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PREFACE 

 

Discipline "Quantum geometry and dynamics of resonances" is an 

elective discipline in the cycle of professional training of graduate students 

(third level of education) in the specialty 113- Applied Mathematics. 

It is aimed at mastering (providing) a number of planned competencies, 

including developing fundamentally new and improving existing modern 

computational methods and algorithms of quantum mechanics, geometry and 

electrodynamics to analyze, model and predict the properties of classical and 

quantum systems with pronounced resonant behavior. 

The place of the discipline in the structural-logical scheme of its teaching: 

the knowledge gained in the study of this discipline is used in writing 

dissertations, the topics of which are related to solving quantum mechanics, 

geometry and electrodynamics for analysis, modeling and forecasting properties 

of classical and quantum systems with resonant behavior. The basic concepts of 

the discipline are the desired tools of an experienced specialist in the field of 

applied mathematics. 

The purpose of studying the discipline is to master (provide) a number of 

competencies, in particular, mastering the modern apparatus of fractal geometry 

and chaos theory, the ability to develop new and improve existing mathematical 

methods of analysis, modeling and forecasting based on fractal geometry and 

elements of chaos theory of regular and chaotic dynamics (evolution) complex 

systems. 

After mastering this discipline, the graduate student must be able to use 

modern existing or improved, as well as develop fundamentally new 

computational methods and algorithms for quantum mechanics, geometry and 

electrodynamics to analyze, model and predict the properties of classical and 

quantum systems with resonant behavior.  

These methodical instructions are for the second-year PhD students and tests 

performance in the discipline “Quantum Geometry and Dynamics of 

Resonances”.  

The main topics: Theory of calculating the probabilities of k-photon 

radiation or absorption, shift and deformation of spectral lines in the field of 

laser radiation, energies and widths of multiphoton resonances. Effects of 

energy, quality, shape (Lorentz, Gaussian, soliton, etc.) of pulse, mode 

composition, phase shifts of laser radiation 

 

 



 

Topic: Theory of calculating the probabilities of k-photon radiation or 

absorption, shift and deformation of spectral lines in the field of laser 

radiation, energies and widths of multiphoton resonances. Effects of energy, 

quality, shape (Lorentz, Gaussian, soliton, etc.) of pulse, mode composition, 

phase shifts of laser radiation 

Topic: Теорія обчислення ймовірностей  к-фотонного випромінювання або 

поглинання, зсуву та деформації спектральних ліній в полі лазерного 

випромінювання, енергій та ширин багатофотонних резонансів. Ефекти 

енергетики, якості, форми (лоренцева, гаусова, солітонна тощо) імпульсу, 

модового складу, фазових зсувів  лазерного випромінювання.   ЗБ- Л4 

 

 

1 Introduction 

  In this chapter we will present the fundamentals of a consistent approach 

in a resonant multiphoton spectroscopy of atomic system in a realistic laser field 

and focus on computing multiphoton resonances parameters in the atomic 

systems interacting with the Lorentzian, Gaussian and soliton-like shape laser 

pulses. The effective technique, based on the Ivanova-Ivanov method of 

differential equations, for computing the infinite sums in expressions for a 

multiphoton resonance line moments will be schematically described. We begin 

our consideration within an adiabatic Gell-Mann and Low formalism.  In  

relativistic case the Gell-Mann and Low formula expresses the imaginary part of 

an energy shift E through the QED  scattering matrix, which includes an  

interaction as with a laser field as with the photon vacuum field. It results in 

possibility of an uniform simultaneous consideration of spontaneous and (or) 

induced, radiative processes and their interference.  As illustration we list the 

results of calculation of the multi-photon resonance shifts and widths in the 

caesium (three-photon resonant, four-photon ionization profile; transition 6S-6F; 

wavelength 1059nm) atoms and compare our results with available other  

theoretical and experimental data.  It should be noted that the analogous results 

for the hydrogen (three-photon resonant, four-photon ionization profile of 

atomic hydrogen; 1s-2p transition; wavelength =365 nm) were earlier presented 

[163-165,174]. In addition, we will schematically generalize our theory for the 

case of nuclear systems interacting with a superintense laser field, and for the 

first time present the quantitative estimates for the multiphoton resonance shift 

in the nucleus of iron 57Fe. 

