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PREFACE 

Discipline " MATHEMATICAL AND PHYSICAL MODELS OF 

QUANTUM AND NEURAL NETWORKS " is an elective discipline in the 

cycle of professional training of graduate students (third level of education) in 

the specialty 113- Applied Mathematics. 

It is aimed at mastering (providing) a number of planned competencies, 

including the study of the modern apparatus of quantum and neural networks 

and on their basis to build new computational algorithms and software systems 

for mathematical modeling of linear and nonlinear processes in complex systems 

with regular and chaotic dynamics 

The place of the discipline in the structural and logical scheme of its 

teaching: the knowledge gained in the study of this discipline is used in writing 

dissertations, the subject of which is related to the study of properties and 

regular and chaotic dynamics of various [classes of mathematical, physical 

chemical, cybernetic, socio-economic and environmental systems. The basic 

concepts of the discipline are the desired toolkit of an experienced specialist in 

the field of applied mathematics.The purpose of studying the discipline is to 

master (provide) a number of competencies, in particular, the ability to develop 

new and improve existing mathematical and physical models of quantum and 

neural networks and build new computational algorithms and software for 

mathematical modeling of linear and nonlinear processes in complex systems. 

regular and chaotic dynamics.After mastering this discipline, the graduate 

student must be able to improve existing modern mathematical and physical 

models of quantum and neural networks, as well as build new efficient models, 

and on their basis to develop new computational algorithms and software for 

analysis, mathematical modeling and prediction of linear and nonlinear 

processes in complex systems with regular and chaotic dynamics. The study of 

the discipline "Mathematical and Physical Models of Quantum and Neural 

Networks" is conducted in the second year of study (4th semester; full-time and 

part-time forms of study) and includes lectures and practical classes. Types of 

control of current knowledge - tests and term papers, surveys, tests. 

 Topics of these issue: Mathematical and physical models of quantum 

neural networks. An array of quantum dots in a semiconductor heterostructure as 

an example of a quantum neural network and a way to construct adiabatic 

quantum computers. Excitonic system in semiconductor and atom in electric 

field. 



 

 

 

Topic: Mathematical and physical models of quantum neural networks. An 

array of quantum dots in a semiconductor heterostructure as an example of a 

quantum neural network and a way to construct adiabatic quantum computers. 

Excitonic system in semiconductor and atom in electric field. 

Topic: Математичні та фізичні моделі квантових нейромереж. Масив 

квантових точок у напівпровідниковій гетероструктурі як приклад 

квантової нейромережі та шлях до побудови  адіабатичних квантових 

компьютерів. Excitonic system in semiconductor and atom  in electric field. 

ЗБ- Л4 

 

1 Introduction 

1. Introduction 

 This issue considers a group of topics such as mathematical and physical 

models of quantum neural networks, the system of quantum dots in a 

semiconductor heterostructure, the excitonic system in semiconductor and atom 

in electric field as an example of a quantum neural network. In fact the known 

Stark effect is used as the fundamental one in mathematical and physical 

modeling quantum neural networks.   

The remarkable Stark effect has a long history and until recently it was 

believed that the Stark effect is fully understood and fundamental problems 

remained.  However, an observation of the Stark effect in a constant (DC) 

electric field near threshold in hydrogen and alkali atoms led to the discovery of 

resonances extending into the ionization continuum by Glab et al and Freeman 

et al (c.f.[1]). Calculation of the characteristics of these resonances as well as the 

Stark resonances in the strong electric field remains very important problem of 

modern atomic physics.  

It should be noted that the same class of problems has been arisen in a 

physics of  semiconductors (c.f.[14-17]). It is well known that the availability of 

excitons in semiconductors resulted experimentally in the special form of the 

main absorption band edge and appearance of discrete levels structure (f.e. 

hydrogen-like spectrum in Cu2O). Beginning from known papers of Gross-

Zaharchenya, Thomas and Hopfield et al (c.f.[14-17]), a calculation procedure 

of the Stark effect for exciton spectrum attracts a deep interest permanently.  



 

 

Very interesting physics occurs in a case of the excitons in quantum dots, wires 

etc, where the other geometry and energetics in comparison with the bulk 

semiconductor makes the field effect more intrigues. The exciton states in the 

quantum dots have been studied in a number of papers and have been observed 

by photoluminescence experiments (c.f. [14-17]). Naturally, the electronic states 

in quantum dots (wires) depends on either the confining potential and the 

interacting force between the particles. Now the electric field effect on the 

electron-hole states and on the confined excitonic states is often referred to the 

quantum confined Stark effect. Now it is represented an interest to study an 

influence of quantum well concentration profile and width on Stark shifts in case 

of such a system as system GaAs-AlGaAs etc. In this paper we study the Stark 

effect for non-H atom of rubidium and for excitons in an external uniform 

electric field within the operator perturbation theory method. The Stark 

resonance energies in rubidium and the Stark shift for the n=2 state of the 

Wannier-Mott excitons in the Cu20 semiconductor and excitons in the parabolic 

quantum dot (GaAs) in the electric field are listed.    

