III INTERNATIONAL SCIENTIFIC CONFERENCE SUMMER SESSION

18 - 21 JUNE 2018, VARNA, BULGARIA

ISSN (Print) - 2535-0153 ISSN (Online) - 2535-0161

 (\mathbf{r})

ORGANIZER SCIENTIFIC-TECHNICAL UNION of MECHANICAL ENGINEERING "INDUSTRY 4.0"

Year II

Volume 1/3

JUNE 2018

ISSN (Print) - 2535-0153 ISSN (Online) - 2535-0161

THEMATIC FIELDS <u>TECHNOLOGICAL BASIS OF "INDUSTRY 4.0"</u> DOMINANT TECHNOLOGIES IN "INDUSTRY 4.0"

BUSINESS & "INDUSTRY 4.0" SOCIETY & "INDUSTRY 4.0"

ORGANIZER SCIENTIFIC-TECHNICAL UNION OF MECHANICAL ENGINEERING "INDUSTRY 4.0"

108 Rakovski str., 1000 Sofia e-mail: office@industry-4.eu www.industry-4.eu

INTERNATIONAL EDITORIAL BOARD

Co-Chairs:					
Prof. D.Sc. Georgi Popov, DHC, Prof. Dr. Dr. Jivka Ovtcharova, DHC,					
Technical University of Sofia, BG	Karlsruhe Institute of Technology, GE				
Members:					
Acad. Igor Bychkov	Institute for System Dynamics and Control Theory SB RAS				
Cor. member Alexey Beliy	National Academy of Sciences of Belarus				
Cor. member Svetozar Margenov	Bulgarian Academy of Science				
Prof. Alexander Afanasyev	Institute for Information Transmission Problems				
Prof. Alexander Guts	Omsk State University				
Prof. Andrzej Golabczak	Technical University of Lodz	PL			
Prof. Andrey Firsov	Saint-Petersburg Polytechnic University	RU			
Prof. Bobek Shukley	Ss. Cyril and Methodius University of Skopie	MK			
Prof. Boris Gordon	Tallinn University of Technology	EE			
Prof Branko Sirok	University of Liubliana	SI			
Prof. Claudio Melchiorri	University of Bologna				
Prof Cveta Martinovska	Goce Delchey University Stin	MK			
Prof. Dale Dzemydiene	Mykolas Romeris University Vilnius	IT			
Prof. Dimitar Vonchay	Free Bulgarian University, Villius	BG			
Prof. Dimitrios Vlachos	Aristotla University of Thesseloniki	GP			
Prof. Calina Nikalahaya	Tashnical University of Serie				
Prof. Canand Lange	Netional University of Solia				
Prof. Gerard Lyons	National University of Ireland, Galway				
Prof. Giovanni Pappalettera	Technical University of Bari, Italy				
Prof. Henrik Carlsen	Technical University of Denmark	DK			
Prof. Idilia Bachkova	University of Chemical Technology and Metallurgy	BG			
Prof. Idit Avrahami	Ariel Univerity	IL			
Prof. Iurii Bazhal	National University of Kyiv-Mohyla Academy	UA			
Prof. Jürgen Köbler	University of Offenburg	DE			
Prof. Jiri Maryska	Technical University of Liberec	CZ			
Prof. Katia Vutova	Institute of electronics, Bulgarian Academy of Sciences				
Prof. Lappalainen Kauko	University of Oulo	FI			
Dr. Liviu Jalba	SEEC Manufuture Program	RO			
Prof. Luigi del Re	Johannes Kepler University, Linz	AT			
Prof. Majid Zamani	Technical University of Munich	DE			
Prof. Martin Eigner	Technical University of Kaiserslautern	DE			
Prof. Michael Valasek	Czech Technical University in Prague	CZ			
Prof. Milija Suknovic	University of Belgrade	RS			
Prof. Miodrag Dashic	University of Belgrade	RS			
Prof. Mladen Velev	Technical University of Sofia	BG			
Prof. Murat Alanyali	TOBB University of Economics and Technology	TR			
Prof. Nina Bijedic	Dzemal Bijedic University of Mostar	BA			
Prof Ninoslav Marina	University of Information Science and Technology - Ohrid	MK			
Prof. Olga Zaborovskaja	State Inst. of Econom. Finance, Law and Technologies	RU			
Prof. Pavel Kovach	University of Novi Sad	RS			
Prof. Peter Koley	University of Transport Sofia	BG			
Prof. Peter Korondi	Budanest University of Technology and Economics	HU			
Prof. Peter Sincek	Technical University of Košica	SV SV			
Prof Petra Bittrich	Berlin University of Annlied Sciences	CE			
Prof. Prodreg Desig	High Tashnical Mashanical School Tratanik	DE			
Prof. Padu Dogoru	High Technical Mechanical School, Trstenik				
Prof. Radu Dogaru	Tashai ash University of Caluster	RO			
Prof. Raicho Harionov	Technical University of Gabrovo	BG			
Prof. Raul Turmanidze	Georgian Technical University	GE			
Prof. Rene Beigang	Technical University of Kaiserslautern	DE			
Prof. Rozeta Miho	Polytechnic University of Tirana	AL			
Prof. Sasho Guergov	Technical University of Sofia	BG			
Prof. Seniye Umit Oktay Firat	Marmara University, Istambul	TR			
Prof. Sreten Savicevic	University of Montenegro	ME			
Prof. Stefan Stefanov	Technical University of Sofia	BG			
Prof. Svetan Ratchev	University of Nottingham	UK			
Prof. Sveto Svetkovski	St. Cyril and St. Methodius University of Skopje	MK			
Prof. Tomislav Šarić	University of Osijek	HR			
Prof. Vasile Cartofeanu	Technical University of Moldova	MD			
Prof. Vidosav Majstorovic	Technical University of Belgrade	RS			
Prof. Vjaceslavs Bobrovs	Riga Technical University	LV			
Prof. Inocentiu Maniu	Politehnica University of Timisoara				
DiplKfm. Michael Grethler	Karlsruhe Institute of Technology	DE			