2 Relativistic energy approach to multiphoton processes in atomic systems 

in laser field. Moments of radiation atomic lines  

 The theoretical basis of the relativistic energy approach in atomic 

spectroscopy was widely discussed earlier (see, e.g. [10-12, 162-190]) and here 



 

we will focus on the key topics following to Refs. [161-168,173-175]. Let us 

note that in the theory of the non-relativistic atom a convenient field procedure 

is known for calculating the energy shifts E of degenerate states. This 

procedure is connected with the secular matrix M diagonalization [35,36, 

183,188]. In constructing M, the Gell-Mann and Low adiabatic formula for E is 

used. In relativistic version of the Gell-Mann and Low formula E is connected 

with electrodynamical scattering matrice, which includes interaction with a laser 

field. Naturally, in relativistic theory the secular matrix elements are already 

complex in the second  perturbation theory (PT) order. Their imaginary parts are 

connected with radiation decay possibility. The total energy shift is usually 

presented in the form: 

 

                                                 Re Im ,E E i E  = +                                       (1a) 

 

                                                     Im / 2,E = −                                           (1b) 

 

where  is the level width (decay possibility).  

 As it was said, multiphoton spectroscopy of an atom in a laser field is fully 

determined by position and shape of the multiphoton radiation emission and 

absorption lines. The lines moments Mn are strongly dependent upon the laser 

pulse quality: intensity and mode constitution [161-168].  

 Let us describe the interaction “atom-laser field” by the Ivanov potential: 

                                              ( ) ( ) 0 0 0( ) cos( ),  
n

V r t V r fd t n     


=−

= − +                (2) 

Here 0 is the central laser radiation frequency, n is the whole number. The 

potential V represents the infinite duration of laser pulses with known frequency 

. Next we will consider the interaction of an atom with a single pulse. The 

function f() is a Fourier component of the laser pulse. The condition:  

 

                                                     2 1( )fd  =                                                (3) 

normalizes potential ( ),V r t  on the definite energy in the pulse.  

 Let us consider the pulses with Lorentzian shape (the coherent 1-mode 

pulse):  

                                                     2 2 ,( ) (/ )f   = +                                  (4a) 

 

the Gaussian one (the multi-mode chaotic pulse):  

 

                                                     2 2 )exp /( ) (f   =  ,                             (4b) 

 

where  -normalizing multiplier, and the soliton-like pulse [174]. A case of the 

Lorentzian shape laser pulse has been earlier studied [161-164].  



 

Here we will focus on the case of the Gaussian shape laser pulse [173-175]. The 

main program results in the calculating an imaginary part of energy shift ImE 

(0) for any atomic level as the function of the central laser frequency 0. An 

according function has the shape of the resonance, which is connected with the 

transition -s (, s-discrete levels) with absorption (or emission) of the “k” 

number of photons. We will calculate the following quantities for the 

multiphoton resonance:   

 

                                            ( | ) ( ,) ( ) / /ss k Im Ed k N       − = −            (5a) 

                                               / / ,( ) ( )n

n sM E kd Im N    = −                     (5b) 

                                                      ,( )N Imd E  =                                   (6) 

                                                      ( )|s s kk s   += −                            (7) 

 

where N  is the normalizing multiplier; s is position of the non-shifted line for  

transition s-, (s-|k)  is the line shift under k-photon absorption. As usually, 

the quantities M are the moments of radiation absorption or emission lines for 

atomic system in a laser field.  

 In principle, an  infinitive series of Mn  determine a curve of emission and 

absorption. Let us remember that the zeroth (a square of the absorption curve) is 

usually used for measurement of an oscillator strength.  The first moments M1, 

M2 and M3 determine the atomic line centre shift, its dispersion and the 

asymmetry etc. The asymmetry coefficient of resonance line is defined as 

follows:  

 

                                                                    2

1

3/

3 2/ MM = .                                     (8) 

Here, for the time being, we assume that the contribution of only one resonance 

is taken into consideration. It should be borne in mind that in the case of random 

imposition of resonances, possibly of different quantumness, the shape of the 

line can become substantially more complex and, in order to describe it, a 

definition of the higher moments is required. It is worth recalling that the 

method of moments was used with great success in the theory of light 

absorption, for example, by excitons in a solid. 

