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PREFACE 

 

Discipline "Quantum geometry and dynamics of resonances" is an 

elective discipline in the cycle of professional training of graduate students 

(third level of education) in the specialty 113- Applied Mathematics. 

It is aimed at mastering (providing) a number of planned competencies, 

including developing fundamentally new and improving existing modern 

computational methods and algorithms of quantum mechanics, geometry and 

electrodynamics to analyze, model and predict the properties of classical and 

quantum systems with pronounced resonant behavior. 

The place of the discipline in the structural-logical scheme of its teaching: 

the knowledge gained in the study of this discipline is used in writing 

dissertations, the topics of which are related to solving quantum mechanics, 

geometry and electrodynamics for analysis, modeling and forecasting properties 

of classical and quantum systems with resonant behavior. The basic concepts of 

the discipline are the desired tools of an experienced specialist in the field of 

applied mathematics. 

The purpose of studying the discipline is to master (provide) a number of 

competencies, in particular, mastering the modern apparatus of fractal geometry 

and chaos theory, the ability to develop new and improve existing mathematical 

methods of analysis, modeling and forecasting based on fractal geometry and 

elements of chaos theory of regular and chaotic dynamics (evolution) complex 

systems. 

After mastering this discipline, the graduate student must be able to use 

modern existing or improved, as well as develop fundamentally new 

computational methods and algorithms for quantum mechanics, geometry and 

electrodynamics to analyze, model and predict the properties of classical and 

quantum systems with resonant behavior.  

These methodical instructions are for the second-year PhD students and 

tests performance in the discipline “Quantum Geometry and Dynamics of 

Resonances”.  

The main topics:  Stark effect theory for atoms (hydrogen and others) in 

an electric field. Perturbation theory method and algorithms for summation of 

divergent series. Formalism of operator Glushkov-Ivanov perturbation theory 

 

 

 



 

Topic: Stark effect theory for atoms (hydrogen and others) in an electric 

field. Perturbation theory method and algorithms for summation of 

divergent series. Formalism of operator Glushkov-Ivanov perturbation 

theory 

Topic: Теорія ефектa Штарка для атомів (водень та інші) в електричному 

полі. Метод теорії збурень та алгоритми сумування розбіжних рядів. 

Формалізм операторної теорія збурень Глушкова-Іванова   ЗБ- Л4 
 

1. Introduction 

The Stark  effect is one of the best known problems in quantum mechanics, 

however at the same  time one of the most difficult in a case of the strong field 

one [1-8].  In the last years it attracts a great interest especially outside the weak-

field region that is stimulated by a whole range of interesting phenomena to be 

studied such as the effects of potential barriers (shape resonances), new kinds of 

resonances  above threshold etc [11-42], the DC strong field effect in the heavy 

atomic systems etc. The great relevance of the Stark resonances characteristics 

of the multielectron atoms is usually provided by standard requirements in 

spectroscopic information of a number of physical applications, which include 

atomic and molecular optics and spectroscopy, quantum electronics, laser 

physics, quantum computing, the construction of kinetic models of new laser 

schemes for short-range, physics and chemistry laboratory, astrophysical 

plasmas, astrophysics and astronomy etc. An external electric field shifts and 

broadens the bound state levels of an atomic system.  The standard quantum-

mechanical procedure relates the complex eigenenergies (EE) 2/+= iEE r
 and 

complex eigenfunctions (EF) to the shape resonances.  The field effects 

drastically increase upon going from one excited level to another. The highest 

levels overlap forming a “new continuum” with lowered boundary. The 

computational difficulties (for example, such as the well-known Dyson 

phenomenon) inherent to the standard  quantum mechanical methods are well 

known. The well-known Wentzel-Kramers-Brillouin (WKB) approximation 

overcomes these difficulties for the states lying far from the “ new continuum” 

boundary. Some modifications  of the WKB  method (see review in Ref. [58]) 

are introduced in Stebbings and Dunning, Kondratovich and Ostrovsky, Popov 

et al; Ivanov-Letokhov ( e.g. citations in refs. [1-42])  have fulfilled the first 

estimations of the effectiviness of the selective ionization of the  Rydberg atom 

using a DC electric and laser fields within the quasiclassical model.  