CONTENTS

TECHNOLOGICAL BASIS OF "INDUSTRY 4.0". DOMINANT TECHNOLOGIES IN "INDUSTRY 4.0"

INDUSTRY 4.0: REQUIRED PERSONNEL COMPETENCES Panos Fitsilis1, Paraskevi Tsoutsa, Vassilis Gerogiannis
APPLICATION OF ARTIFICIAL INTELLIGENCE FOR THE IMPLEMENTATION OF INDUSTRY 4.0 CONCEPT prof. Dr. Ing. Kuric I., Ing. Zajačko I., PhD., Ing. Císar M., PhD., Tomáš Gál
A COMPARISON OF SEQUENTIAL QUALITY CONTROL METHODS Prof. Gurevich G., Mrs. Zohar L
ANALYTIC SOLUTION OF A NONSTATIONARY EQUATION OF KOLMOGOROV-FELLER TYPE WITH A NONLINEAR
Prof. Dr. Tech. Sci. Andrei N. Firsov
COMPLEX SYSTEM, UTILITY AND DECISION CONTROL: A RISK PORTFOLIO OPTIMIZATION CASE Prof. M.Sc. PavlovY. PhD., Prof.M.Sc. AndreevR. PhD
SECURE AND EFFICIENT CLOUD COMPUTING ENVIRONMENT Dr. PhD Associate Professor Chaikovska M. , Chaykovskyy O
ANALYTICAL AND NUMERICAL ASPECTS OF THE SOLUTION OF THE PROBLEM OF A VISCOUS WEAKLY COMPRESSIBLE LIQUID MIXTURE MOTION THROUGH THE VERTICAL PIPE OF THE CIRCULAR CROSS-SECTION Asst., MSc Sorokina Natalia
SOLID BODY SURFACING MATHEMATICAL MODEL IN STRATIFIED INCOMPRESSIBLE FLUID UNDER THE ACTION OF BUOYANCY FORCE AND LIMITED MOTION CONTROL
Prof., Dr. Tech. Sci. Firsov A.N., Postgraduate Kuznetcova L.V
EFFECT OF TREATMENT TEMPERATURE OF TiO2/SiO2 AND ZrO2/SiO2 COATINGS ON THEIR CORROSION STABILITY Assist. Prof. St. Yordanov PhD., Assoc. Prof. I. Stambolova PhD, Assoc. Prof. V. Blaskov PhD, Prof. L. Lakov PhD, Prof. S. Vassilev PhD, Asst Y. Kostova, M. Assoc. Prof. B.Jivov PhD
SEDIMENT RECYCLE AFTER BIODIESEL PRODUCTION Sofronkov A.N. Professor, Doctor of Engineering Science; Vasilyeva M.G. Senior Lector
WELDING OF GRADE 1 TITANIUM BY HOLLOW CATHODE ARC DISCHARGE IN VACUUM Assos. Prof. PhD. Gospodinov D. D., Assist. Prof. PhD. Ferdinandov N. V., Assist. Prof. PhD. Ilieva M. D., Assos. Prof. PhD. Radev R. H., Mag. Eng. Dimitrov St. P
FORMATION OF THE VULCANIZATION STRUCTURE OF THE ELASTOMERIC MIXTURES WITH THE PRESENCE OF
Associate Prof. PhD eng. Tzolo Tzolov, PhD eng. Aleksandar Stoyanov, Mas.deg.eng.Margarita Trencheva
ELECTRICITY GENERATION BY MEANS OF MICROORGANISMS FROM DIFFERENT PHYSIOLOGICAL GROUPS Marina Nicolova, Stoyan Groudev, Irena Spasova, Veneta Groudeva, Plamen Georgiev
MOLD DESIGN AND PRODUCTION BY USING ADDITIVE MANUFACTURING (AM) - PRESENT STATUS AND FUTURE PERSPECTIVES
Ognen Tuteski M.Sc., Atanas Kočov, PhD
PECULIARITIES OF CHEMICAL-THERMAL TREATMENT OF SEMI-PERMEABLE POWDER METALLURGICAL MATERIALS IN SEMI-PERMEABLE SATURATION MEDIA Assoc Prof. Mitev, I., Ph.D; M.Sn. Vinev, I
МОДЕЛЬНО-АЛГОРИТМИЧЕСКАЯ ПЛАТФОРМА ДЛЯ УПРАВЛЕНИЯ ТЕПЛОВЫМ БАЛАНСОМ АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА Dr. Eng. Biskgshovg T.V., Bostgraduate Portwarkin A.A.
DI. DIE. I ISRADIOVA I. V., I OSIGIAUUAIC I ORYAIIKII A.A

