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The discipline "Fractal geometry and the theory of chaos" is a selective 

discipline in the cycle of professional training for postgraduate (PhD) students 

(third level of education) in specialty 113- Applied Mathematics. 

It is aimed at assimilating (assuring) a number of planned competencies, 

including the study of the modern apparatus of fractal geometry and chaos 

theory, as well as new methods and algorithms of mathematical physics of 

complex chaotic systems with possible generalizations on various classes of 

mathematical, physical-chemical, cybernetic, socio-economic and ecological 

systems, the use of modern scientific methods and the achievement of scientific 

results that create potentially new knowledge in the theory and practice of 

chaotic phenomena. 

The place of discipline in the structural-logical scheme of its teaching: 

the acquired knowledge in the study of this discipline is used in the writing of 

dissertations, the topics of which are related to the study of fractal properties and 

the regular and chaotic dynamics of various classes of mathematical, physical 

and chemical, cybernetic, socio-economic and environmental systems. The basic 

concepts of discipline are a well-known toolkit of an experienced specialist in 

the field of applied mathematics. 

The purpose of studying the discipline is the assimilation (assurance) of 

a number of competencies, in particular, the mastery of a modern apparatus of 

fractal geometry and chaos theory, the ability to develop new and improve 

existing mathematical methods of analysis, modeling and prediction on the 

oscillatory fractal geometry and elements of the theory of chaos of the regular 

and chaotic dynamics (evolution) of complex systems. 

The total amount of study time involved in studying discipline is 300 

hours for stationer form and 300 hours for the extramural studies. 

After mastering this discipline, the postgraduate student must be able to 

use contemporary or develop new approaches, in particular on the basis of 

fractal geometry and chaos theory, to analyze, simulate, predict, and program 

the regular and chaotic dynamics of complex systems from the post-emerging 

computer experiments. These methodical instructions are for self-studying work 

of the second-year PhD students and tests performance in the discipline «Fractal 

geometry and a Chaos theory». The main topic is a theoretical studying  and 

application of the chaos-geometric approach to analysis and forecasting 

evolutionary dynamics of complex systems. As example, the problem of the : 

atmospheric pollutants temporal dynamics is theoretically considered and 

numerically studied. 
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Methodical instructions for self-sufficient work of PhD students, tests 

performance and distance learning in the discipline «Fractal geometry and 

a chaos theory», Part 4 

Topic: Correlation integral method. Lyapunov index method. Wavelet 

analysis. Definition and calculation of global Lyapunov dimensions  

Topic: Геометрія фазового простору. Теорія хаосу. Метод кореляційного 

інтегралу. Метод показників Ляпунова. Визначення та обчислення 

глобальних розмірностей Ляпунова ЗБ- Л3 

 

 

1. Introduction 

In the last years in many branches of science and technique principally new 

approaches to analysis and modelling dynamical system master parameters time 

series have become very popular. These new approaches are provided by using 

methods of an advanced non-linear analysis, a chaos, dynamical systems 

theories (c.f. [1-20] and Refs. therein).  

The matter is in the fact that many processes in the Earth and environmental 

sciences (physics and geophysics) are nonlinear and stochastic on their nature 

and their studying requires using exclusively powerful mathematical methods of 

nonlinear analysis and a chaos and dynamical system theories. In some our 

previous papers [19-24] we have given a review of new methods and algorithms 

to analysis of different systems of quantum physics, sensor electronics and 

photonics and used the nonlinear method of chaos theory and the recurrence 

spectra formalism to study stochastic futures and chaotic elements in dynamics 

of physical (namely, atomic, molecular, nuclear systems in an free state and an 

external electromagnetic field) systems. Moreover the nontrivial manifestations 

of a chaos phenomenon in some very important and interesting systems have 

been discovered by many authors.  

