dirac-Fock 

(5.MCDF) method for calculating parity and time reversal symmetry violations 

in many-electron atoms is often, however it application requires some additional 
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generalizations [3,17,26].  Among other well-known calculation methods, a rela-

tivistic many-body perturbation theory (5.RMBPT), namely, the PT with relativ-

istic Hartree-Fock (5.RHF) and Dirac-Fock (5.DF) zeroth approximations, the 

relativistic all-order method, QED perturbation theory (5.PT) etc should be men-

tioned (5.e.g.[9-70].   

     In present chapter we present the application of the consistent theoreti-

cal approach, namely, the nuclear-relativistic many-body perturbation theory 

(5.N-RMBPT), to study the hyperfine and electroweak interaction parameters in 

the heavy finite Fermi-systems and PNC effect. The N-RMBPT formalism is 

based on the combining ab initio perturbation theory formalism for electron sub-

system, nuclear relativistic middle-field model for nuclear subsystem and an en-

ergy approach for computing radiation transition amplitude. It allows to fulfil 

computing the PNC amplitudes in the finite Fermi-systems (5.atomic systems) 

[3,10,41,42,49-54,92-101]. The important feature is the correct accounting for 

the inter electron correlations, nuclear, Breit and QED radiative corrections.  All 

correlation corrections of the second order and dominated classes of the higher 

orders diagrams are taken into account. The results of calculation of the hyper-

fine structure parameters, the PNC amplitudes, the nuclear spin dependent cor-

rections to the PNC, a weak charge QW for different atomic systems are present-

ed and compared with available data in the literature.   

 

5.2. Relativistic nuclear-RMBPT formalism in theory of heavy finite Fermi-

systems 

 

Here we present a brief description of the key moments of our approach (5.more 

details can be found in refs. [3,4,10, 64-98]). The wave electron functions zeroth 

basis is found from the Dirac equation solution with potential, which includes 

the self-consistent ab initio potential (5.in the Dirac-Kohn-Sham approxima-

tion), electric, polarization potentials of a nucleus. All correlation corrections of 

the second and high orders of PT (5.electrons screening, particle-hole interaction 

etc.) are accounted for.   

     The concrete model for nuclear subsystem is based on the relativistic mean-

field model for the ground-state calculation of the nucleus, which was developed  
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as a renormalizable meson-field theory for nuclear matter and finite nuclei. The 

realization of nonlinear self-interactions of the scalar meson led to a quantitative 

description of nuclear ground states. As a self-consistent mean-field model 

(5.for a comprehensive review see ref. [37,101]), its ansatz is a Lagrangian or 

Hamiltonian that incorporates the effective, in-medium nucleon-nucleon interac-

tion. As a Kohn-Sham scheme, the relativistic mean-field model can incorporate 

certain ground-state correlations and yields a ground-state description beyond 

the literal mean-field picture. As indicated in Refs. [37,38] the strong attractive 

scalar (5.S: -400 MeV) and repulsive vector (5.V: +350 MeV) fields provide 

both the binding mechanism (5.S + V: -50 MeV) and the strong spin-orbit force 

(5.S – V: -750 MeV) of both right sign and magnitude. In our opinion, the most 

preferable one for the class of problems under consideration is so called NL3-

NLC version (5.see details in refs. [3,61,69]), which are among the most suc-

cessful parameterizations available.  

     Let us consider the procedure of computing the PNC transition amplitude. 

The dominative contribution to the PNC amplitude is provided by the spin-

independent part of the operator for a weak interaction, which should be added 

to the atomic Hamiltonian [3]: 

 

                                               +=
j

Wat jHHH )( ,                                     (5.1) 

                                                  ).(
22

5

1 rQ
G

H WW = ,                                     (5.2) 

 

Here 22 24/ WF mgG =  is the Fermi constant of the weak interaction,  5 –is the Dirac 

matrix,  (5.r) is a density of the charge distribution in a nucleus and QW is a 

weak charge of a nucleus, linked with number of neutrons N and protons Z  and 

the Weinberg angle  W in the Standard model (5.c.f. [2,5]):  

 

                                                   NZQ WW −−= )sin41( 2                                    (5.3)                 

 

with accounting for the radiative corrections, equation (5.2) can be rewritten as 

[1,2]:  
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)0078.01)(0004.09857.0(})sin]010.0012.4[1({ 2 TNZQ WW +−−= 

 

 

                     )00261.000365.02323.0sin 2 TSW −+=                               (5.4) 

 

The parameters S, T parameterize the looped corrections in the terms of conser-

vation (5.S) and violation (5.T) of an isospin.  

     The spin-dependent contribution to the PNC amplitude has a few distinct 

sources: the nuclear anapole moment (5.(5.that is considered as an electromag-

netic characteristics of system, where the PNC takes a place; generally speaking, 

speech is about the arisen spin structure and the magnetic field distribution is 

similar to the solenoid field),  the Z-boson exchange interaction from nucleon 

axial-vector currents (5.AnVe), and the combined action of the hyperfine interac-

tion and spin-independent Z-boson exchange from nucleon vector (5.VnAe) cur-

rents (5.e.g.[3,10,28])  

The above-mentioned interactions can be represented by the Hamiltonian 

 

                                                   )()(
2

rIk
G

H i

i

W  =                                   (5.5) 

 

where k(5.i=a) is an anapole contribution, k(5.i=2)=kZ0 - axial-vector contribu-

tion,  k(5.i=kh)=kQw is a contribution due to the combined action of the hyper-

fine interaction and spin-independent Z  exchange. It is well known that the con-

tribution into a PNC amplitude, provided by the anapole moment term, signifi-

cantly dominates. 

     The estimate of the corresponding matrix elements is in fact reduced to the 

calculation of the following integrals [10]:  

 

            


− −=
0

1 )()]()()()([
22

|| rrFrGrGrFdrQ
G

ijHi jijimmkkWW jiji
                      

                                                                                                                             

(5.6) 

The reduced matrix element is as follows: 
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Further the general expression for the corresponding PNC amplitude for a-b 

transition is written as follows:  
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The corresponding spin-dependent PNC contribution is: 
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   (5.10) 

Here the following notations are used: = FF MaIFa || , = II MbIFb || , I – spin of a 

nucleus, FI,F-is a total momentum of an atom and M – its z component (5.I,F are 

the initial and final states). It should be noted the expressions for the matrix el-

ements )(|| abPNCa  , )2(||  bPNCa are similar to equation (5.10).   The full descrip-
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tion of the corresponding matrix elements and other details of the general meth-

od and PC code are presented in refs. [3,4,10, 64-100]. 