GENETIC MODELING AND STRUCTURAL SYNTHESIS OF CNC MULTI-SPINDLE AUTOMATIC MACHINES OF NEW	
GENERATION	
Prof. Dr. Eng. Kuznietsov Y., Ph.D. Gaidaienko Iu 5	57

BUSINESS & "INDUSTRY 4.0". SOCIETY & "INDUSTRY 4.0"

ECONOMIC ASPECTS OF THE DEVELOPMENT OF INFORMATION AND COMMUNICATION TECHNOLOGIES IN UKRAINE	
Doctor of Economic Sciences, Professor, Zhavoronkova G., PhD (Economics), Associate Professor, Zhavoronkov V., PhD (Economics)	
Associate Professor, Klymenko V.	67
FORMING THE POTENTIAL OF SCIENTIFIC KNOWLEDGE IN APPLIED SCIENTIFIC ORGANIZATIONS	71
	. /1
OPPORTUNITIES OF IMPLEMENTATION OF "INDUSTRY 4.0" FOR DEVELOPMENT OF TRANSPORT INDUSTRY IN UK BAINE	
Assoc. Prof. Alieksieiev V. PhD., Dr. Dovhan V. PhD., Prof. Alieksieiev I. D.Sc.	75
DISTINCTIVE FEATURES OF "SCIENCE-INTENSIVE PRODUCTS" AS INNOVATIVE WITH ESPECIALLY HIGH PROPERTIES	
Prof. Dr. Elena Yrevna Sidorova	78
SERVICE SIMULATION IN INDUSTRY 4.0: A COMPARISON OF SIMULATORS	
Tsoutsa P. M.Sc., Professor Fitsilis P. PhD., Assistant Professor Ragos O. PhD.	81
MACHINE OPERATION RESEARCH - PRODUCT AND MACHINE DATA INTEGRATION	
DiplIng. DiplKfm.(FH) Arndt S. G., DiplIng. Klement S., DrIng. Saske, B., Prof. DrIng. habil. Stelzer R. H.	85
COVEDNANCE OF INDUSTRIE 4.0. CONTRIBUTION TO THE DISCUSSION	
PhD Assistant Professor Renata Śliwa	89
	07
GEOMARKETING IS AN INNOVATIVE TECHNOLOGY BUSINESS	
Melnyk L., PhD (Economics), Associate Professor, Nyzhnyk L., graduate student	93
FEASIBILITY STUDY FOR THE IMPLEMENTATION OF EDI SYSTEMS FOR INFORMATION EXCHANGE BETWEEN	
BULGARIAN BLACK SEA PORTS AND ECONOMIC OPERATORS	06
Senior Assistant Prof. varbanova A. PhD	96
САМООРГАНИЗАНИЯ И ТРАНСЛИСНИПЛИНАРНЫЙ ПОЛХОЛ В ПРОЕКТИРОВАНИИ СИСТЕМ	
Sorjko E., Doctor of Science, , As. Prof. Yegorova-Gudkova T,	100
v	
АВАРИИНА ДИАГНОСТИКА И РЕМОНТ НА МАШИНИ И СЪОРЪЖЕНИЯ В ЛЕКАТА ПРОМИШЛЕНОСТ	104
инж. мартин жотев	104
RADIATION PROTECTION TRAINING AT VASIL LEVSKI NMU AND NRU "MOSCOW POWER ENGINEERING	
Chief Assistant Professor PhD eng. Dolchinkov N. T., Acos, Prof. PhD Hyostova M. S.	108
EXPLORATION OF THE RADIOECOLOGICAL STATUS OF THE DRINKING AREA OF VELIKO TARNOVO	
Chief Assistant Professor PhD eng. Dolchinkov N. T.	111