Different computational procedures are used in the Pade and then Borel 

summation of the divergent Rayleigh-Schrödinger perturbation theory (PT) 



 

series (Franceschini et al 1985, Popov et al 1990) and in the sufficiently exact 

numerical solution  of the  difference equations  following from expansion of the  

wave function over finite basis  (Benassi ans Grecchi 1980, Maquet et al 1983, 

Kolosov 1987, Telnov 1989, Anokhin-Ivanov 1994), complex-coordinate 

method, quantum defect approximation etc [20-39]. Hehenberger, McIntosh and 

E. Brändas  have applied the Weyl’s theory to the Stark effect in the hydrogen 

atom. They have shown that one of the interesting features of Weyl’s theory is 

that it requires a complex parameter and complex solutions to the differential 

equations making it a powerful tool for the treatment of resonance states. 

Brändas and Froelich have shown that a complex scale transformation of the 

time–dependent Schrödinger equation leads to a symmetric EE value problem 

containing both bound states and resonance (complex) EE values as solutions.  It 

is worth to note that application of the complex coordinate method to a 

resonance problem has been justified in [20-33].  

Themelis and Nicolaides [2-4] adopted an ab initio theory to compute the 

complex energy of multielectron atomic states and applied it to computing the 

energies and widths of the lithium Stark resonances for weak and strong fields. 

Their approach is based on the state-specific construction of a non-Hermitian 

matrix according to the form of the decaying-state EF which emerges from the 

complex eigenvalue Schrodinger equation (CESE) theory. Jianguo Rao et al and 

Hui-Yan Meng et al [1] have elaborated the B-spline-based coordinate rotation 

method plus the model potential approach and  applied it to investigate the 

complex energies of low-lying resonances of the hydrogen and lithium atoms in 

an electric field. Sahoo and Ho [5] carried out  the calculation the Stark 

resonances energies and widths in the lithium atom on the base of the complex 

absorbing potential (CAP) method.  It should be noted that the authors use a 

model potential to represent the interaction between the inner core electrons 

with the outside valence electron. In fact, these methods are based on the single-

active-electron (SAE) approximation. In Refs.[56-58] it had been presented a 

consistent uniform quantum approach to the solution of the non-stationary state 

problems including the DC (Direct Current) strong-field Stark effect and also 

scattering problem. It is based on the operator form of the perturbation theory 

(OPT) for the Schrödinger equation. A model potential to represent the 

interaction between the inner core electrons with the outside valence electron is 

also used in application of the OPT method to alkali atoms Stark resonances.    

In this work we present an advanced calculational approach to computing the 

Stark resonances energies and widths for the non-hydrogenic (non-H) atomic 



 

systems in a DC electric field. Our  method is based on the modified OPT 

method and includes the physically reasonable distorted-waves approximation in 

the frame of the formally exact quantum-mechanical procedure. The Stark 

resonances  energies and widths are calculated for the 4f lithium state and 

compared with the data of calculations on the basis of the alternative 

sophisticated approaches such as the method of  complex eigenvalue 

Schrödinger equation by Themelis-Nicolaides, the complex absorbing potential 

method by Sahoo-Ho and the B-spline-based coordinate rotation method by Hui-

Yan Meng et al [1-5].  

  

2. Operator perturbation theory for multielectron atoms in an electric 

field 

 

As the principal ideas of the approach have been presented in Ref. [17,18], 

here we are limited to some key elements. As usually, we start from the Dirac 

Hamiltonian (in relativistic units):                                                   

 

                                      zrZpH i +−+=  / ,                          (1) 

 

 Here a field strength intensity ε is expressed in the relativistic units (εrel= 

5/2εat.un.;  is the fine structure constant). One could see that a relativistic wave 

function in the Hilbert space is a bi-spinor. In order to further diagonalize the 