     The fundamentals of the RMBPT formalism are presented previously in de-

tails in Refs. [41-50] and here we mention only the key points. The RMBPT 

formalism includes the optimized Dirac-Kohn-Sham (5.DKS) zeroth approxima-

tion and allows to provide an effective taking the relativistic, exchange-

correlation, nuclear, radiative effects into account. The relativistic electron wave 

functions are determined from solution of the relativistic Dirac equation with a 

general potential. The latter includes ab initio mean-field potential, electric, po-

larization potentials of a nucleus. There have been considered all correlation cor-

rections of the second order and dominated classes of the higher orders diagrams 

(5.electrons screening, mass operator iterations etc).  

A multielectron system is described by the relativistic Dirac Hamiltonian (5.the 

atomic units are used) as follows [3,4]:     

 

               


−+−−=
ji

ijjiij

i

ii /rαrirZccpH )1)(||exp(}/{ 2          

(5.11) 

 

where Z is a charge of nucleus, i ,j are the Dirac matrices, ij is the transition 

frequency, c – the velocity of light. The interelectron interaction potential sec-

ond term in (5.3)) takes into account the retarding effect and magnetic interac-

tion in the lowest order on parameter of the fine structure constant 2 (5. is the 

fine structure constant). The mean-field self-consistent potential in the zeroth–

order Hamiltonian is as follows:  

 

                                 ( ) [ ( ) ( ) ( | )]DKS D

MF Coul X CV V r V r V r V r b= = + +                             

                                                                                                         (5.12) 

with the standard Coulomb-like potential ( )D

CoulV r ,  is the Kohn-Sham exchange po-

tential ( )XV r  [39]: 
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2 1/3[3 ( )] /r c  =                                 (5.13b) 

 

and a correlation functional ( | )CV r b , taken in the Lundqvist-Gunnarsson form [4]  

with ab intio optimization parameter b (5.for details, see below and Refs. [42,55-

60]).  

The approach includes a generalized procedure (5.based on an relativistic 

energy approach) of generating the optimal basis set of relativistic electron wave 

functions with performance of the gauge invariance principle. To reach the latter 

we focus on accurate consideration of the QED PT fourth order (5.a second or-

der of the atomic perturbation theory) Feynman diagrams, whose contribution 

into imaginary part of radiation width Im E for the multi-electron ions accounts 

for multi-body correlation effects.  

This value is considered to be representative for the correlation effects, 

whose minimization is a reasonable criterion in the searching for the optimal 

one-electron basis of the many-body PT. A minimization of the functional ImE 

leads to integral-differential Dirac-Kohn-Sham-like density functional equa-

tions. The magnetic inter-electron interaction is accounted for in the lowest or-

der on 2 (5. is the fine structure constant) parameter.  

     The Coulomb-like potential of a nucleus (5.for the spherically symmetric nu-

clear density ( )Rr ) is determined as follows: 

 

                                ( ) ( ) ( ) ( )


+−=
r

r

nucl RrrdrRrrdrrRrV '''

0

'2''/1                 (5.14) 

 

     To take into account the radiation (5.QED) corrections, we used the proce-

dures, described detail in Refs. [41-50,82-87]. A method for calculation of the 

self-energy part of the Lamb shift is based on an idea by Ivanov-Ivanova et al 

(5.e.g. [40]), which generalizes the known hydrogen-like method by Mohr [35] 

and radiation model potential method by Flambaum-Ginges [36] (5.look details 

in Refs. [3,10,61,69,82-87]). According to Ref. [40], the radiative shift and the 

relativistic part of energy in an atomic system are, in principle, defined by one 

and the same physical field. One could suppose that there exists some universal 
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function that connects the self-energy correction and the relativistic energy. It is 

worth to note that the low-energy part of the Lamb shift is determined by the 

following expression: 

 

                                  ( ) ( ) ( ) ,,0,
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(5.here ( )r is the Dirac function, an energy parameter iE =  is imaginary, G  is 

the complex Green’s function) and calculated by means of the complex Green 

function method in version [91]. The important radiation contributions are given 

by the standard Uehling-Serber term and the Källen-Sabry and Wichmann-Kroll 

corrections of higher orders (5.such as [ ( ) nZ ]  (5.n=2,..), ( )2 Z  ,  ( )nZ  (5.n=3) 

etc;  is the fine structure constant). In order to take into consideration the effect 

of the vacuum polarization in the first PT order the generalized Uehling-Serber 

potential is used and modified to account for the high-order radiative corrections 

according to the procedure [3].  It is written as follows: 

 

( ) ( )( ) ( )



−

−
+−




−=



1
2

2
2 ,

3

21
2112exp

3

2
gC

rt

t
tZrtdt

r
rU            (5.16) 

 

where g=r/(5.Z). A More correct and consistent approach is presented in Refs. 

[3,10,61,69,82-87]. Taking into account the nuclear finite size effect modifies 

the potential (5.16) as follows [3]:     
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Other details of the general method and PC code are described in Refs. 

[3,4,10,54-99]. All calculations are performed with using the numeral codes Su-

perAtom (5.Nucleus) (5.modified versions 93). 
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5.3. Results and Conclusions 

As the first illustration (5.the test), we consider 133Cs and present the results 

(5.table 1) of calculation of the hyperfine structure (5.hfs) parameters for Cs.  In 

table 1 the experimental (5.AExp) and our (5.AN-Qed) data for magnetic dipole 

constant A (5.MHz) for valent states of 133Cs (5.I=7/2, gi=0.7377208) are pre-

sented. The calculation results within standard (5.ARHF) RHF and RHF with ac-

counting for the second and higher PT corrections, the MCDF approximation 

and QED formalism are given too (5.from Refs. [3,22-34,63,69]). The following 

notations are used: ARCC – calculation by relativistic cluster-coupled (5.RCC) 

method; ADF – DF method; ARHF -  RHF method  and AQED- the QED calcula-

tion; АN-Qed is the result of this work. The key quantitative factor of physically 

reasonable agreement between theory and experimental data is connected with 

the correct accounting for the inter electron correlations, nuclear, Breit and QED 

radiative corrections.   

 

Table 5.1. The values (5.MHZ) of the hfs constant A for valent states of 133Cs:  

AExp - experiment; ARHF, dARHF -  RHF calculation plus the second and higher  

PT orders contribution [AQED – data]; АN-Qed – this work 

 

Stat

e 

AMC

DF 

ARHF ARHF

+dA 

АQed АN-

Qed 

AExp 

6s1/2 173

6.9 

1426.