SEDIMENT RECYCLE AFTER BIODIESEL PRODUCTION

ПЕРЕРАБОТКА ОСАДКОВ, ОБРАЗУЮЩИХСЯ ПОСЛЕ ПОЛУЧЕНИЯ БИОДИЗЕЛЯ

Sofronkov A.N. Professor, Doctor of Engineering Science; Vasilyeva M.G. Senior Lector

Odessa State Ecological University. Odessa, Ukraine.

a_sofronkov@ukr.net

razmargo@ukr.net

Table 1

The EU's energy policy is to increase the energy of renewable sources to 15% by 2020 with the production of biodiesel being ~ 7% of the total energy produced. In the field of transport energy supply the EU policy is to support the reduction of polluting gases emissions.

In 2014 biodiesel production amounted to 3.0 billion liters worldwide, $\sim 90\%$ of which was produced in Europe. The production and use of biodiesel in Germany has increased significantly due to tax exemption. This was facilitated by the established wide network of filling stations (1500).

It should be taken into account that biofuel is 1.5 times cheaper than gasoline and when biofuel is burned, just as much carbon dioxide (CO_2) is released into the atmosphere as absorbed by its plants which are its raw materials.

Table 1 shows the total amount of energy consumed when using various types of fuel.

Total amount of energy consumed when using various types of fuel (million tons).

Fuel	1990	2000	2010	2020	2030
Gasoline	132,0	130,0	142,0	145,0	141,0
Kerosene	29,0	45,0	53,0	63,0	72,0
Diesel	103,0	148,0	182,0	208,0	224,0

However, waste remained after biodiesel production pollutes the environment [1]. The process of production is represented in the scheme.

The purpose of this research is to develop a technology for processing residues remained after biodiesel production in order to reduce environmental pollution.

The material of the research is the sediment remained at factories after biofuel production.

The object was initially examined chromatographically in order to establish the composition of sediment formed after biofuel production [2]. Sediment electro-oxidation was carried out in a conventional glass cell with a separated cathode and anode space in a 7M solution of potassium hydroxide (KOH) at various electrodes (Pt, Ni-Re, Ni₂B, Co₂B, Fe₂B) at different temperatures and sediment concentrations at the Sistem-500 potentiostat. The potential was measured relative to the mercury oxide reference electrode [3]. The degree of oxidation was judged not only by the polarization curves obtained, but also by the position and magnitude of the peaks in the IR spectra taken before and after the sediment oxidation. The substances obtained again after electrooxidation were identified using various physicochemical methods of UV, IR spectroscopy [4-6]. The sediment composition studied with a chromatograph is shown in Table 2.