 To determine the quantities Mn , one should need to obtain an expansion of 

E to the following PT series:  

                                                ( )2

0( ).
k

E E   =                                       (9) 

 

 According to Refs.[161-164,173], contributions of k-photon processes first 

appear only in the terms E (2k). The term E (2k+2) contains the correction of the 



 

following approximation. Let us note that the values of the moments are 

calculated in the lowest second order of the PT, whose smallness parameter is 

proportional to V/ E (where V is the amplitude of the field oscillations, and E is 

the characteristic energy of the electronic transitions). The non-adiabaticity 

parameter is proportional to V/ kE (k is a quantumness of a process).  Obviously, 

the adiabatic approach turns out to be valid at least with the same accuracy as 

the PT.  

 An external electromagnetic field shifts and broadens the atomic levels.  

The   standard quantum approach relates complex eigenenergies / 2rE E i = +   

and complex eigenfunctions to the corresponding resonances [168-171].  The 

field effects drastically increase upon going from one excited level to another. 

The highest levels could overlap forming a “new continuum” with lowered 

boundary. In the case of a strong field, its potential should appear in the Dirac 

equations already in the zeroth-order approximation (the solution is Dirac-

Volkov type function). On the other hand, it is convenient to use methods such 

as operator PT with included  well known “distorted-waves” zeroth  

approximation” in the frame of the formally exact PT. In fact a physically 

reasonable spectrum (eigenenergies and eigenfunctions)  must be chosen as the 

zero order, similar to the “distorted waves” method [163,168,170]. In a case of 

the optimal zeroth-order spectrum, the PT smallness parameter is of the order of 

Е , where   and E are the field width and bound energy of the state level 

examined. 

 Next one should use the known Gell-Mann and Low adiabatic formula for 

E with QED scattering matrix. According to Refs. [161-168], the 

representation of the S- matrix in the form of PT series induces the expansion for 

E: 

 

                                        ( )
1 2

0 1 2

...

1 2
0

  , ,..., , ,..., , ( ) lim ( )
lk k k

l lE c Jk k k k k k 


  
→

=         (10) 

                                                         ( )

1
1 2, ,..  ( )., ,j

j

k

lk k kJ S 
=

=                               (11)  

                                               ( ) ( ) 1 1 2

10

1 ... ... ,          
n

nn

n n

t

dS t t VV Vd  

−

− −

= −          (12) 

                                                 ( ) ( ) ( )0 0exp exp exp  = ( )i i i i iiH t V rV t iH t t− .               (13) 

 

where S is QED scattering matrix,  is an adiabatic parameter, H0 is the 

unperturbed atomic hamiltonian, c (k1, k2,...,kn) are the numerical coefficients. 

The details of rather cumbersome transformations are presented in Refs. 

[164,165], where the structure of matrix elements S
(n)  is also described. Here 

we only note that one may to simplify a consideration by account of the k-

photon absorption contribution in the first two PT orders. In this approximation 

one can write [161-164]: 



 

                                

( ) ( ) ( ) ( )

( ) ( ) ( )

2 4 2 2

0

2

0

2  2 2 2

2 4( ) lim { }

2( ) [

2

]1  
k

k

k k

S S S S

k S S

i

S

E    

 





 
→



=

+

+ − +

+ −

=

+

            (14) 

 

where, for example, ( )2
S is determined as follows [163]: 

 

                        

( ) ( ) ( )

( ) ( ) ( ) ( )

2

1 2 1 2 0 1 1

0 1 2

0

0 2 0 2

0

~ exp  

exp exp exp .

exp[ ( )] |

|

S t t t t iH t V rt

iH t iH i

d d

t V rt H t

 




− −

+ 

 − −  

 

        (15) 

 

 If we ignore the effects of interference, the multiple summation over the 

pulses in the matrix element J
can be replaced by a single one and J

will 

contain only finite and divergent terms as 1/ (see details in Refs. [164,165]). 

