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PREFACE 

 

The discipline "Computational methods of optics and dynamics of 

quantum and laser systems" is a mandatory discipline in the cycle of 

professional training of graduate students (3rd level of education) in the 

specialty 104- Physics and astronomy. 

 

It is aimed at mastering (providing) a number of planned competencies, 

including the study of the modern apparatus of optics and dynamics of quantum 

and laser systems, as well as the development of new computational methods 

and algorithms for numerical study of energy and spectroscopic characteristics 

of atoms, molecules, solids , the main properties of quantum and laser systems, 

systems in general in the field of optics and laser physics and new developed 

computational methods in order to achieve scientific results that create 

potentially new knowledge in computational applied mathematics. 

The place of the discipline in the structural and logical scheme of its 

teaching: the knowledge gained in the study of this discipline is used in writing 

dissertations, the subject of which is related to the development of new 

computational methods and algorithms for studying energy and spectroscopic 

characteristics of atoms, molecules, solids, basic properties quantum and laser 

systems. The basic concepts of the discipline are the basic tools of a specialist in 

the field of optics and laser physics. 

The purpose of the discipline is to master (provide) a number of 

competencies, in particular, to achieve relevant knowledge, understanding and 

ability to use methods of data analysis and statistics at the latest level, the ability 

to use standard and build new software based on new mathematical approaches. 

-study, adapt, improve computational methods and algorithms for numerical 

study of the characteristics of linear and nonlinear processes in complex 

quantum and classical systems. 

The total amount of study time for the study of the discipline is 150 hours. 

for full-time and part-time education, respectively. 

After mastering this discipline, the graduate student must be able to use 

modern or personally developed new computational methods, in particular, to 

analyses, model, predict, program the dynamics of classical and quantum 

systems with the formulation of appropriate computer experiments. 

 

The main topics: Numerical algorithms of methods of self-consistent field 

theory, approximate methods of model potential, quantum defect, and density 

functional 

 

 

 



 
 

Topics: Numerical algorithms of methods of self-consistent field 

theory, approximate methods of model potential, quantum defect, 

and density functional 

 

Топіки: Чисельні алгоритми методів теорії самоузгодженого поля, 

наближених методів модельного потенціалу, квантового дефекту, Томаса-

Фермі та функціонала густини (ЗБ- Л2.7) 

 

1. Introduction 

At present time a density functional theory (DFT) became by a powerful tool 

in studying the electron structure of different materials, including atomic and 

molecular systems, solids, semiconductors etc. [1-42]. A construction of the 

correct energy functionals of a density for multi-body systems represents very 

actual and important problem of the modern theory of semiconductors and 

solids, thermodynamics, statistical physics (including a theory of non-

equilibrium thermodynamical processes), quantum mechanics and others.  

In last time a development of formalism of the energy density functional 

has been considered in many papers (see [1–7]). Its application is indeed based 

on the two known theorems by Hohenbreg-Kohn ( = 0, where  is a 

temperature) and Mermin (  0) [1,2]. According to these theorems, an energy 

and thermodynamical potential of the multi-body system are universal density 

functionals. Though these theorems predict an existence of such a density 

functional, however its practical realization is connected with a number of the 

significant difficulties (see [1-3,8-17]). The problem is complicated under 

consideration of the non-stationary tasks (the known theorem by Runge-Gross  

about 1-1 mapping between time-dependent densities and the external potentials 

[2]).  

Let us remind some important results of the density functional theory. It 

should be mentioned a constructive approach to delivering optimal 

representations for an exact density functional [1,2,8-16], which has been used 

for generalization of the Hohenberg-Kohn theorem in order to get an effective 

density functional  for large molecules. As alternative version one could 

consider a quasiparticle conception of Kohn-Sham and the Levi-Valone method 

[2,3]. In fact it has been done an attempt practically to realize an idea of the 

Hohenberg-Kohn theorem.  

More advanced analogous approach with account of the multi-particle 

correlations is developed in ref. [8,17,18].  