Hamiltonian (1), we need to choose the correct basis of relativistic functions, in 

particular, by choosing the following functions as in Ref, [17-20]. The 

corresponding matrix elements of the total  Hamiltonian  will be no-zeroth only 

between the states with the same MJ. In fact this moment is a single limitation of 

the whole approach. Transformation of co-ordinates in the Pauli Hamiltonian (in 

comparison with the Schrodinger equation Hamiltonian it contents additional 

potential term of a magnetic dipole in an external field) can be performed by the 

standard way. However, procedure in this case is significantly simplified. They 

can be expressed through the set of one-dimensional integrals, described in 

details in Refs. [17-24]. To simplify the calculational procedure, the uniform 

electric field     should be substitute by the function (c.g. [17,22]: 

      

      (t)  = 1

t
  ( )t

t
−

+
+
















4

4 4
     (2)                           

 



 

with sufficiently large  (=1.5t2). The motivation of a choice of the ( )t  and 

some physical features of electron motion  are presented in Refs. [17-20]. Here 

we only underline that  the function ( )t  practically coincides with the constant 

 in the inner barrier motion region, i.e. t < 2t and disappears at t > 2t . It is 

important that the final results do not depend on the parameter . It is carefully 

checked in the numerical calculation.  

     As usually (see [17-24]), the scattering states energy spectrum now spreads 

over the range ( )+− ,2 , compared with  ( )+− ,  in the uniform field. In 

contrast to the case of a free atom in scattering states in the presence of the 

uniform electric field remain quantified at any energy E, i.e. only definite values 

of 
1  are possible. The latter are determined by the confinement condition for 

the motion along the -axis.  

     The same is true in our case, but only for the following interval: 
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Ultimately, such a procedure provides construction of realistic functions of the 

bound and scattering states. In a certain sense, this completely corresponds to 

the advantages of the distorted-wave approximation known in scattering theory 

[18].  

     The total Hamiltonian  does not possess the bound stationary states. 

According to Ref. [17-22], one has to define the zero order Hamiltonian H0, so 

that its spectrum reproduces qualitatively that of the initial one. To calculate the 

width  of the concrete quasistationary state in the lowest PT order one needs 

only two zeroth–order EF of H0: bound state function 
Eb  and scattering state 

function 
Es . There can be solved a more  general problem: a construction of the 

bound  state function along with its complete orthogonal complementary of  

scattering functions E  with   

                      E 
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The imaginary part of state energy (the resonance width) in the lowest PT order 

is determined by the standard way: 

 

                                                   ImE = /2 = |<Eb |H|Es>|2                   (3)   

 

with the total Hamiltonian H .  



 

     The state functions 
Eb  and 

Es  are assumed to be normalized to 1 and by the 

( )kk −  condition, accordingly. The matrix elements 
sEEb H   entering the high- 

order PT corrections can be determined in the same way. It is important to 

underline that These corrections can be expressed through the set of one-

dimensional integrals, described in details in Refs. [17-20].  

Further the ROPT scheme is combined with the RMBPT in spherical 

coordinates for a free atom. The details of this procedure can be found in the 

references [22-24]. The RMBPT formalism is constructed by the following 

way].  An atomic multielectron system is usually described by the relativistic 

Dirac Hamiltonian (the atomic units are used) as follows:  
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where Z is a charge of nucleus, i ,j are the Dirac matrices, ij is the transition 

frequency, c – the velocity of light. The interelectron interaction potential 

(second term in (4)) takes into account the retarding effect and magnetic 

interaction in the lowest order on parameter of the fine structure constant. In the  

PT zeroth approximation it is used ab initio mean-field  potential: 
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with the standard Coulomb (or some model potential analog), exchange Kohn-

Sham VX and correlation Vc potentials (look details in Refs. [19,20]). An 

effective approach to accounting the multi-electron polarization contributions is 

described earlier and based on using the effective two-QP polarizable operator, 

which is included into the PT first order matrix elements.  