Table 2

N/N	Substance	Sediment	Sediment	Sediment	
		fraction	fraction	fraction	
1	Glycerin	83,60			
			97,80	95,00	
2	Esters of	0,10			
	methyl acids C-		0,15	0,10	
	16:0				
3	Esters of	0,40	-		
	methyl acids C-			-	
	16:0				
4	Acids C-16:0	0,10			
			0,10	0,08	
5	Acids C-18:N	-			
			0,40	0,35	
6	Ester of methyl	-		-	
	acid C-22:0		0,06		
7	Monoglyceride				
		4,50	0,20	2,00	
8	Ester of methyl				
	acid C-18:0	4,50	-	2,50	
9	\sum Esters of				
	methyl acid C-	2,20	2,00	0,20	
	18:1+2+3				
10	\sum Esters of				
	methyl acid C-	0,60	-	-	
	18:N				

The composition of the researched sediment obtained during biodiesel production at various factories

As can be seen at the table above, the composition of sediment obtained at various factories differs insignificantly. The polarization curves obtained at sediment electro-oxidation when producing biodiesel are presented in Fig. 1.

Puc 1. The polarization curves obtained at sediment electrooxidation after biodiesel production: 1- smooth Ni; 2- Fe₂B; 3- Co₂B; 4- Ni₂B; 5- Ni-Re (303K); 6- Ni-Re (323K)

As can be seen at the figure, sediment electro-oxidation obtained in biofuel production increases for all the researched catalysts electrodes (Pt, Ni-Re, Ni₂B, Co₂B, Fe₂B) with increasing temperature and concentration in the alkaline solution (7M KOH), which is not unexpected. The potential of the working electrode was established in 3-5 minutes and was reproduced quite well while shifting into the field of large potentials with the researched sediment concentration increase. The maximum current density achieved on smooth platinum is ~ 10 mA / cm² at the potential of 0.3 V.

The researched catalysts (Pt, Ni-Re, Ni₂B, Co₂B, Fe₂B) were studied by X-ray diffraction analysis on unfiltered Fe_{$\kappa\alpha$}

radiation (λ_{Fe} = 1,93 Angstrom). The URS-60 apparatus (the "powder" method, the Debye camera) was used for the X-ray check.

The Raney alloy was obtained by adding powdered nickel to the aluminum melt followed by cooling in air to room temperature. The alloy was then crushed to a powdery condition. The alloy leaching was carried out during a day in a 20% sodium hydroxide solution (NaOH). The content was then transferred to a stainless steel container and placed on a water bath for 8 hours. After the mentioned time the mother liquor was drained, the alloy was poured with a fresh 30% solution, placed in an autoclave, heated to a temperature of 353-363 K. The autoclave was cooled to a room temperature, the resulting alloy was washed with a 10% NaOH solution 3-5 times and then with distilled water to pH = 7. The resulting catalyst was stored in ethyl alcohol solution [7].

Borides of variable valence metals (Ni₂B, Co₂B, Fe₂B) were electrochemically obtained by using an electrolyte of the following composition: NiCl₂· 6· H₂O (AR) - 120 g/l; NaBH₄ - 5g/l; NaOH - 40 g/l; Rochelle salt - 50 g/l; The bath temperature is 333 K; sedimentation time - 20 min. To slow down the hydrolysis reaction a strong alkaline medium pH>12 was used. $6Ni^{2+}$ + 5 BH₄⁻+ $6H_2O$ +7e \rightarrow 3 Ni₂B + 2B(OH)₃ + 13 H₂

To establish the phase composition of the obtained borides not only X-ray phase analysis was used but the amount of boron was also determined. For that purpose the films were dissolved in "royal vodka" and boron was determined by the method [8].

Calculation of interplanar distances was carried out according to the Wolf-Brag formula [9]

 $2d \sin \Theta = n\lambda$

The catalyst dispersion was carried out according to the Selyakov-Scherrer formula [10].

The crystal lattices parameters were calculated from quadratic forms for various syngonies (cubic, tetragonal, hexagonal) [11]. The results of the calculations are presented in Table 3.

Parameters of crystal lattice in the Ni-Re alloy						
Phase	Parameters of erystal lattice phases crystal lattice in the equilibrium condition		Parameters of the crystal lattice in the Ni-Re alloy			
	a, A ⁰	b, A ⁰	c,A ⁰	a, A ⁰	b, A ⁰	c,A ⁰
Ni Al ₃	6,611	4,812	7,366	6,650	4,770	7,390
Ni ₂ Al ₃	4,028	4,89	-	4,045	4,855	-
Ni Al	2,887	-	-	2,872	-	-
Ni ₂ B	-	-	-	4,985	-	4,253
Co ₂ B	-	-	-	5,027	-	4,222
Fe ₂ B	-	-	-	5,110	-	4,250

 Table 3

 Parameters of crystal lattice in the Ni-Re allo

It is known that the catalytic activity of variable valency metal alloys depends not only on the nature and size of the catalyst surface but also on the d-characteristic surface [12].