The authors [3,8] have presented am effective universal complex chaos-

dynamical approach to the atmospheric radon 222Rn concentration fluctuations 

analysis, modelling and prediction from beta particles activity data of radon 

monitors. The topological and dynamical invariants for the time series of the 

atmospheric 222Rn concentration in the region of the Southern Finland have been 

calculated using the radon concentrations measurements at SMEAR II station of 

the Finnish Meteorological Institute.  
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Here we consider and present the results of application of the methods of 

fractal geometry and a chaos theory. Namely we presents the methodology and 

practical data consider computational analysis and modelling the atmospheric 

radon 222Rn concentration temporal dynamics using the data of surface  

observations of the Environm. Measurement. Lab. (USA Dept. of Energy) from 

some sites in the United States (Chester etc).  

A chaotic behaviour has been discovered and in details investigated by using 

nonlinear methods of the chaos and dynamical systems theories [13-18]. To 

reconstruct the corresponding strange chaotic attractor, the time delay and 

embedding dimension are computed. The former is determined by the methods 

of autocorrelation function and average mutual information, and the latter is 

calculated by means of correlation dimension method and algorithm of false 

nearest neighbours. The topological and dynamical invariants for the observed 

time series of the Rn concentrations at the Chester site are computed.  

 

 

2.  Chaos-geometric approach to analysis and modelling concentration time 

series and input data. 

 

The time series of the atmospheric Rn concentrations extending for a least one 

year are available from five sites in the Unites States (Environm. Measurement. 

Lab., USA Dept. of Energy). The record of the radon concentrations at Chester 

is by far the most extensive. Measurements had been made round-the-clock 10 

m above ground in a open field and data from July 1977 to November 1983 are 

available as continuous time series of 0.5-3 hour average concentrations (Harlee, 

1978,1979; Fisenne, 1980-1985) (c.g., [2,3]. The detailed analysis of the main 

features for the radon data have been reviewed by Gesell and Fisenne (see [2]). 

The typical time series of the 222Rn concentrations at Chester site (data of 

observations are taken from Harley,; look details in Refs. [2,3]) is presented in 

in Fig. 1  
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Figure 1. The typical time series of the 222Rn concentrations  

at Chester site  

(data of observations) [2]).  

 

Let us further consider the main blocks of our chaos-geometric approach, 

which has been presented earlier and is needed only to be reformulated 

regarding the problem studied in this paper. So, below we are  limited only by 

the key moments following to Refs. [13-18].  

Let us formally consider scalar measurements of the radon concentration as 

s(n) = s(t0 + nt) = s(n), where t0 is the start time, t is the time step, and is n the 

number of the measurements.  

Further it is necessary to reconstruct phase space using as well as possible 

information contained in the s(n).  Such a reconstruction leads to a definite set of 

d-dimensional vectors y(n) insist of initial scalar data. Further the dynamical 

system methods should be used. In order to reconstruct the phase space of an 

observed dynamical system one should apply the method of using time-delay 

coordinates (c.g., [13-16]).  

The direct use of the lagged variables s(n + ), where  is some integer to be 

determined, results in a coordinate system in which the structure of orbits in 

phase space can be captured.  Then using a collection of time lags to create a 

vector in d dimensions, 

y(n) = [s(n), s(n + ), s(n + 2), …,  s(n + (d−1))], 

 

the necessary required coordinates are determined. As usually, the dimension 

d is the embedding dimension, dE. To determine the value of  one should use a 

few methods. The first method is provided by computing the linear 
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autocorrelation function CL  and looking for that time lag where CL() first 

passes through zero. The second method is provided by computing the average 

mutual information (look details of our version in Ref. [15]). One could remind 

that the autocorrelation function and average mutual information can be 

considered as analogues of the linear redundancy and general redundancy, 

respectively, which was applied in the test for nonlinearity. The general 

redundancies detect all dependences in the time series, while the linear 

redundancies are sensitive only to linear structures. Further, a possible nonlinear 

nature of process resulting in the vibrations amplitude level variations can be 

concluded.  

The fundamental goal of the dE calculation is in the further reconstruction of 

the Euclidean space Rd large enough so that the set of points dA can be unfolded 

without ambiguity. The embedding dimension, dE, must be greater, or at least 

equal, than a dimension of the corresponding chaotic attractor, dA, i.e. dE > dA.  