 In order to calculate the decay (transition) probabilities and widths an 

effective  relativistic energy approach (version [5,6,40-43]) is used. In particular, 

a width of the state, connected with an autoionization decay, is determined by a 

coupling with the continuum states and calculated as square of the matrix 

element [19]: 

 

1 2 4 3 1 2 3 4; (2 1)(2 1)(2 1)(2 1)j j j j
V
    = + + + +  



 

1 2 3 4 1 2
( 1) x

j j j j m m+ + + + +
−  

( ) 1 3 2 4

1 3 2 4

            
x 1

a

j j a j j a

m m m m



  

  
−   

− −  
  

 

                                                     ( )1 1 1 2 2 2 4 4 4 3 3 3x ;aQ n l j n l j n l j n l j                            (6) 

 

Here 
aQ = Qul

aQ + Br

aQ , where Qul

aQ , and Br

aQ correspond to the Coulomb and Breit 

parts of the interelectron potential and express through Slater-like radial 

integrals and standard angle coefficients. Other details can be found in Refs. 

[5,6,40-43].  

     The most complicated problem of the relativistic PT computing the complex 

multielectron elements spectra is in an accurate, precise accounting for the 

multi-electron exchange-correlation effects (including polarization and 

screening effects, a continuum pressure etc), which can be treated as the effects 

of the PT second and higher orders. The detailed description of the polarization 

diagrams and the corresponding analytical expressions for matrix elements of 

the polarization QPs interaction (through the polarizable core) potential is 

presented in Refs. [5,6,40-52].  

 

                                        3. Results and Conclusions 

Here we present the results of computing the complex energy eigenvalues 

representing the shifted and broadened 4s state of lithium atom as a function of 

electric field strength. Meng et al [1] have presented the similar results using an 

advanced B-spline based coordinate rotation (B-CR) approach plus the model 

potential method.  Themelis and Nicolaides [4] adopted ab initio theory to 

compute the complex energy of multielectron states for atom in an electric field. 

Their approach is based on the state-specific construction of a non-Hermitian 

matrix according to the form of the decaying-state eigenfunction which emerges 

from the CESE theory. Sahoo and Ho [5] performed the calculation of the Stark 

resonances energies and widths on the basis of a complex absorbing potential 

(CAP) method.  

     In Table 1 we present our data on the EE representing the shifted and 

broadened 4s state of lithium atom as a function of electric field strength (in 

a.u.). For comparison the analogous results, obtained on the basis of the CAP, 

CESE, B-CR methods [1-5] as well as semiclassical (SC) estimates , are listed 

too.     Analysis of the results shows that our data on the Stark resonances 



 

parameters are in a physically reasonable agreement with theoretical data 

obtained by other, in particular, CESE and B-CR methods.   

      

Table 1. Complex eigenvalues (in atomic units: a.u.) representing the shifted 

and broadened 4f state of lithium atom as a function of the field strength *  

(in 10-4 a.u.), calculated by different methods (see text) 

 

Li  

4f 

B-CR 

[1] 

B-CR 

[1] 

CAP  

 [5] 

CAP  

[5] 

*  -Er  /2 -Er  /2  

2.0 2.8962[−2] 2.36[−8] 2.896[−2]   1.62[−7] 

2.5 2.9303[−2] 3.170[−4] 2.834[−2] 1.01[−4] 

3.0        3.1036[−2] 9.363[−4] 2.796[−2] 1.76[−4] 

4.0 3.4574[−2] 2.385[−3] 2.657[−2] 7.05[−4] 

4.5 3.6162[−2] 3.038[−3] - - 

5.0 3.8008[−2] 3.767[−3] 2.576[−2] 1.51[−3] 

6.0 4.1282[−2] 5.929[−3] - - 

7.0        4.4043[−2] 8.095[−3] - - 

8.0        4.6559[−2] 1.020[−2] - - 

10        5.1122[−2] 1.424[−2] - - 

12        5.5320[−2] 1.805[−2] - - 

Li  This This CESE [4] SC [4] 

*  -Er  /2 -Er  /2  

2.0 2.8962[−2] 3.401[−8] 3.445[−8] 1.67[−10] 

2.5 2.9295[−2] 3.172[−4] 3.172[−4] 1.17[−6 ] 

3.0        3.1028[−2] 9.423[−4] 9.482[−4] 3.38[−4 ] 