81 

2291.

00 

2294.

45 

2296.

78 

2298.16

(5.13) 

6p1/

2 

209.

6 

161.0

9 

292.6

7 

292.1

02 

292.1

18 

291.90(

5.13) 

 

In table 2 the PNC amplitudes (5.in units of 10-11ieaB(5.-QW)/N) are listed and 

calculated on the basis of the different methods (5.without the Breit corrections): 

DF, RHF, MCDF, MBPT and nuclear-RMBPT results (5.data from refs. [3,22-

34,63,69]).  

 

 



172 
 

Table 5.2. PNC amplitudes (5.in units of 10-11ieaB(5.-QW)/N), which are calcu-

lated by different methods (without the Breit corrections): DF, RHF, MCDF, 

MBPT and nuclear-QED PT 

 

Atom 

Trans. 

Spin 

of 

Nucl. 

Nucl. 

moment 

N 

Radius 

(5.fm) of 

nucleus 

DF RHF MCDF MBPT N- 

RMBPT 

85Rb   5s-

6s 

5/2 1.3534 4.246 -0.110 -0.138 -0.134 -0.135 -0.132 

133Cs  6s-

7s 

7/2 2.5826 4.837 -0.741 -0.926 

-0.897 

-0.904 -0.906 

-0.908 

-0.903 

223Fr  7s-

8s 

3/2 1.1703 5.640 -13.72 -16.63 -15.72 -15.56 

-15.80 

-15.54 

211Fr  7s-

8s 

9/2 4.0032 5.539 -12.51 -15.16 -14.34 - -14.17 

      

In table 3 we present the Breit correction (5.in units of 10-11(5.-QW)/N) to the 

PNC amplitude, which are calculated by the different methods (5.without the 

Breit corrections): DF, RHF, MCDF, and nuclear-RMBPT (5.data from Refs. 

[3,22-34,63,69]). Let us note that the radiative corrections to the PNC amplitude, 

provided by the vacuum-polarization (5.VP) effect and the self-energy (5.SE) 

part are as follows: EPNC- 133Cs - VP=0.38%, SE=-0.74%; 223Fr - VP=1.025%, 

SE=-1.35%. 

 

Table5. 3. The Breit correction (in units of 10-11(-QW)/N) to the PNC amplitude, 

which are calculated by the different methods (without the Breit corrections): 

DF, RHF, MCDF, and nuclear-RMBPT results (other data from refs. [25,29,33]) 

Atom: Tran-

sition. 

DF RHF MCDF N-QED 

PT 

133Cs  6s-7s 0.0022 0.0018 0.0045 0.0049 

223Fr  7s-8s 0.0640 0.0650 0.1430 0.1703 
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     In table 5.4 we list the nuclear spin dependent corrections to PNC (5.133Cs: 

6s-7s) amplitude, calculated by different theoretical methods (5.in units of the 

ka,2,hf  coefficient): MBPT, DF-PT, the shell model, N-RMBPT (5.from Refs. 

[3,22-34,63,69]).  

 

Table 5.4. The nuclear spin-dependent corrections to the PNC 133Cs: 6s-7s am-

plitude EPNC, calculated by different methods (5.in units of ka,2,hf  coeff.): MBPT, 

DF-PT, shell model,  

N-RMBPT (5.see text) 

Correction MBPT Shell 

model 

DF N-

RMBPT 

K  (5.sum) 0.1169 0.1118 0.112 0.1159 

k2- the Z-boson 

exchange interac-

tion from nucleon 

axial-vector cur-

rents (5.AnVe) 

0.0140 0.0140 0.0111 

0.0084 

0.0138 

khf  - the combined 

action of the hy-

perfine interaction 

and spin-

independent Z  ex-

change  

0.0049 0.0078 0.0071 

0.0078 

0.0067 

ka –anapole mo-

ment 

0.0980 0.090 0.0920 0.0954 

 

     In table 5.5 we present the estimated values of the weak charge QW for differ-

ent heavy atoms, predicted in different approaches and determined in the Stand-

ard model (SM) (from Rrefs. [1-7,22-34,63,69]).  

The analysis of results shows that in principle a majority of theoretical 

approaches provide physically reasonable agreement with the Standard model 

data, but the important question is how much exact this agreement is. Some re-
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ceived data on estimating these constants directly indicate the necessity of new 

adequate précised experiments.  

 

Table 5.5. The estimated values of the weak charge QW and final PNC amplitudes  

(in units 10-11ieaB(-QW)/N) for different heavy atoms,  

predicted in different approaches  

 

Contribution EPNC 

QW 

N-

RMBPT 

MCDF MBPT-

DF 

MCDF-

QED 

RHF+Breit+ 

Correlation 

RCC 

85Rb  5s-6s EPNC -0.1318 -0.135 - - -0.134 - 

133Cs  6s-7s EPNC -0.8985 -0.935 

-0.905 

-0.897 

-0.904 

-0.8981 

-0.9055 

-0.898 

-0.910 

-0.902 

-

0.9054 

-0.899 

133Cs 6s-7s 

)13(19.73−=SM

WQ  

QW -72.62 -69.78 

-71.09 

-72.69 

-72.18 

-72.65 

-72.06 

-72.66 

-71.70 

-72.42 

-72.06 

-72.58 

137Ba+  6s-

5d3/2 

EPNC -2.385 - -2.35 - -2.34 -2.46 

173Yb  

6s21S0-

5d6s3D1 

)8(44.95−=SM

WQ  

EPNC 

QW 

-97.07 

-92.31 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

205Tl  6p1/2-

6p3/2 

EPNC 26.5114 -26.75 -26.5 - - - 

205Tl 6p1/2-

6p3/2 

)4(81.116−=SM

WQ  

QW -116.55 -112.4 -116.2 

-116:7 

- - - 

 

The rare-earth elements (5.and corresponding multicharged ions), in particular, 

ytterbium, are especially interesting as they have very complicated spectra of 

energy levels with very unusual behavior in relatively weak electric and laser 

fields. In our opinion, particular attention should be paid to the 173Yb ytterbium 

atom, where the theoretical PNC values of the EPNC amplitude differ from sim-
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ilar values of all considered heavy alkaline atoms by almost two orders of mag-

nitude, which makes this atom particularly important in terms of studying the 

weak electron-nuclear interaction , the PNC effect, and of course, the Standard 

model check.  