The correlation integral analysis is one of the widely used techniques to 

investigate the signatures of chaos in a time series. This method is based on 

using the correlation integral, C(r) (c.g., [13-15]). Within this method in a case 

of the chaotic system the correlation exponent attains saturation with an increase 

in the embedding dimension. The saturation value is defined as the correlation 

dimension (d2) of the attractor. The calculation of the correlation dimension can 

be made more exact using the method algorithm of the false nearest neighbor 

points.   

The important step of the time series analysis is connected with computation 

of the Lyapunov’s exponents. According to definition, the Lyapunov’s 

exponents spectrum can be considered a measure of the effect of perturbing the 

initial conditions of a dynamical system. One should remember that in principle,  

the orbits of chaotic attractors are unpredictable, but there is the limited 

predictability of chaotic dynamical system, which is estimated by computing y 

the global and local Lyapunov’s exponents. A negative values indicate local 

average rate of contraction while the positive values indicates a local average 

rate of expansion. Availability of numerical values of the Lyapunov’s exponents 

allows easily to determine other invariants of the system such as the 

Kolmogorov entropy.  
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The inverse of the Kolmogorov entropy is equal to an average predictability. 

Estimate of the attractor’s dimension is given by the Kaplan-Yorke conjecture:                                                                         
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, and the LE  are taken in descending 

order. There are a few computational method to determine the Lyapunov’s 

exponents. One of the wide spread methods is based on the Jacobi matrix of 

system. We have applied a method with linear fitted map (version [15]) , 

although the maps with higher order polynomials can be used too. Summing up 

above said and results of Refs. [13-22], a general scheme of an analysis, 

processing and forecasting any time series is presented in Figure 2.  

 

I. Analytics and radioactivity dynamics 

 

II. Preliminary studying and conclusion regarding a chaos 

availibility 

1. The  Gottwald-Melbourne test: K → 1 – 

chaos 

 

2. Energy spectrum, statistics, power spectra, ,…, 
 

 

III. The phase space geometry. The fractal   geometry 

 

3. A method of advanced autocorrelation 

function or average initial information algorithms 

 

4. Determining embedding dimension dE by the 

method of the correlation dimension or algorithm 

of the false nearest neighbor points 
 

 

IV. Forecasting process in the environmental radioactivity 

dynamics 



9 

6. Computation of the global Lyapunov 

dimension ; determination of the Kaplan-York 

dimension 

dL (advanced algorithms) 

 

7. Determining the number of nearest 

neighboring points NN for the best results,… 

 

8. New methods and algorithms of nonlinear 

prediction (methods of predicted trajectories, 

stochastic propagators,  wavelet-expansions … 
 

 

 

Figure 2. General scheme of the non-linear analysis, modelling and sensing 

algorithms to compute parameters of the radioactivity dynamics time series 

 

The “prediction” block (Figure 2) includes the methods and algorithms of 

nonlinear prediction such as methods of predicted trajectories, stochastic 

propagators, neural networks modelling, renorm-analysis with blocks of the 

polynomial approximations, wavelet-expansions. All calculations are performed 

with using “Geomath” and “Quantum Chaos” PC [15-22,27-30]. 

 

3. The results and conclusions 

 Table 1 summarizes the results for the time lag, which is computed for first 

~103 values of time series. The autocorrelation function crosses 0 only for the 
222Rn time series, whereas this statistic for other time series remains positive. 

The values, where the autocorrelation function first crosses 0.1, can be chosen as 

, but earlier it had been  showed that an attractor cannot be adequately 

reconstructed for very large values of . So, before making up final decision we 

calculate the dimension of attractor for all values in Table 1. If time lags 

determined by average mutual information are used, then algorithm of false 

nearest neighbours provides dE = 7.. 
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Table 1. Time lags (hours) subject to different values 

of  CL and first minima of average mutual information 

(Imin1) for the222Rn  time series  

CL = 0 - 

CL = 0.1 258 

CL = 0.5 51 

Imin1 16 

 

Table 2 shows the results of computing a set of the dynamical and topological 

invariants, namely:  correlation dimension (d2), embedding dimension (dE), two 

Lyapunov exponents 1,2),  Kaplan-York dimension (dL) and average limit of 

predictability (Prmax, hours) for the studied  222Rn time series. 