4.0 3.4565[−2] 2.386[−3] 2.386[−3] 0.2654 

4.5 3.6153[−2] 3.042[−3] 3.049[−3] - 

5.0 3.7998[−2] 3.806[−3] 3.839[−3] - 

6.0 4.1273[−2] 5.974[−3] 6.011[−3] - 

7.0        4.4035[−2] 8.133[−3] 8.169[−3] - 

8.0        4.6550[−2] 1.024[−2] 1.027[−2] - 

10        5.1113[−2] 1.426[−2] 1.427[−2] - 

12        5.5312[−2] 1.807[−2] 1.809[−2] - 

 



 

However, the results for the 4f lithium state width differ more significantly from 

each other. For example, the CAP calculation for the width of the 4f state gives 

systematically less values than obtained by the CESE, B-CR and our  methods.  

   Our resonance width values are higher As it was indicated in Ref. [4], one of 

the advantages of the B-CR method is possibility to apply in the case of 

increasing field strengths without a significant computational effort growth, 

however, the convergence of the width   to obtain reliable complex eigenvalues 

should be carefully carried out.  One of the advantages of the modified OPT 

method is that an increasing a field strength does not lead to an increase of 

computational effort and there is no a convergence problem. To ensure rapid PT 

convergence, a physically reasonable spectrum (EE and EF) was  chosen as the 

zero order, similar to the 'distorted waves' method. Indeed, the convergence tests 

confirmed this fact. The OPT approach provides not only resonance state 

function definition but also the construction of the complex EE state function 

along with its complete orthogonal complementary of the scattering functions.  

     In Refs. [51-61] the operator PT method ideology has been used to consider a 

problem of resonances in the heavy ions collisions and AC Stark effect as well 

as the actual problems of a cooperative combined electron-gamma-nuclear  

spectroscopy. In any case development of advanced computational methods to 

Stark resonances in atoms is of a great importance for  

multiple physical applications [51-61]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2. Task options  

 

Task Option 1. 

1). The main definitions of a theoretical approach to computing  the   energy and 

spectral characteristics of the Stark resonances using the standard  quantum-

mechanical amplitude approach  and effective formalism of operator 

perturbation theory by Glushkov-Ivanov: i) mathematical and physical essense 

of nonrelativistic and relativistic operator perturbation theory by Glushkov-

Ivanov: ii) calculation of the Stark resonances energies and widths s, iv) 

calculation of the ionization cross section in a presence of DC electric field,  v) 

analysis of the role of correlation effects and value of the field strength;   

2). Explain all definitions in nonrelativistic and relativistic theory of Stark 

resonances for atomic systems in DC electric field on the example of the 

hydrogen, helium and any alkali atom  , preliminarily describing the 

corresponding spectrum of a free system , i.e. without an external electric field. 

3).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

the Stark resonances energies and widths of any alkali atom, say Na.  To 

perform its pracrical realization (using Fortran Power Station , Version 4.0; PC 

Code: “Superatom-Stark” (all necessary numerical parameters should be self-

taken).   

 

Task Option 2. 

1). The main definitions of a theoretical approach to computing  the   energy and 

spectral characteristics of the Stark resonances using the standard  quantum-

mechanical amplitude approach  and effective formalism of operator 

perturbation theory by Glushkov-Ivanov: i) mathematical and physical essense 

of nonrelativistic and relativistic operator perturbation theory by Glushkov-

Ivanov: ii) calculation of the Stark resonances energies and widths s, iv) 

calculation of the ionization cross section in a presence of DC electric field,  v) 

analysis of the role of correlation effects and value of the field strength;   

2). Explain all definitions in nonrelativistic and relativistic theory of Stark 

resonances for atomic systems in DC electric field on the example of the 

hydrogen, helium and any alkali atom  , preliminarily describing the 

corresponding spectrum of a free system , i.e. without an external electric field. 

3).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

the Stark resonances energies and widths of any alkali atom, say K.  To perform 

its pracrical realization (using Fortran Power Station , Version 4.0; PC Code: 

“Superatom-Stark” (all necessary numerical parameters should be self-taken).   

 



 

Task Option 3. 