Excessive complexity of the 173Yb calculation, where the correlation ef-

fects corrections (including quick “blurring” of the initial state over an infinite 

set of additional configurations and other effects) is very large, making it diffi-

cult to obtain data on the fundamental parameters of Yb. Using the experimental 

value PNCE1 / [11]:  

 

(8.71.4)10-10eaB ( PNCE1 /=39 mV/cm) 

 

and the calculated atomic constant value of 99.70710-10eaB (5.for 173Yb; Z = 

70, N = 103) it is not difficult to determine the value of a weak charge QW = -

92.31, which is different from QW (5.the Stanard model)= -95.44. This circum-

stance imposes unambiguous restrictions on the fundamental values of S, T. It is 

interesting to note that the estimate of difference [QW (5.theoretical) - QW 

(5.CM)] ~ 6 indicated in [11] in our opinion, is a little overestimated due to the 

neglect of the contribution of QED, neutron skin effects etc. Perhaps the in-

crease in the PNC effect at 173Yb can be explained qualitatively and quantitative-

ly in terms of a quantum chaos theory and strong inter-electron correlations 

(5.e.g.[3,100]).   

In any case, it is worth noting the "sensitivity" of PNC experiments to 

New Physics at energies, which even today are difficult to reach on modern col-

liders, including the restrictions on the mass of the Z 'boson and the mixing an-

gle in models beyond the Standard model.  

The analysis shows that the perspectives of the PNC experiments with 

Stark pumping of the individual states in the rare-earth atoms (5.and probably 

more effective multicharged ions of these elements) and simultaneously polar-

ized laser field dressing (5.with a cold-atom fountain or interferometer) may 

provide comfortable conditions for precise observation of weak effects.   
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CHAPTER 6. GAUGE-INVARIANT QED PERTURBATION THEORY 

APPROACH TO CALCULATING NUCLEAR ELECTRIC 

QUADRUPOLE MOMENTS, HYPERFINE STRUCTURE 

CONSTANTS FOR HEAVY ATOMS AND IONS: SUPERATOM 

PACKAGE 

 

 

6.1  Introduction 

 

Relativistic calculation of the spectra hyperfine structure parameters for 

heavy atoms and multicharged ions with account of relativistic, correlation, nu-

clear, QED effects is carried out (6.the Superatom package) [11-18]. Our calcu-

lation scheme is based on gauge-invariant QED perturbation theory with using 

the optimized one-quasiparticle  representation at first in the theory of the hyper-

fine structure for relativistic systems [12,14,16]. It is carried out calculating the 

energies and constants of the hyperfine structure, deriviatives of the one-electron 

characteristics on nuclear radius,  nuclear electric quadrupole, magnetic dipole 

moments Q for atom of  hydrogen 1H (6.test calculation), superheavy H-like ion 

with nuclear charge Z=170,  Li-like multicharged ions with Z=20-100, neutral 

atoms of  235U, 201Hg and 227Ra are defined. 

In last years a studying the spectra of heavy and superheavy elements at-

oms and ions is of a great interest for further development as atomic and nuclear 

theories (6.c.f.[1-12]). Theoretical methods used to calculate the spectroscopic 

characteristics of heavy and superheavy ions may be divided into three main 

groups: a) the multi-configuration Hartree-Fock method, in which relativistic ef-

fects are taken into account in the Pauli approximation, gives a rather rough ap-

proximation, which  makes it possible to get only a qualitative idea on the spec-

tra of heavy ions. b) The multi-configuration Dirac-Fock (6.MCDF) approxima-

tion (6.the Desclaux program, Dirac package) [1-6,22] is, within the last few 

years, the most reliable version of calculation for multielectron systems with a 

large nuclear charge; in these calculations one- and two-particle relativistic ef-

fects are taken into account practically precisely. The calculation program of 

Desclaux is compiled with proper account of the finiteness of the nucleus size; 

however, a detailed description of the method of their investigation of the role of 
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the nucleus size is lacking. In the region of small Z (6.Z is a charge of the nucle-

us)  the calculation error in the MCDF approximation is connected mainly with 

incomplete inclusion of the correlation and exchange effects which are only 

weakly dependent on Z; c) In the study of lower states for ions with Z 40 an 

expansion into double series of the PT on the parameters 1/Z, Z (6. is the fine 

structure constant) turned out to be quite useful. It permits evaluation of relative 

contributions of the different expansion terms: non-relativistic, relativistic, QED 

contributions as the functions of Z.  Nevertheless,  the serious problems in cal-

culation of the heavy elements spectra are connected with developing new, high 

exact methods of account for the QED effects, in particular, the Lamb shift 

(6.LS), self-energy (6.SE) part of the Lamb shift, vacuum polarization (6.VP) 

contribution, correction on the nuclear finite size for superheavy elements and 

its account for different spectral properties of these systems, including calculat-

ing the energies and constants of the hyperfine structure, deriviatives of the one-

electron characteristics on nuclear radius,  nuclear electric quadrupole, magnetic 

dipole moments etc  (6.c.f.[1-22]).  

     In present paper a new, highly exact, ab initio approach to relativistic calcula-

tion of the spectra for multi-electron superheavy ions with an account of relativ-

istic, correlation, nuclear, radiative effects is presented.  The method is  based on 

the quantum electrodynamical (6.QED) perturbation theory (6.PT). Relativistic 

calculation of the spectra hyperfine structure parameters for heavy atoms and 

multicharged ions with account of relativistic, correlation, nuclear, QED effects 

is carried out (6.the Superatom [11-18] and Dirac packages (6.DP) [22] are used; 

the DP using in a progress). Our calculation scheme is based on gauge-invariant 

QED perturbation theory and and generelized relativistic dynamical effective 

field nuclear model with using the optimized one-quasiparticle  representation at 

first in the theory of the hyperfine structure for relativistic systems [11-16]. The 

wave function zeroth basis is found from the Dirac equation with potential, 

which includes the core ab initio potential, the electric and polarization poten-

tials of a nucleus (6.the gaussian form of charge distribution in the nucleus is 

considered) [12-16]. The correlation corrections of the high orders are taken into 

account within the Green functions method (6.with the use of the Feynman dia-

gram’s technique). There have taken into account all correlation corrections of 

the second order and dominated classes of the higher orders diagrams 
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(6.electrons screening, particle-hole interaction, mass operator iterations) [11-

18]. The magnetic inter-electron interaction is accounted in the lowest (6.on   

parameter), the LS polarization part - in the Uehling-Serber approximation, self-

energy part of the LS is accounted effectively within the Ivanov-Ivanova non-

perturbative procedure [11]. Generelized relativistic dynamical effective field 

nuclear model is presented in [18] (6.see also refs.[5,6,16]). The energies and 

constants of the hyperfine structure, deriviatives of the one-electron characteris-

tics on nuclear radius,  nuclear electric quadrupole, magnetic dipole moments Q 

for atom of  hydrogen 1H (6.test calculation), superheavy H-like ion with nuclear 

charge Z=170,  Li-like multicharged ions with Z=20-100, neutral atoms of  235U, 
201Hg and 227Ra are calculated.  