 

Table 2. The correlation dimension (d2), embedding dimension (dE), first two 

Lyapunov’s 

exponents, (1,2),  Kaplan-Yorke dimension (dL), and the Kolmogorov entropy, 

average 

limit of predictability (Prmax, hours) for the 1978 222Rn time series at the Chester 

site 

 

d 2 d E 1 2 Кent d L Pr maх 

6,03 7 0,0194 0,0086 0,028 5,88 35 

 

Analysis of the data shows that the Kaplan-Yorke dimensions (which are also 

the attractor dimensions) are smaller than the dimensions obtained by the 

algorithm of false nearest neighbours. It is very important to pay the attention on 

the presence of the two (from six) positive (chaos exists!) Lyapunov’s exponents 

i. One could conclude that the system broadens in the line of two axes and 

converges along four axes that in the six-dimensional space. Other values of the 

Lyapunov’s exponents iare negative.   

To conclude, for the first time we have presented  the results of analysis and 

modelling the atmospheric radon 222Rn concentration time series using the data 

of surface observations of the Environmental Measurements Laboratory (USA 

Dept. of Energy) from some  sites in the United States (Chester site).  
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We have applied such chaos and dynamical systems theories methods as  

autocorrelation function method and the mutual information approach, a 

correlation integral analysis and the false nearest neighbours algorithm, the 

Lyapunov exponent’s analysis and surrogate data method etc. To reconstruct the 

corresponding strange chaotic attractor, the time delay and embedding 

dimension are computed. The former is determined by the methods of 

autocorrelation function and average mutual information, and the latter is 

calculated by means of correlation dimension method and algorithm of false 

nearest neighbours. Further, the Lyapunov’s exponents spectrum, Kaplan-Yorke 

dimension and Kolmogorov entropy are computed. A chaotic behaviour in the 

atmospheric radon concentration (Chester , New Jersy) time series is firstly 

discovered and investigated. The Lyapunov exponent’s analysis has supported 

this conclusion. 
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3. Tests performance 

 

Test Option 1. 

1). Give the key definitions of of the chaos-geometric approach to analysis and 

forecasting evolutionary dynamics of environmental radioactive complex 

systems. As example, consider   radioactive pollutants temporal dynamics and 

formulate the definitions of  the chaos-geometric approach to analysis and 

forecasting evolutionary dynamics of this system i) mathematical and physical 

essense, ii) Test by Gottwald-Melbourne, iii) spectral statistics and elements of 

stochasticity, iv) definitions of a chaos topological and dynamical invariants. 

Explain all definitions om the example of the concrete system: an environmental 

radioactive (Rn) temporal dynamics from the pointwiew of fractal geometry and 

a chaos theory.  

2). To carry out and consider realization of the  numerical algorythm for 

computing topological and dynamical invariants. To perform its pracrical 

realization (using Fortran Power Station , Version 4.0; PC Code: “Superatom” ) 

for an environmental radioactive temporal dynamics (data are preliminary taken) 

and calculate a chaos phenomenon topological and dynamical invariants.  

   

Test Option 2. 

 

1). Give the key definitions of of the chaos-geometric approach to analysis and 

forecasting evolutionary dynamics of environmental radioactive complex 

systems. As example, consider   radioactive pollutants temporal dynamics and 

formulate the definitions of  the chaos-geometric approach to analysis and 

forecasting evolutionary dynamics of this system i) mathematical and physical 

essense, ii) Test by Gottwald-Melbourne, iii) spectral statistics and elements of 

stochasticity, iv) definitions of a chaos topological and dynamical invariants. 

Explain all definitions om the example of the concrete system: an environmental 

radioactive (U) temporal dynamics from the pointwiew of fractal geometry and 

a chaos theory.  

2). To carry out and consider realization of the  numerical algorythm for 

computing topological and dynamical invariants. To perform its pracrical 

realization (using Fortran Power Station , Version 4.0; PC Code: “Superatom” ) 

for an environmental radioactive temporal dynamics (data are preliminary taken) 

and calculate a chaos phenomenon topological and dynamical invariants.    
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Test Option 3. 