 
 

The  quasiparticle Fermi-liquid version of the DFT has been earlier 

developed in Refs. [1-3,8,17] and based on the principles of the Landau-Migdal 

Fermi liquids theory. In refs. [4,5]  it has been firstly developed a consistent 

relativistic quasiparticle theory of a density functional formalism and 

constructed an optimized one-quasiparticle representation in a theory of multi-

electron systems. The lowest order multi-body effects, in  particular,  the gauge 

dependent radiative contribution for the  certain  class  of the photon propagators 

calibration  are treated in QED formulation and new density functional integral-

differential equations are derived. The minimal value of the gauge dependent 

radiative contribution is considered to  be  the  typical  representative  of  the  

multi-electron correlation effects, whose minimization is a  reasonable  criteria 

in the searching for the optimal QED perturbation theory one-electron  basis. In 

this paper we present  the optimized version of the quasiparticle DFT (a Fermi-

liquid version of the DFT), based on the principles of the Landau-Migdal Fermi-

liquids theory and performance of the gauge invariant principle.  

The elaborated  approach to construction of the eigen-functions basis can be 

characterized as an improved one in comparison with similar basises of other 

one-particle representations, namely, in the HF,  the standard Kohn-Sham 

approximations [12-17] etc. 

Below we present only the key points of the theory for multielectron atomic 

systems.       

 

2. Quasiparticle density functional formalism 

 

According to Refs. [1-5], the master equations can be obtained on the basis 

of variational principle, if we start from a Lagrangian of an atomic system Lq. It 

should be defined as a functional of  quasiparticle densities:  
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The densities 0 and 1  are similar to the HF electron density and kinetical 

energy density correspondingly; the density 2  has no an analog in the Hartree-



 
 

Fock (HF) or the standard  DFT theory and appears as result of account for the 

energy dependence of the mass operator .  The functions   are the solutions 

of the master equations for multielectron atomic systems with a nuclear charge Z 

(in atomic units) as follows:  
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The functions   in (5) are orthogonal with a weight  
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Now one can introduce the wave functions of the quasiparticles  

 

                                                            = − 2/1a ,                                       (4) 

 

which are, as usually, orthogonal with weight 1. For complete definition of }{   

it should be determined the values   /,/, 2
0 p . 

A Lagrangian Lq  can be written as a sum of a free Lagrangian and Lagrangian 

of interaction:  

 

                           Lq = Lq
0 + Lq

int,               (5) 

where a free Lagrangian 0
qL  has a standard form:  
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The interaction Lagrangian is defined in the form, which is characteristic for a 

standard (Kohn-Sham) density functional theory (as a sum of the Coulomb and 

exchange-correlation terms), however, it takes into account for the energy 

dependence of a mass operator :                                                                     
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where ik  are some constants (look below), F is an effective potential of the 

exchange-correlation interaction  

     In the local density approximation in the density functional the potential F 

can be expressed through the exchange-correlation pseudo-potential XCV  as 

follows [1-5]:  
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According to ref. [1-4], one can get the following expressions for 

1
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Here 
KV  is the Coulomb term  (look above), 

ex
0

 is the exchange term. Using the 

known canonical relationship: 
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after some transformations one can receive the expression for the quasiparticle 

Hamiltonian, which is corresponding to a Lagrangian qL : 
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It is obvious that omitting the energy dependence of the mass operator (i.e. 

supposing  002 = ) the quasiparticle density functional theory can be resulted in 

the standard Kohn-Sham theory. 

     Further let us give the corresponding comments regarding the constants ik. 

Without a detailed explanation, we note here that the corresponding constants in 

our theory approximately possess the same universality as ones in the Landau 

Fermi-liquid theory and  Migdal finite Fermi-systems theory. Though it is well 

known that the entire universality is absent. First of all, it is obvious that the 

terms with constants 22121101 ,,,   give omitted contribution to the energy 

functional (at least in the zeroth approximation in comparison with others), so 

they can be equal to zero in the simple approximation. The value for a constant 

00  in some degree is dependent upon the definition of the potential XCV . If as 

XCV  it is use one of the correct exchange-correlation potentials from the 

standard density functional theory, then without losing a community of 

statement, the constant 00  can be equal to 1. The constant 02  can be in 

principle calculated by analytical way, but it is very useful to remember its 

connection with a spectroscopic factor spF of atomic or molecular system (it is 

usually defined from the ionization cross-sections) [5]: 
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where I.P. is a ionization potential. It is easily to understand the this definition is 

in fact corresponding to the pole strength of the corresponding Green's function 

[62]. The simple approximation for the I.P. is as follows [2-4]: 
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It is well known that can be determined by the following standard expression (in 

the second order of the perturbation theory):  
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Other details can be found in Refs. [1-10]).  