1). The main definitions of a theoretical approach to computing  the   energy and 

spectral characteristics of the Stark resonances using the standard  quantum-

mechanical amplitude approach  and effective formalism of operator 

perturbation theory by Glushkov-Ivanov: i) mathematical and physical essense 

of nonrelativistic and relativistic operator perturbation theory by Glushkov-

Ivanov: ii) calculation of the Stark resonances energies and widths s, iv) 

calculation of the ionization cross section in a presence of DC electric field,  v) 

analysis of the role of correlation effects and value of the field strength;   

2). Explain all definitions in nonrelativistic and relativistic theory of Stark 

resonances for atomic systems in DC electric field on the example of the 

hydrogen, helium and any alkali atom  , preliminarily describing the 

corresponding spectrum of a free system , i.e. without an external electric field. 

3).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

the Stark resonances energies and widths of any alkali atom, say Mg.  To 

perform its pracrical realization (using Fortran Power Station , Version 4.0; PC 

Code: “Superatom-Stark” (all necessary numerical parameters should be self-

taken).   

 

 

Task Option 4. 

1). The main definitions of a theoretical approach to computing  the   energy and 

spectral characteristics of the Stark resonances using the standard  quantum-

mechanical amplitude approach  and effective formalism of operator 

perturbation theory by Glushkov-Ivanov: i) mathematical and physical essense 

of nonrelativistic and relativistic operator perturbation theory by Glushkov-

Ivanov: ii) calculation of the Stark resonances energies and widths s, iv) 

calculation of the ionization cross section in a presence of DC electric field,  v) 

analysis of the role of correlation effects and value of the field strength;   

2). Explain all definitions in nonrelativistic and relativistic theory of Stark 

resonances for atomic systems in DC electric field on the example of the 

hydrogen, helium and any alkali atom  , preliminarily describing the 

corresponding spectrum of a free system , i.e. without an external electric field. 

3).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

the Stark resonances energies and widths of any alkali atom, say Fr.  To perform 

its pracrical realization (using Fortran Power Station , Version 4.0; PC Code: 

“Superatom-Stark” (all necessary numerical parameters should be self-taken).   

 

 



 

Task Option 5. 

1). The main definitions of a theoretical approach to computing  the   energy and 

spectral characteristics of the Stark resonances using the standard  quantum-

mechanical amplitude approach  and effective formalism of operator 

perturbation theory by Glushkov-Ivanov: i) mathematical and physical essense 

of nonrelativistic and relativistic operator perturbation theory by Glushkov-

Ivanov: ii) calculation of the Stark resonances energies and widths s, iv) 

calculation of the ionization cross section in a presence of DC electric field,  v) 

analysis of the role of correlation effects and value of the field strength;   

2). Explain all definitions in nonrelativistic and relativistic theory of Stark 

resonances for atomic systems in DC electric field on the example of the 

hydrogen, helium and any alkali atom  , preliminarily describing the 

corresponding spectrum of a free system , i.e. without an external electric field. 

3).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

the Stark resonances energies and widths of any alkali atom, say Li.  To perform 

its pracrical realization (using Fortran Power Station , Version 4.0; PC Code: 

“Superatom-Stark” (all necessary numerical parameters should be self-taken).   

 

Task Option 6. 

1). The main definitions of a theoretical approach to computing  the   energy and 

spectral characteristics of the Stark resonances using the standard  quantum-

mechanical amplitude approach  and effective formalism of operator 

perturbation theory by Glushkov-Ivanov: i) mathematical and physical essense 

of nonrelativistic and relativistic operator perturbation theory by Glushkov-

Ivanov: ii) calculation of the Stark resonances energies and widths s, iv) 

calculation of the ionization cross section in a presence of DC electric field,  v) 

analysis of the role of correlation effects and value of the field strength;   

2). Explain all definitions in nonrelativistic and relativistic theory of Stark 

resonances for atomic systems in DC electric field on the example of the 

hydrogen, helium and any alkali atom  , preliminarily describing the 

corresponding spectrum of a free system , i.e. without an external electric field. 

3).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

the Stark resonances energies and widths of any alkali atom, say Rb.  To 

perform its pracrical realization (using Fortran Power Station , Version 4.0; PC 

Code: “Superatom-Stark” (all necessary numerical parameters should be self-

taken).   
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