There is a relationship between the d-characteristic, the number of electrons (z) above the argon shell and the radius of the single bond (R).

 $R = 1,825-0,043z-(1,6-0,1z) \delta 10^{-2}$

There is another formula that expresses the relationship between single bond radius and fractional bond index (the ratio of valency to the coordination number) $R = R_n + 0.3 \text{ lg n}$

So for δ we get:

 $\delta = (1,825 \cdot R_n - 0,3 \lg n \cdot 0,043z) : (1,6 \cdot 0,1 z);$

The change in the crystal lattice parameter due to impurities introduction and the carrier nature will lead to a change in the catalytic activity, which we observe as a more complete

SPECORD """

Fig. 2a

Fig. 2b

As can be seen at the obtained spectra electro-oxidation shows significant changes in the wave number range of $2800-1550 \text{ cm}^{-1}$ and $1550 - 650 \text{ cm}^{-1}$.

The obtained reaction products can be identified as: I-1,3dihydroxypropanol (dihydroxyacetone), II-2-oxo, 3hydroxypropanoic acid (hydroxyhydric acid), III-2-oxopropanedioic acid (mesoxalic acid) - a component of lotions, emulsifiers, creams to intensify tanning, catalyst for the synthesis of esters.

This reaction was studied [13], nickel (I and II) and palladium applied to coal (III) were used as a catalyst. The sediment oxidation formed in the biofuel production on Ni-Re rather than on borides of variable valency metals.

To confirm the possibility of sediment electro-oxidation, production and identification of electro-oxidation products formed after biofuel production in alkaline electrolyte, an "Specord" IR spectrometer was used. Typical IR spectra of sediment oxidized on Ni-Re are shown in Fig. 2a, b

Sediment electro-oxidation can be represented by the following scheme

borides allowed to increase the yield of the reaction product. This research resulted in developing a technique for recycling waste generated in the biodiesel production.

It shows the possibility of a more complete electrooxidation of generated waste using Ni - Re catalysts and a transition metal boride (Me₂B)

use of other catalysts, Raney nickel (Ni-Re) and Me2B

REFERENCES

1. Statistic in focus – Agriculture and fisheries – 3/2006. European Communities. 2006 p. p. 6.

2. Porzinskiy S., Yankovskiy M., Berman A. [Fundamentals of chromatography applications in catalysis.] Moscow: MIR, 2006. 560 p.

3. K. Vetter. Elektrochemicsche kimtik. Berlin, Gottingen, Heidelberg, 1961. 856 p.

4. Kozitsina L.A., Kupletskaya N.B., [Application of UV, IR and NMR spectroscopy in organic chemistry.] Moscow: Vysshaya shkola, 1971. 264 p.

5. Ioffe B.V., Kostikov R.R., Razin V.V. [Physical methods of determining the structure of organic molecules.] Leningrad: Leningrad university publ., 1976. 344 p.

6. Sil`versteyn R., Bassler G., Morril T. [Spectrometric identification of organic compounds]. Moscow: MIR, 1977. 590 p.

7. Yusti E., Vinzel` A. [The fuel cells]. Moscow: MIR, 1964. 480 p.

8. Nemodruk A. A., Paley P.N., Hun-I, Factory Laboratory, 1962, T.28, 6.4. p. 406-408

9. [Guide to x-ray diffraction study of the moth crystals.] Leningrad: Neva, 1975. 218 p. (Ed.: V.A. Frank-Kamenetskyi)

10. Rusakov A.A. [Radiography of metals]. Moscow: Atomizdat, 1977. 212 p.

11. Mirkin L.I. [Handbook of x-ray diffraction analysis of metals]. Moscow: Phisics-Mathematics Literatures Publ., 1961. 863 p.

12. Davtyan O.K. [Kinetics and catalysis chemical and electrode processes]. Armyanskaya SSR Academy Sciences Publ., 1984. 383 p.

13. [Electrochemistry of organic compounds]. Moscow: MIR, 1976. 731 p. (Ed. M. Bayder).