3. As application of the quasiparticle theory we present the estimates for the 

atomic spectroscopic factors. Using the above written formula, one can simply 

define the values (3)-(12) one could the quantity (12). In the concrete calculation 

as potential XCV  we use the exchange-correlation pseudo-potential which 

contains the correlation (Gunnarsson-Lundqvist) potential and relativistic 

exchanger Kohn-Sham one [4,5].   

 As example in table 1 we present our calculational data for spectroscopic 

factors of some atoms.  

 

Table 1.Spectroscopic factors of the external ns2 shells of some atoms and ions 

 

Atom, 

ion 

N Fsp Atom, 

ion 

n Fsp 

Ar 3 0.58 As 6 0.30 

Exp. 3 0.56 As- 6 0.31 

RPA 3 0.70 Rn 6 0.29 

TI (IV) 3 0.60 Fr+ 6 0.28 

Xe 6 0.36 Fr 6 0.28 

TI 6 0.36 Ra 7 0.43 

Pb 6 0.34 Ac 7 0.42 

Bi 6 0.33 Th 7 0.42 

Po+ 6 0.31 Pa 7 0.42 

Po 6 0.31 U 7 0.42 

 



 
 

There are also listed for the argon atom the experimental value of the 

spectroscopic factor and the value, obtained in the random phase approximation 

(RPA) with exchange. It should be noted that the  Hartree-Fock theory gives the 

value of 1. In conclusion let us remind that the presented approach to definition 

of the functions basis }{   of a Hamiltonian qH  can be treated as an improved 

in comparison with similar basises of other one-particle representations (for 

example, the HF, the Hatree-Fock-Slater, the standard Kohn-Sham 

approximations etc.). Naturally, this advancement can be manifested during 

studying those properties of the multi-electron systems, when an accurate 

account for the complex exchange-correlation effects, including the continuum 

pressure, energy dependence of a mass operator etc,   is critically important [28-

40].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Tests performance 

Task Option 1. 

1). Give the key definitions in theory of optimized one-quaiparticle density 

functional theory for atomic systems and explaine the main computational 

details of their realization: i) construction of the optimized one-quaiparticle 

density functional for atomic systems; ii) computing the Dirac-Kohn-Sham 

equations and analysis of the corresponding solutions under asymptotic; iii). The 

numerical features of accounting for the exchange-correlation effects; iv). The 

numerical features of accounting for the relativistic effects; v) The numerical 

features of accounting for the nuclear effects; vi) the technical details of the 

computation code.  

2).Explain the key ideas of the numerical estimation of the energy and 

spectroscopic characteristics of atomic systems, namely, ionization potentials 

and spectroscopic factors  in application to computing of the caesium atom. 

3). To carry out and apply the numerical algorythm of density functional 

theory for concrete atomic system such as an alkali atom Cs. To perform its 

pracrical realization (using Fortran Power Station , Version 4.0; PC Code: 

“Superatom” (all necessary numerical parameters should be self-taken).   

 

Task Option 2. 

1). Give the key definitions in theory of optimized one-quaiparticle density 

functional theory for atomic systems and explaine the main computational 

details of their realization: i) construction of the optimized one-quaiparticle 

density functional for atomic systems; ii) computing the Dirac-Kohn-Sham 

equations and analysis of the corresponding solutions under asymptotic; iii). The 

numerical features of accounting for the exchange-correlation effects; iv). The 

numerical features of accounting for the relativistic effects; v) The numerical 

features of accounting for the nuclear effects; vi) the technical details of the 

computation code.  

2).Explain the key ideas of the numerical estimation of the energy and 

spectroscopic characteristics of atomic systems, namely, ionization potentials 

and spectroscopic factors  in application to computing of the rubidium atom. 

3). To carry out and apply the numerical algorythm of density functional 

theory for concrete atomic system such as an alkali atom Rb. To perform its 

pracrical realization (using Fortran Power Station , Version 4.0; PC Code: 

“Superatom” (all necessary numerical parameters should be self-taken).   