 

6.2. QED perturbation theory method for calculation of heavy and super-

heavy ions 

 

 Let us describe the key moments of our approach to relativistic calculation of 

the spectra for multi-electron superheavy ions with an account of relativistic, 

correlation, nuclear, radiative effects (6.more details can br found in ref.[11-

18]). 

   One-particle wave functions are  found from solution of the relativistic Dirac 

equation, which can be written in the central field in a two-component form: 

              

                      ( ) ( ) 01 =−+−++



Gvm

r

F

r

F
 

                                          ( ) ( ) 01 =−−+−+



Fvm

r

G

r

G
                (6.1) 

 

Here we put the fine structure constant  =1 . The moment number 

 

                                                     
( )







+−
=

1,1

1,11

j

j
                                     (6.2) 

 

     At large   the radial functions F and G vary rapidly at the origin of co-

ordinates: 
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                                          (6.3)                                                              

 

     This involves difficulties in numerical integration of the equations in the re-

gion r→0. To prevent the integration step becoming too small it is convenient to 

turn to new functions isolating the main power dependence: 

−−
==

11
, GrgFrf . The Dirac equation for F and G components are trans-

formed as: 

 

                                         

( ) ( )
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gZZEZVgrff

n

n





+−−==

+−−+−=

'

2

               (6.4) 

Here the Coulomb units (6.C.u.) are used; 1 C.u. of  length = 1 a.u.Z; 1 C.u. 

of energy = 1 a.u. Z 2 . In Coulomb units the atomic characteristics vary weakly 

with Z. nE  is one-electron energy without the rest energy, the system of equa-

tions (6.4) has two fundamental, solutions. We are interested in the solution reg-

ular at  r →0. The boundary values of the correct solution are found by the first 

term s of the expansion into the Taylor series: 

 

               ( )( ) ( ) 1;120 =+−=  fZrEVg n  at  0  

             

                                  ( )( ) 1;20 22 =−−=  gZZEVf n  at  0                   (6.5) 

      

     The condition 0, →gf  at r →   determines the quantified energies of the 

state  E n . At correctly determined energy E n  of  the asymptotic  f  and g at 

r →  are: 

                                                     f  ,g~ ( )− nrexp                                   (6.6) 

 

where 
 = nEn 21   is the  effective main quantum number. The equations 

(6.4) were solved by the Runge-Kutter method. The initial integration point 
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6
0 10Rr = , where R is the nucleus radius, the end of the integration interval is 

determined as  nrk 30 . 

Earlier we calculated some characteristics of hydrogen-like ions with the 

nucleus in the form of a uniformly charged sphere; analogous calculations by 

means of an improved model were also made; Here the smooth Gaussian func-

tion of the charge distribution in the nucleus is used. Using the smooth distribu-

tion function (6.instead of the discontinuous one) simplifies the calculation pro-

cedure and permits flexible simulation of the real distribution of the charge in 

the nucleus. As in ref. [12] we set the charge distribution in the nucleus ( )r  by 

the Gaussian function. With regard to normalization we have: 

 

                                       ( ) ( ) ( )223 exp4 rRr −=                               (6.7)                                                      

( ) ( ) RRrdrrRrdrr = = 


0

3

0

2 ;1  

 

were RR ,4 2=  is the effective nucleus radius. The following simple de-

pendence of R on Z assumed: 

 

                                             ( )cmzR 31131060.1 −=                                 (6.8) 

 

Such definition of R is rather conventional. We assume it as some zeroth ap-

proximation. Further the derivatives of various characteristics on R are calculat-

ed. They describe the interaction of the nucleus with outer electron; this permits 

recalculation of results, when R varies within reasonable limits. The Coulomb 

potential for the spherically symmetric density ( )Rr  is: 

 

                         ( ) (( )  





+ 






−=



r

r

nucl RrrdrRrrdrrRrV '''

0

'2''1           (6.9) 

    It is determined by the following system of differential equations: 

 

( ) ( ) ( ) ( ) ( )RryrRrrdrrRrnuclV
r

,1,1, 2

0

'2''2'  =  
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                                  ( ) ( )RrrRry ,,' 2=                                          (6.10)                                                               

 

( ) ( ) ( ) ( )Rr
r

r
RrrrrRr ,

8
,2exp8,'

2

225 


−=−=−−=  

with the boundary conditions: 

( ) ( )rRVnucl −= 4,0   

 

( ) 0,0 =Ry ,  

 

                                         ( ) 323 324,0 RR ==                             (6.11) 

 

 

    Consider the Dirac-Fock type equations for a three-electron system nljs21 . 

Formally they fall into one-electron Dirac equations for the orbitals s1 1s and 

nlj  with the potential: 

                       ( ) ( ) ( ) ( ) ( )RrVrVnljrVsrVrV ex +++= 12                          (6.12) 

 

( )RrV  includes the electrical and the polarization potentials of the nucleus; the 

components of the Hartree potential: 

 

                                                               ( ) ( ) rrirrd
Z

irV

− = /

1
                                    

(6.13) 

( )ir  is the distribution of the electron density in the state | i >, exV is the ex-

change inter-electron interaction. The main exchange effect will be taken into 

account if in the equation for the s1 orbital we assume 

 

                                         ( ) ( ) ( )nljrVsrVrV += 1                                        (6.14) 
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and in the equation for the nlj  orbital 

                                                ( ) ( )srVrV 12=                                               (6.15) 

The rest of the exchange and correlation effects will be taken into account 

in the first two orders of the PT by the total inter-electron interaction [13-17].  

The used expression for ( )sr1  coincides with the precise one for a one-

electron relativistic atom with a point nucleus. The finiteness of the nucleus and 

the presence of the second 1s electron are included effectively into the energy 

sE1 . Actually, for determination of the properties of the outer nlj electron one 

iteration is sufficient. Refinement resulting from second iteration (6.by evalua-

tions) does not exceed correlation corrections of the higher orders omitted in the 

present calculation. The relativistic potential of core (6.the "screening" potential) 

( )( ) scrVsrV =12 1  has correct asymptotic at zero and in the infinity; at 0→  it 

changes to an appropriate potential constructed on the basis of non-relativistic 

hydrogen-like functions.   