The latter give a finite contribution to E  for  tending to zero. The integrals on 

a laser frequency are as follows:  

 

                        

1

0 0 0

1

0 0 0

( ) { ( )}

{ ( )} ( / )

i

j

i s i

n

j s j

i

s

j

d F n ir

n ir k d



 

   

    

−

−

  =  − − 

− − − −





                (16) 

where  n,r 0 are the whole numbers; si, sj – indexes of the virtual atomic states, 

on which summation is fulfilled. Using the standard technique of theory of 

functions of a complex variable the above written integrals in Eqs. (5) can be 

represented as a sum of contributions of the separated poles from the upper (k-

photon absorption) and the lower (k-photon emission) semiplanes. After some 

transformations one can get the expressions for line moments. The final results 

for quantities (5) for the Gaussian shape laser pulse are as follows:   

 

                 ( ) ,( | ) [ ( , )[π / 1 ] / , /( )]s ss a k k k E s k E k    − =  + −         (17) 

 

                                                           M2 = 2/k ,                                      (18) 

 

                                          ( )3

3 4π / 1 , / , / ,({ }[ ) ( )]s sM k k E s k E k   +  −=            (19) 

                                                                                                                                                      

where                  

                                         1 1 1
( / ) [ ]

2 /
,

/i i

i i i

s s

s js

s j j

s js s

E k
k

j V V
k 





  

+
+

=
+

          (20) 

 



 

The summation in (20) is over all atomic states. The equations (17)-(20) 

describe the main characteristics of the radiative emission and absorption line 

near the resonant frequency s/k. The corresponding expressions for the 

Lorentzian shape laser pulse are given in Refs. [161-165]. For the soliton-like 

pulse it is necessary to use some approximations to simplify the expressions and 

perform the numerical calculation [163,173,174]. The next serious problem is 

calculation of the sum (20), which includes infinite summations over the 

complete set of unperturbed (or distorted in the zeroth approximation in a case 

of a strong field) atomic states. One of the most widespread methods for 

calculating the sums (20) is the Green function method (look below). However, 

as it was indicated in Refs. [161-165,168], the more preferable and effective 

method is based on the advanced algorithm of differential equations. It is worth 

to note that this method has been frequently used earlier in calculations of 

different atomic system energy and spectroscopic characteristics (see, e.g., [175-

208]).  

3. The modified Ivanova-Ivanov method of calculation of the perturbation 

theory second order sum  

 Below we present an effective approach to calculating the PT second order 

sums of the form (20). Its original version was proposed by Ivanova-Ivanov 

[182] to calculate sum of products of the interelectron interaction operator 

matrix elements over  infinite set of virtual states, including the states of the 

negative continuum. An advanced version was elaborated in Ref [163-

165,168,173].  The method leads the problem of calculating infinite sums to the 

solution of a system of the ordinary differential equations with the known 

boundary conditions under r=0. In theory of relativistic atom the solution is 

found in quadratures of the Dirac functions and some auxiliary functions (look 

below). The alternative approach was presented in Refs. [36,192-195,199-208] 

and the chapter 8 of this book [220].  

 The necessary sums can be expressed through sums of the following one-

electron matrix elements: 

           ( )
1 1 1

1

1 1 1 1 1 1 / n m

n

S n m V n m n m V n m      = − ,           (21) 

where  (nm) – quantum numbers of one-electron states,   =nm+s/k is the 

energy parameter. One-electron energies εnχm include the rest energy (αZ)-2, 

where  is the fine structure constant and Z is charge of a nucleus. Here and 

below we use the Coulomb units (1 C.u.=Z2 a.u.e.; a.u.e.= 1 atomic unit of 

energy).   

Let us consider schematically a procedure of calculating the sum (21) following 

to Refs. [162-165,182]. When calculating the resonances shifts it is necessary to 

determine (21) in the case of running an index n1 over the whole spectrum of 

states. 



 

For definiteness, let us concretize an interaction of atom with a laser filed. In 

particular, for the typical dipole interaction the corresponding potential is as 

follows: 

 V(r)=(a,α),                                                 (22) 

where a is a vector of polarization of radiation;  α is a vector of the Dirac 

matrices. 