 

 



 
 

Test Option 3. 

\ 

1). Give the key definitions in theory of optimized one-quaiparticle density 

functional theory for atomic systems and explaine the main computational 

details of their realization: i) construction of the optimized one-quaiparticle 

density functional for atomic systems; ii) computing the Dirac-Kohn-Sham 

equations and analysis of the corresponding solutions under asymptotic; iii). The 

numerical features of accounting for the exchange-correlation effects; iv). The 

numerical features of accounting for the relativistic effects; v) The numerical 

features of accounting for the nuclear effects; vi) the technical details of the 

computation code.  

2).Explain the key ideas of the numerical estimation of the energy and 

spectroscopic characteristics of atomic systems, namely, ionization potentials 

and spectroscopic factors  in application to computing of the magnesium atom. 

3). To carry out and apply the numerical algorythm of density functional 

theory for concrete atomic system such as  atom of Mg. To perform its 

pracrical realization (using Fortran Power Station , Version 4.0; PC Code: 

“Superatom” (all necessary numerical parameters should be self-taken).   

 

Test Option 4. 

 

1). Give the key definitions in theory of optimized one-quaiparticle density 

functional theory for atomic systems and explaine the main computational 

details of their realization: i) construction of the optimized one-quaiparticle 

density functional for atomic systems; ii) computing the Dirac-Kohn-Sham 

equations and analysis of the corresponding solutions under asymptotic; iii). The 

numerical features of accounting for the exchange-correlation effects; iv). The 

numerical features of accounting for the relativistic effects; v) The numerical 

features of accounting for the nuclear effects; vi) the technical details of the 

computation code.  

2).Explain the key ideas of the numerical estimation of the energy and 

spectroscopic characteristics of atomic systems, namely, ionization potentials 

and spectroscopic factors  in application to computing of the sodium atom. 

3). To carry out and apply the numerical algorythm of density functional 

theory for concrete atomic system such as an alkali atom Na. To perform its 

pracrical realization (using Fortran Power Station , Version 4.0; PC Code: 

“Superatom” (all necessary numerical parameters should be self-taken).   

 



 
 

Test Option 3. 

\ 

1). Give the key definitions in theory of optimized one-quaiparticle density 

functional theory for atomic systems and explaine the main computational 

details of their realization: i) construction of the optimized one-quaiparticle 

density functional for atomic systems; ii) computing the Dirac-Kohn-Sham 

equations and analysis of the corresponding solutions under asymptotic; iii). The 

numerical features of accounting for the exchange-correlation effects; iv). The 

numerical features of accounting for the relativistic effects; v) The numerical 

features of accounting for the nuclear effects; vi) the technical details of the 

computation code.  

2).Explain the key ideas of the numerical estimation of the energy and 

spectroscopic characteristics of atomic systems, namely, ionization potentials 

and spectroscopic factors  in application to computing of the francium atom. 

3). To carry out and apply the numerical algorythm of density functional 

theory for concrete atomic system such as  the atom of Fr. To perform its 

pracrical realization (using Fortran Power Station , Version 4.0; PC Code: 

“Superatom” (all necessary numerical parameters should be self-taken).   

 

Test Option 6. 

 

1). Give the key definitions in theory of optimized one-quaiparticle density 

functional theory for atomic systems and explaine the main computational 

details of their realization: i) construction of the optimized one-quaiparticle 

density functional for atomic systems; ii) computing the Dirac-Kohn-Sham 

equations and analysis of the corresponding solutions under asymptotic; iii). The 

numerical features of accounting for the exchange-correlation effects; iv). The 

numerical features of accounting for the relativistic effects; v) The numerical 

features of accounting for the nuclear effects; vi) the technical details of the 

computation code.  

2).Explain the key ideas of the numerical estimation of the energy and 

spectroscopic characteristics of atomic systems, namely, ionization potentials 

and spectroscopic factors  in application to computing of the lithium atom. 

3). To carry out and apply the numerical algorythm of density functional 

theory for concrete atomic system such as an alkali atom Li. To perform its 

pracrical realization (using Fortran Power Station , Version 4.0; PC Code: 

“Superatom” (all necessary numerical parameters should be self-taken).   
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