Procedure for an account of the radiative QED corrections is in details 

given in the refs. [12,16,17]. Rergartding the vacuum polariation effect let us 

note that this effect is usually taken into account in the first PT theory order by 

means of the Uehling potential.  This potential is usually written as follows 

(6.c.f.[1,11]): 

( ) ( )( ) ( )



−

−
+−




−=



1
2

2
2 ,

3

21
2112exp

3

2
gC

rt

t
tZrtdt

r
rU                                 

(6.16) 

where  
Z

r
g


= . In our calculation we usually use more exact approach. The  

Uehling potential,  determined as a quadrature (6.16) may be approximated with 

high precision by a simple analytical function. The use of new approximation of 

the Uehling potential permits one to decrease the calculation errors for this term 

down to 0.5 – 1%. Besides, using such  a  simple analytical function form for 

approximating the Uehling potential allows its easy  inclusion into the general 

system of differential equations. This system   includes also the Dirac equations 

and the equations for  matrix elements. A method for calculation of the self-

energy part of the Lamb shift is based on an idea by Ivanov-Ivanova 

(6.c.f.[12,17]). In an atomic system the radiative shift and the relativistic part of 
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the energy are, in. principle, determined by one and the same physical field. It 

may be supposed that there exists some universal function that connects the self 

-energy correction and the relativistic energy. The self-energy correction for the 

states of a hydrogen-like ion was presented by Mohr [1] as: 

                               ( ) ( )nljZHF
n

Z
nljZHESE ,027148.0,

3

4

=                (6.17) 

 

The values of  F are given at  .2,2,2,1,11010 2321 ppssnljZ =−=  These results are 

modified here for the states 1s2 nlj of Li-like ions. It is supposed that for any ion 

with nlj electron over the core of closed shells the sought value may be present-

ed in the form: 

                               ( ) ( ) ( )1

3

4

,027148.0, −


= cmnljf
n

nljZESE               (6.18) 

The parameter ( ) RR EE ,41=  is the relativistic part of the bounding energy of the 

outer electron; the universal function ( )nljf ,  does not depend on the composi-

tion of the closed shells and the actual potential of the nucleus. The procedure of 

generalization for a case of Li-like ions with the finite nucleus consists of the 

following steps [17]:  

1). Calculation of the values RE  and   for the states nlj of H-like ions with the 

point nucleus (6.in accordance with the Zommerfeld formula);   

2). Construction of an approximating function ( )nljf ,  by the found reference Z 

and the appropriate ( )nljZHF ,  [1,11];  

3). Calculation of RE  and   for the states nlj of Li-like ions with the finite nu-

cleus; 4). Calculation of SEE  for the sought states by the formula (6.18).  The 

energies of the states of Li-like ions were calculated twice: with a conventional 

constant of the fine structure 1371=  and with .1000~ = The results of latter 

calculations were considered as non-relativistic. This permitted isolation of RE  

and  . A detailed evaluation of their accuracy may be made only after a com-

plete calculation of ( )nljZLiEn
SE

, . It may be stated that the above extrapolation 

method is more justified than using the widely spread expansions by the parame-

ter Z .  
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Energies of the quadruple (6.Wq) and magnetic dipole (6.W ) interactions, 

which define a hyperfine structure, are calculated as follows [11,20]: 

 

Wq=[+C(C+1)]B, 

 

W=0,5 AC, 

 

=-(4/3)(4-1)(I+1)/[i(I-1)(2I-1)], 

  

                           C=F(F+1)-J(J+1)-I(I+1).                          (6.19) 

 

Here I is a spin of nucleus, F is a full momentum of system, J is a full electron 

momentum. Constants of the hyperfine splitting are expressed through the 

standard radial integrals:  

 

A={[(6.4,32587)10-4Z2gI]/(6.42-1)}(6.RA)-2, 

(6.20) 

B={7.2878 10-7 Z3Q/[(6.42-1)I(6.I-1)} (6.RA)-3, 

 

Here gI  is the Lande factor, Q is a quadruple momentum of nucleus (6.in Barn); 

radial integrals are defined as follows: 

 




=
0

22

2- ),,/1()()()( RrUrGrFdrrRA  

                              

                                  


+=
0

3222

3- ),/1()]()([)( RrUrGrFdrrRA          (6.21) 

 

and calculated in the Coulomb units (6.=3,57 1020Z2m-2; = 6,174 1030Z3m-3 for 

valuables of the corresponding dimension). The radial parts F and G of two 

components of the Dirac function for electron, which moves in the potential 

V(6.r,R)+U(6.r,R), are determined by solution of the Dirac equations (6.see 
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above; system (6.1)). For calculation of potentials of the hyperfine interaction 

U(6.1/rn,R), we solve the following differential equations: 

 

U(6.1/rn,R)=-ny(6.r,R)/rn+1 

 

They are analogous to the equations (6.9) and (6.10). The functions 

dU(6.1/rn,R)/dR are calculated within the analogous procedure. The electric 

quadrupole spectroscopic HFS  constant B of an atomic state related to the elec-

tric field gradient q and to electric quadrupole moment eQ of the nucleus as: 

B=eqQ/h.  

So, to obtain the corresponding value of Q one  must combine the HFS 

constants data with the electric field gradient obtained in our approach  from the 

QED PT calculation.The details of calculation are presented in [11,14, 17,18]. 

 

6.3.  Results of calculation and conclusion  

 

We have carried out the test calculation of the hyperdine structure parameters 

(6.plus deriviatives of the energy contribution on nuclear radius) for atom of hy-

drogen 1H and superheavy H-like ion with nuclear charge Z=170. For hydrohen 

atom there are available sufficiently eact data for hyperfine splitting energiesof 

1s, 2s levels. For superheavy ion Z=170 there is noe experiment and we an only 

compair theoretical results with the fermi function for charge distribution in a 

nucleus with data of analogous calculation with the gauss function for charge 

distribution. The electron moves in the nuclear V plus vacuum-polarization po-

tential (6.the core potential is naturally absent). In table 1 we present the exper-

imental [21] an theoretical (6.our test calculation) results for hyperfine splitting 

energies  for 1s, 2s levels of hydrogen atom  There is very good agreement be-

tween theiry and experiment.  