One should introduce a bi-spinor of the following form [36,161-163,182]:  

                                       

              

                       ( )
1 1 1 1 1 11 1

1

1 1 1 /n m n mm
n

n m V n m 
     = −             (23)  

According to Refs. [161-164,167] (see also Eqs. (29),(30) in the chapter 8 of this 

book [220]), the radial parts F, G of a bi-spinor  satisfy the system of 

differential equations:  

 

                                 ( ) ( )1 1 1 1/ 1 , nF Z F Zr A G C j l m jlm f Z   −
− + + + = a ,   (24a) 

                        

                                       ( ) ( )1 1 1 11 , nG Z G Zr A F C j l m jlm g Z   +
 + − + = a ,   (24b) 

 

                                                    2( ) 1/ ( )MFA U r Z  =  −                             (25) 

Here ( )MFU r  is some atomic mean-field potential (see possible expressions in 

Refs. [36,166,188-190]).  In contrast to Refs. [162,163,166], where the known 

Ivanov-Ivanova potential [181] was actually used, in this paper (and also in 

Refs. [165,168,170,173]) we use a more general potential of the density 

functional theory (in the optimized form). For the one-quasiparticle atomic 

systems as ( )MFU r we use the Coulomb potential of an atomic core plus the Kohn-

Sham exchange and modified Lundqvist-Gunnarsson correlation potentials (see, 

e.g., [36, 197]).   

The corresponding functions in Eqs. (24) are dependent upon polarization 

vector a and defined in the Refs [162-165].  As usually, in the Cartesian 

coordinates the vector a3=(1,0,0) corresponds to linear polarization, and the 

vectors a1=(1,i,0) and a2=(1,-i,0) correspond to circular polarization.  

The solution of the system (24) can be represented as follows [163,168]:  

 

                       F ( ) ( ) ( ) ( ) ( ) 2 2 2 1/2

1 2( / 2) ( )r Z h r f r h r f r Z   = − − 
,      (26a)     

                                               

                      ( ) ( ) ( ) ( ) 2 2 2 1/2

1 2( / 2) ( ) ( ) .G r Z h r g r h r g r Z  = − −   (26b) 

                                                                                                       

A pair of functions ( f, g) and ( gf ~,
~ ) are two fundamental solutions of equations  

(23) without the right parts. The functions ( ) ( )1 2,h r h r  are determined as follows: 

 



 

          ( ) ( ) ( ) ( )2

1 1 1 1

0

, ( ) ( )

r

n nh r C j l m jlm dr r g r f r f r g r 
      = + a ,       (27a) 

        ( ) ( ) ( ) ( )2

2 1 1 1 1

0

, ( ) ( )

r

n nh r C j l m jlm dr r g r f r f r g r C 
      = + + a .  (27b)                            

The constant C1 in Egs. (27) is determined as follows:  

 
2

1

0

~ [ ( ) ( ) ( ) ( )].n nC dr r g r f r f r g r 



+
                             (28) 

in the case  ( ) 2− Z , i.e. an energy lies below the boundary of ionization and 

and does not coincide with any of the discrete eigenvalues of the Dirac 

equations.  In the case  ( ) 2− Z  (i.e. an energy lies above the boundary of 

ionization) the value C1 is determined from the following condition:  

 

                                                       ( )
+

→
=+

rT

r
mm

r
GgFfrrdr ,0lim

1111

22


           (29) 

Here 
11m  is one-electron state of scattering with energy ε; Т is a period of 

asymptotic oscillations of the functions f, g (see details in Refs. [161-164]):   

 

                                                         ( )  2
1

222 −−= ZT  .                                 (30) 

Other  possible situations to determine C1, in particular, the case of coincidence 

of  energy ε  with energy of some discrete level n0χ1m1  , are considered in refs. 

[162-165].  The final expression for the sum  (21) can be written as follows:  

 

 ( ) ( )
1

2

1 1 1 1 1 1 1( ) , ( ) ,n nS dr r f G r C a jlm j l m g F r C a jlm j l m 
 =   +  
  . (31) 

 

Above we presented a procedure to calculate the quantity (21) in the case 

of running an index n1 over the whole spectrum of states. In the case, if  some 

state n0 is excluded from the sum (21), one should use another system of 

equations  (24):  

                           ( ) ( )
0 1 11 1 1 1 2/ 1 [ , ]n n mF Z F Zr A G C j l m jlm f g ZC    −

− + + + = −a ,        (32a) 

                        

( ) ( )
0 1 11 1 1 211 [ , ]n n mG Z G Zr A F C j l m jlm g f ZC    +

 + − + = −a ,          (32b) 

 

( ) ( )
0 1 1 0 1 1

2

1 1 11 1 1 1, ,n m n m n m n mC mdr r f g C a j l m jl g f C a j l m jlm   
 = −
             (33) 

Then the transformations are fulfilled in the same way as described above. 