 

1). Give the key definitions of of the chaos-geometric approach to analysis and 

forecasting evolutionary dynamics of environmental radioactive complex 

systems. As example, consider   radioactive pollutants temporal dynamics and 

formulate the definitions of  the chaos-geometric approach to analysis and 

forecasting evolutionary dynamics of this system i) mathematical and physical 

essense, ii) Test by Gottwald-Melbourne, iii) spectral statistics and elements of 

stochasticity, iv) definitions of a chaos topological and dynamical invariants. 

Explain all definitions om the example of the concrete system: an environmental 

radioactive (Cs) temporal dynamics from the pointwiew of fractal geometry and 

a chaos theory.  

2). To carry out and consider realization of the  numerical algorythm for 

computing topological and dynamical invariants. To perform its pracrical 

realization (using Fortran Power Station , Version 4.0; PC Code: “Superatom” ) 

for an environmental radioactive temporal dynamics (data are preliminary taken) 

and calculate a chaos phenomenon topological and dynamical invariants.    

 

 

Test Option 4. 

 

1). Give the key definitions of of the chaos-geometric approach to analysis and 

forecasting evolutionary dynamics of environmental radioactive complex 

systems. As example, consider   radioactive pollutants temporal dynamics and 

formulate the definitions of  the chaos-geometric approach to analysis and 

forecasting evolutionary dynamics of this system i) mathematical and physical 

essense, ii) Test by Gottwald-Melbourne, iii) spectral statistics and elements of 

stochasticity, iv) definitions of a chaos topological and dynamical invariants. 

Explain all definitions om the example of the concrete system: an environmental 

radioactive (I) temporal dynamics from the pointwiew of fractal geometry and a 

chaos theory.  

2). To carry out and consider realization of the  numerical algorythm for 

computing topological and dynamical invariants. To perform its pracrical 

realization (using Fortran Power Station , Version 4.0; PC Code: “Superatom” ) 

for an environmental radioactive temporal dynamics (data are preliminary taken) 

and calculate a chaos phenomenon topological and dynamical invariants.    
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Test Option 5. 

 

1). Give the key definitions of of the chaos-geometric approach to analysis and 

forecasting evolutionary dynamics of environmental radioactive complex 

systems. As example, consider   radioactive pollutants temporal dynamics and 

formulate the definitions of  the chaos-geometric approach to analysis and 

forecasting evolutionary dynamics of this system i) mathematical and physical 

essense, ii) Test by Gottwald-Melbourne, iii) spectral statistics and elements of 

stochasticity, iv) definitions of a chaos topological and dynamical invariants. 

Explain all definitions om the example of the concrete system: an environmental 

radioactive (Fr) temporal dynamics from the pointwiew of fractal geometry and 

a chaos theory.  

2). To carry out and consider realization of the  numerical algorythm for 

computing topological and dynamical invariants. To perform its pracrical 

realization (using Fortran Power Station , Version 4.0; PC Code: “Superatom” ) 

for an environmental radioactive temporal dynamics (data are preliminary taken) 

and calculate a chaos phenomenon topological and dynamical invariants.    

 

 

Test Option 6. 

 

1). Give the key definitions of of the chaos-geometric approach to analysis and 

forecasting evolutionary dynamics of environmental radioactive complex 

systems. As example, consider   radioactive pollutants temporal dynamics and 

formulate the definitions of  the chaos-geometric approach to analysis and 

forecasting evolutionary dynamics of this system i) mathematical and physical 

essense, ii) Test by Gottwald-Melbourne, iii) spectral statistics and elements of 

stochasticity, iv) definitions of a chaos topological and dynamical invariants. 

Explain all definitions om the example of the concrete system: an environmental 

radioactive (Po) temporal dynamics from the pointwiew of fractal geometry and 

a chaos theory.  

2). To carry out and consider realization of the  numerical algorythm for 

computing topological and dynamical invariants. To perform its pracrical 

realization (using Fortran Power Station , Version 4.0; PC Code: “Superatom” ) 

for an environmental radioactive temporal dynamics (data are preliminary taken) 

and calculate a chaos phenomenon topological and dynamical invariants.    
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