In table 2 we present the results of our calculation for the hyperdine structure pa-

rameters (6.plus deriviatives of the energy contribution on nuclear radius) for the 

superheavy H-like ion with nuclear charge Z=170. We have used the denotations 

as follows:    
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Table 6.1. Experimental [21] an theoretical (6.our test calculation) results for 

hyperfine splitting energies for 1s, 2s levels of hydrogen atom 

 

Electron term  

Quantum numbers 

of  

full moment 

Experiment 

(6.F,F’), MHz 

E(6.F,F’), 10-3 cm-

1  

Наш расчет 

(6.F,F’), MHz 

E(6.F,F’), 10-3 cm-1 

1s 2S1/2  (6.1,0) 1420,406 

47, 379 

1419,685 

47, 355 

2s 2S1/2  (6.1,0) 177,557 

5, 923 

177,480 

5, 920 

 

 

A=108A/Z3gI,(6.eV);     

DA=(6.10-2/Z4gI)(6.A/R), (6.eV/cm); 

B=(6.107BI(6.2I-1))/Z3Q, (6.eV/Barn); 

                             DB=[(6.10-3I(6.2I-1))/Z4Q](6.B/R), (6.eV/Barn cm);                          

(6.22) 

U=-(6.104/Z4)<U(6.r,R)>, (6.eV);   

DU=(6.10-1/Z5)(6.<U(6.r,R)>/R), (6.eV/cm);. 

DV=[10-8/Z3](6.<V>/R), (6.eV/cm); 

 

Table 6.2  Characteristics of one-electron states for H-like ion with nuclear 

charge Z=170 (our calculation) 

 1s1/2 2s1/2 2p1/2 2p3/2 3s 1/2 3p1/2 3p3/2 

A 4337 831 3867 1,59 207 322 0,615 

DA 1039 228 941 0,0001 56,8 84,0 0,0001 

B 9091 1897 8067 0,07 475 707 0,04 

DB 7245 1557 6405 0,0008 395 574 0,0003 

DV 1255 273 1108 0,0011 67,7 98,3 0,0005 

U 1453 282 1301 1,31 69,3 109 0,62 

DU 2343 503 2071 0,0015 127 185 0,0007 
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The detailled results of calculation of different energy contributions (6.eV) 

into energy of the 2s1/2-2p1/2  transition in spectrun of the U89+, calculated 

within different theoretical schemes: our approach (6.column F), MCDF  

(6.Cheng-Kim-Desclaux; А); model PT with the Dirac-Fock “0” 

approximation (6.Ivanov etal; B);  relativistic multiparticle PT with the zeroth 

Hartree-Fock-Slater potential (6.Persson-Lindgren-Salomonson; С);  

multiparticle PT with Dirac-Fock “0” approximation  (6.Blundell; D) [4-

8,11,14] have been presented in ref. [12].  Though agreement between all 

theoretical and experimental data is in a whole quite good, more exact results 

are obtained by meqans of the methods (6.С) and (6.F).  The results of our 

calculation for contributions to energy due to the the self-energy (6.SE) part of 

the Lamb shift and vacuum polarization correction (6.VP)  of the Lamb shift 

for Li-like ions (6.account from core 1s2 energy) are also presented in ref. [12]. 

The detailed analysis of the VP and SE energy contributions shows that for 

ions with small Z the QED effects contribution is not significant, but with 

growth of Z (6.Z>40) a contribution of the QED became very important. 

Moreover for heavy and superheavy ions its account is principally important. 

Regarding the role of the nuclear finite size effect, let us underline that  for 

multicharged ions with z<20 its contribution is very small, but for ions with 

Z>70 it can approximately be equal to the vacuum polarization contribution 

on absolute value. In table 3 the results of calculation of the nuclear correction 

into energy of the low transitions for Li-like ions are presented.  

Table 6.3. Results calculation of the nuclear finite size correction into energy  

(6.сm –1) of the low transitions for Li-like ions and values of the effective radius 

of nucleus (6.10 –13 cm) 

Z 2
21S - 2

21p  2
21s  - 2

23p  R 

20 - 15,1 - 15,5 3,26 

30 - 117,5 - 118,0 3,73 

41 - 659,0 - 670,0 4,14 

59 - 6 610,0 - 6 845,0 4,68 

69 - 20 690,0 - 21 712,0 4,93 

79 - 62 315,0 - 66 931,0 5,15 

92 - 267 325,0 - 288 312,0 5,42 
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  Our calculation showed also that a variation of the nuclear radius on 

several persents could lead to to changing the transition energies on dozens of 

thousands 103cm-1  We have carried out the calculation of constants of the hy-

perfine interaction: the electric quadruple constant B, the magnetic dipole 

constant A with inclusion of nuclear finiteness and the Uehling potential for 

Li-like ions. Analogous calculations of the constant A for ns states of hydro-

gen-, lithium- and sodium-like ions were made in ref. [11,22].  

Table 6.4 Constants of the hyperfine electron-nuclear interaction:  

A=Z3gI A cm-1,     B= B
II

QZ

)12(

3

−
 cm-1 

nlj Z 20 69 79 92 

2s A  93 –03 176 -02 215 -02 314 -02 

3s A  26 –03 51 –03 63 –03 90 –03 

4s A  15 –03 19 –03 24 –03 36 –03 

2p1/2 A  25 –03 56 –03 71 –03 105 –02 

3p1/2 A  81 –04 16 –03 20 –03 31 –03 

4p1/2 A  32 –04 72 –04 91 –04 11 –03 

2p3/2 A  50 –04 67 –04 71 –04 72 –04 

 B  9 –04 13 –04 15 –04 17 –04 

3p3/2 A  13 –04 19 –04 21 –04 22 –04 

 B  31 –05 51 –05 55–05 62 –05 

4p3/2 A  62 –05 89 –05 92 –05 8 –04 

 B  10 –05 20 –05 22 –05 26 –05 

3d3/2 A  88 –05 10 –04 11 –04 12 –04 

 B  51 –06  9 –05 10 –05 11 –05 

4d3/2 A  35 –05 51 –05 55 –05 58 –05 

 B  12 –06 44 –06 50 –06 56 –06 

3d5/2 A  36 –05 48 –05 50 –05 52 –05 

 B  21 –06 38 –06 39 –06 40 –06 

4d5/2 A  15 –05 19 –05 20 –05 21 –05 

 B  59 –07 15 –06 16 –06 17 –06 
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 In these papers other basis’s of the relativistic orbitals were used. Besides, 

another model for the charge distribution in the nucleus was accepted and anoth-

er method of numerical calculation for the Uehling potential was used. In table 4 

the calculation results for the constants of the hyperfine splitting for the lowest 

excited states of  Li-like ions are presented.  Analogous data for other states 

have been presented earlier (6.see ref. [12]). 