Finally the computational procedure results in a solution of sufficiently simple 

system of the ordinary differential equations for above described functions and 

integral (24). The alternative approach to calculating (21) is based on the using 

method of the Green’s function of Dirac equation and presented, for example, in 

Refs. [35,36,174-178] in the Dirac-Kohn-Sham model of multielectron atom. 



 

The Green’s function is defined as the solution of the inhomogeneous Dirac 

equation: 

                       ( ) ( ) ( )2121
ˆ rrrrGH E −=−  ,                              (34)  

 

where Ĥ  is the Dirac Hamiltonian,   is an energy parameter. The known   

spectral decomposition of the Green’s function is as follows:  

 

                                                        ( ) ( ) ( ) ( ) −=
mn

nmnmn EErrErrG


 /| 1221
.               (35) 

 

where one can usually allocate partial contributions with a fixed χ (Dirac's 

angular quantum number), each of which is a product of the radial ( ),|21 ErrG  and 

angular parts. In the relativistic theory, the Green's function is a 4-component 

matrix: 

 

                ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
,,|21 












=





rGrGrFrG

rGrFrFrF
ErrG 



                     (36) 

  

where ( ) rr  is more (less) of 21, rr  . According to Ref. [36], the system of the 

corresponding Dirac equations for F and G component in the Dirac-Kohn-Sham 

approximation is as follows [36]:  

 

( ) ( ) ,]~)([~/ 2 GirVrVrFF DKS

N

−−−+++−=             (37a) 

 

( ) ( ) ,]~)([~/ 2 FirVrVrGG DKS

N

−+−+−−=              (37b) 

 

( ) ( ) 2' / [ ( ) ] ,DKS

NF F r V r V r i G     −=− + +  + − −        (38a) 

 

( ) ( ) 2' / [ ( ) ] ,DKS

NG G r V r V r i F     −= + −  + − +         (38b) 

 

де =~ , ( )rVN
 is the potential of a nucleus. The functions (F, G) represent the 

first fundamental solution, which is regular for 0→r  and singular for →r . Any 

combination ( ) ( )2
, ,F G Xr F G


+  satisfies the above written equations for ( )GF

~
,

~  and 

represents singular solution at zero [18,19,23]. The right chosen combination 

( )GF


,  for the single value of the mixing coefficient X (regular for →r ) is second 

fundamental solution ( )gf


, . The corresponding condition is as follows:  ( )GF


, ~ 

( );exp Ar− , ( ) .~~ 2
1

222  += −A  The corresponding computational procedure again 

includes solving an ordinary differential equations system for relativistic wave 

functions, computing all matrix elements and so on. In concrete numerical 

calculations the PC “Superatom-ISAN” package (version 93) is used. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Task options 

 

Task Option 1. 

1). Give the key definitions of an relativistic energy approach (S-matrix Gell-

Mann and Low formalism) to computing the energy and widths of multiphoton 



 

resonances in spectra in some heavy atoms: i) mathematical and physical 

essense of relativistic energy approach, ii) calculation of the multiphoton 

resonances energies and widths, iii) calculation of the multiphoton transition  

probabilities for atomic system,  iv) analysis of the role of photon-correlation 

effects, including the laser pulse shape.  

2). Explain all definitions on the example of the concrete analysis of the a 

multiphoton resonances parameters for concrete atomic system (helium plus 

system on the own choice);  explain a free discrete spectrum of atomic system. 

3).To apply an efficient numerical algorythm for computing autoionization 

resonances energies and widths in lithium. To perform its pracrical realization 

(using Fortran Power Station , Version 4.0; PC Code: “SuperMPh” for quantum 

system (all necessary numerical parameters should be self-taken).   

 

Task Option 2. 

 

1). Give the key definitions of an relativistic energy approach (S-matrix Gell-

Mann and Low formalism) to computing the energy and widths of multiphoton 

resonances in spectra in some heavy atoms: i) mathematical and physical 

essense of relativistic energy approach, ii) calculation of the multiphoton 

resonances energies and widths, iii) calculation of the multiphoton transition  

probabilities for atomic system,  iv) analysis of the role of photon-correlation 

effects, including the laser pulse shape.  