 In tables 5, 6 we present calculated values of deriviatives of the one-

electron characteristics on nuclear radius (6.in cm-1/cm) for 2l,3l,4l (6.l=0,1) 

states of the Li-like ions with minimally possible valus of  j: 

 

dV /dR=Z3DV (cm-1/cm); 

 

 

dU /dR=Z5DU (cm-1/cm), 

 

 

dA/dR=Z4gIDA (cm-1/cm). 

 

Here 1cm-1 is an energy unit and 1cm is a length unit. Let us remember that here 

V is a potential of the elctron-nuclear interaction and U is the Uehling vacuum-

polarization potential. Considered value of full moment is  j=3/2 for deriviative 

of the constant B on nuclear radius B/R and value j=3/2  for other operators. It 

should be noted that the correspondimg characteristics are less sesitive to the 

nuclear size for states with the large valus of moment j. In any case cited effects 

are not observed in the modern experiment.  

In table 7 we present the calculated values of deriviatives of the hfs constant B 

on nuclear radius (6.in cm-1/cm); dB/dR= -Z4QDB/[I(6.2I-1)]. Let us not that for 

deriviatives in tables 5,6,7 the main member of degree dependence upon a 

charge Z is separated. The remained Z-dependence is directly connected with 

relativistic and nuclear (6.the finite nuclear charge) effects in the one-electron 

functions. 
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 Table 6.5. Deriviatives of the one-electron characteristics on nuclear radius 

(in cm-1/cm) for 2s,3s,4s states of  the Li-like ions:  dV /dR=Z3DV,  dU 

/dR=Z5DU,  dA/dR=Z4gIDA 

nlj Z  20 30 41 59 69 79 92 

2s1/2 D

V 

10 

+11 

20+1

1 

41 

+11 

121 

+12 

223 

+12 

415 

+12 

967 +12 

D

U 

15 

+06 

14+0

6 

16 

+06 

20 +06 25 +06 36 +06 64 +06 

D

A 

15 

+06 

19+0

6 

24 

+06 

44 +06 63 +06 101 

+07 

197 +07 

3s1/2 D

V 

28 

+10 

60+1

0 

12 

+11 

35 +11 65 +11 122 

+12 

293 +12 

D

U 

45 

+05 

42+0

5 

44 

+05 

60 +05 81 +05 10 +06 18 +06 

D

A 

44 

+05 

56+0

5 

74 

+05 

12 +06 18 +06 29 +06 57 +06 

4s1/2 D

V 

11 

+10 

24+1

0 

51 

+10 

13 +11 26 +11 50 +11 121 +12 

D

U 

18 

+05 

17+0

5 

18 

+05 

24 +05 32 +05 47 +05 80 +05 

D

A 

18 

+05 

23+0

5 

30 

+05 

55 +05 81 +05 11 +05 23 +05 
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Table 6.6. Deriviatives of the one-electron characteristics on nuclear radius 

(in cm-1/cm) for 2p,3p,4p states of the Li-like ions:  dV /dR=Z3DV,  dU 

/dR=Z5DU, dA/dR=Z4gIDA  

nlj/

Z 

 20 30 41 59 69 79 92 

2p1/2 D

V 

31 

+08 

15+09 66 

+09 

43 

+10 

10 

+11 

29 

+11 

108 

+12 

D

U 

50 

+03 

11+04 21 

+04 

72 

+04 

12 

+05 

25 

+05 

72 

+05 

D

A 

55 

+03 

16+04 42 

+04 

15 

+05 

34 

+05 

78 

+05 

20 

+06 

3p1/2 D

V 

10 

+08 

57+08 22 

+09 

14 

+10 

41+10 11 

+11 

38 

+11 

D

U 

18 

+03 

39+03 84 

+03 

25 

+04 

49 

+04 

10 

+05 

25 

+05 

D

A 

19 

+03 

56+03 13 

+04 

60 

+04 

12 

+05 

27 

+05 

81 

+05 

4p1/2 D

V 

49 

+07 

25+08 10 

+09 

69 

+09 

17 

+10 

46 

+10 

16 

+11 

D

U 

87 

+02 

17+03 37 

+03 

11 

+04 

21 

+04 

42 

+04 

10 

+05 

D

A 

86 

+02 

24+03 67 

+03 

26 

+04 

58 

+04 

11 

+05 

34 

+05 

 

Table 6.7. Deriviatives of the hfs constant B on nuclear radius (6.in cm-

1/cm); dB/dR= -Z4QDB/[I(6.2I-1)]. 

nlj/Z  20 30 41 59 69 79 92 

2p3/2 DB 02 

+02 

05 

+02 

11 

+02 

17 

+02 

27 +02 40 +02 71 +02 

3p3/2 DB 19+01 26 

+01 

37 

+01 

57 

+01 

95 +01 15 +02 27 +02 

4p3/2 DB 03 

+01 

06 

+01 

11 

+01 

21 

+01 

38 +01 60 +02 12 +02 
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Релятивістський енергетичний підхід у математичній фізиці радіаційних та 

автоіонізаційних процесів у важких скінченних фермі-системах. Ррелятивістське рів-

няння дірака для електрона у зовнішньому полі. Метод теорії збурень qed для розра-

хунку важких атомів і багатозарядних іонів (визначення базису релятивістських хви-

льових функцій; ядерний кінцевий розмір і радіаційні кед ефекти). Одночастинкове 

оптимізоване калібрувально-інваріантне представлення. Енергетичний підхід до ро-

зрахунку ймовірностей радіаційного переходу. Уявна частина секлярнох матриці. Е 

енергетичний підхід до розрахунку ширини автоіонізації для атомів.  

 

Релятивістський енергетичний підхід до радіаційних та автоіонізаційних процесів у ва-

жких скінченних фермі-системах (атомів та іонів). Ймовірності радіаційного перехо-

ду та сили осцилятора для переходів у спектрах деяких важких атомів і іонів.  

імовірності радіаційного переходу та сили осцилятора для переходів у спектрах бага-

тозарядних іонів. Ймовірності радіаційного переходу та автоіонізаційнї ширини для 

 багатозарядні іони. Математична модель розпаду автоіонізаційних резонансів  у слаб-

кому електричному полі. Математичні основи лазерного фотоіонізаційного методу 

розділення ізотопів 
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