2). Explain all definitions on the example of the concrete analysis of the a 

multiphoton resonances parameters for concrete atomic system (helium plus 

system on the own choice);  explain a free discrete spectrum of atomic system. 

3).To apply an efficient numerical algorythm for computing autoionization 

resonances energies and widths in sodium. To perform its pracrical realization 

(using Fortran Power Station , Version 4.0; PC Code: “SuperMPh” for quantum 

system (all necessary numerical parameters should be self-taken).   

 

 

Task Option 3. 

 

1). Give the key definitions of an relativistic energy approach (S-matrix Gell-

Mann and Low formalism) to computing the energy and widths of multiphoton 

resonances in spectra in some heavy atoms: i) mathematical and physical 



 

essense of relativistic energy approach, ii) calculation of the multiphoton 

resonances energies and widths, iii) calculation of the multiphoton transition  

probabilities for atomic system,  iv) analysis of the role of photon-correlation 

effects, including the laser pulse shape.  

2). Explain all definitions on the example of the concrete analysis of the a 

multiphoton resonances parameters for concrete atomic system (helium plus 

system on the own choice);  explain a free discrete spectrum of atomic system. 

3).To apply an efficient numerical algorythm for computing autoionization 

resonances energies and widths in rubidium. To perform its pracrical 

realization (using Fortran Power Station , Version 4.0; PC Code: “SuperMPh” 

for quantum system (all necessary numerical parameters should be self-taken).   

 

Task Option 4. 

 

1). Give the key definitions of an relativistic energy approach (S-matrix Gell-

Mann and Low formalism) to computing the energy and widths of multiphoton 

resonances in spectra in some heavy atoms: i) mathematical and physical 

essense of relativistic energy approach, ii) calculation of the multiphoton 

resonances energies and widths, iii) calculation of the multiphoton transition  

probabilities for atomic system,  iv) analysis of the role of photon-correlation 

effects, including the laser pulse shape.  

2). Explain all definitions on the example of the concrete analysis of the a 

multiphoton resonances parameters for concrete atomic system (helium plus 

system on the own choice);  explain a free discrete spectrum of atomic system. 

3).To apply an efficient numerical algorythm for computing autoionization 

resonances energies and widths in magnesium. To perform its pracrical 

realization (using Fortran Power Station , Version 4.0; PC Code: “SuperMPh” 

for quantum system (all necessary numerical parameters should be self-taken).   

 

 

 

Task Option 5. 

1). Give the key definitions of an relativistic energy approach (S-matrix Gell-

Mann and Low formalism) to computing the energy and widths of multiphoton 

resonances in spectra in some heavy atoms: i) mathematical and physical 

essense of relativistic energy approach, ii) calculation of the multiphoton 



 

resonances energies and widths, iii) calculation of the multiphoton transition  

probabilities for atomic system,  iv) analysis of the role of photon-correlation 

effects, including the laser pulse shape.  

2). Explain all definitions on the example of the concrete analysis of the a 

multiphoton resonances parameters for concrete atomic system (helium plus 

system on the own choice);  explain a free discrete spectrum of atomic system. 

3).To apply an efficient numerical algorythm for computing autoionization 

resonances energies and widths in bohr. To perform its pracrical realization 

(using Fortran Power Station , Version 4.0; PC Code: “SuperMPh” for quantum 

system (all necessary numerical parameters should be self-taken).   

 

Task Option 6. 

 

 

1). Give the key definitions of an relativistic energy approach (S-matrix Gell-

Mann and Low formalism) to computing the energy and widths of multiphoton 

resonances in spectra in some heavy atoms: i) mathematical and physical 

essense of relativistic energy approach, ii) calculation of the multiphoton 

resonances energies and widths, iii) calculation of the multiphoton transition  

probabilities for atomic system,  iv) analysis of the role of photon-correlation 

effects, including the laser pulse shape.  

2). Explain all definitions on the example of the concrete analysis of the a 

multiphoton resonances parameters for concrete atomic system (helium plus 

system on the own choice);  explain a free discrete spectrum of atomic system. 

3).To apply an efficient numerical algorythm for computing autoionization 

resonances energies and widths in carbon. To perform its pracrical realization 

(using Fortran Power Station , Version 4.0; PC Code: “SuperMPh” for quantum 

system (all necessary numerical parameters should be self-taken).   
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