Method for calculating energies and widths of Stark resonances 

The Schrödinger equation for the electron function taking into account the 

uniform electric field and field of the nucleus (Coulomb units are used: for 

length, 1 unit is mZeh 22 ; for energy 1 unit is 242 hemZ )  is [6,57]:  

 

                               [-(1 - N/Z) / r+Vm(r) +  z –1/2 - E ]  = 0,             (1) 

 

where E  is the electron energy, Z is the nucleus charge, N is the number of 

electrons in the atomic core (for the hydrogen atom: Z=1, N=0), Vm is an model 

potential (for the hydrogen atom Vm=0). Firstly, we only deal with the Coulomb 

part of the electron- atomic residue interaction. The non-Coulomb part, as well 

as relativistic effects, can be approximately accounted for next step. The 

separation of  variables in the parabolic coordinates ( ( )xyzrzr 1tan,, −=−=+=  ) 

: 

                            (, ,  )=f () g()(  )|m|/2 exp(im)/(2)1/2                 (2) 

 

transforms it to the system of two equations for the functions  f, g: 

 



 

 

           f + 
t

m 1|| +  f +[1/2E + (1 - N/Z) / t- 1/4 (t) t ] f = 0,        (3) 

                g + | |m

t

+1 g + [1/2E+2  / t + 1/4 (t)  t ] g = 0,          (4) 

 

coupled through the constraint on the separation constants: 

 

                                                         121 =+                                                  (5) 

 

For the uniform electric field  

 

                                                          ( )  =t .   

 

In principle, the more realistic models can be considered in the framework of 

our approach. Potential energy in equation (4)  has the barrier. Two turning 

points for the classical motion along the   axis, 1t  and  2t , at a given energy E 

are the solutions of the quadratic equation (
01 , EE ==  ): 

 

t2 ={[ E2
0 - 4 (1-)] 1/2 - E0 }/ ,                           (6) 

 

            t1 ={-[E2
0  - 4 (1-)] 1/2 - E0 }/,   t1< t2                     (7) 

 

Here and below t denotes the argument common for the whole equation system. 

To simplify the calculational procedure, the uniform electric field   in (3) and 

(4)  should be substituted by the function [57,58]: 

          

 (t)  = 1

t
  ( )t

t
−

+
+
















4

4 4
                               (8) 

 

with sufficiently large  (=1.5t2).  

The function ( )t  practically coincides with the constant   in the inner 

barrier motion region (t<t2) and disappears at t>>t2.   

The minimal acceptable value of  introduced in the spatial dependence of 

the electric field, which does not influence the final results, can be established 

experimentally.  Thus, the final results do not depend on the parameter   (the 

further calculation has entirely confirmed this fact). Besides the pure technical 



 

 

convenience, the case of an asymptotically disappearing electric field is more 

realistic from the physical point of view. Now we deal with the asymptotically  

free (without electric field) motion of the ejected electron along the -axis. The 

corresponding  effective wavenumber is: 

 

                                                 k = (Е/2 +/4)1/2.                                          (9) 

 

The scattering states energy spectrum now spreads over the range ( )+− ,2 , 

compared with  ( )+− ,  in the uniform field. In contrast to the case of a free 

atom in scattering states in the presence of the uniform electric field remain 

quantified at any energy E, i.e. only definite values of 
1  are possible.  

The total Hamiltonian ( ) ,,H  does not possess the bound stationary states. 

According to OPT [6, 56-58]), one has to define the zero order Hamiltonian H0, 

so that its spectrum reproduces qualitatively that of the initial one. In contrast to 

H, it must have only stationary states. To calculate the width  of the concrete 

quasistationary state in the lowest PT order one needs only two zeroth–order EF 

of H0: bound state function ( ) ,,Eb  and scattering state function ( ) ,,Es  

with the same EE. We solve a more general problem: a construction of the 

bound  state function along with its complete orthogonal complementary of  

scattering functions E  with  E 







+− ,

2

1
 . First, one has to define the EE of 

the expected bound state. It is the well known problem of states quantification in 

the case of the penetrable barrier [65,66]. Following [57], we solve the system 

(3) and (4) with the total Hamiltonian H  under the conditions: 

 

                                                  f(t)→ 0 at t   ,                                (10a) 

                                                   x(, E) / E = 0                                 (10b) 

 

with                             x(, E) = 
t
lim [ g2 (t) + {g(t) / k}2 ] t| m| + 1.          (11) 

The first condition ensures the finiteness of motion along the  -axis, the second 

condition minimizes the asymptotic oscillation amplitude for the function 

describing the motion along the  -axis. These two conditions quantify the 

bound energy E and separation constant 
1 . We elaborated a special numerical 

procedure for this two-dimensional eigenvalue problem.  Our procedure deals 



 

 

repeatedly with the solving of the system of the ordinary differential equations 

(3) and (4) with probe pairs of  E, 
1 . The corresponding EF: 

       Eb (  ) = fEb () gEb ()( )|m|/2 exp (im)(2)--1/2 .       (12) 

Here  ( )tfEb
  is the solution of (3) ( with the just determined E, 

1 ) at ( ) ,0t   and 

( )tg Eb
 is the solution of (4) (with the same E, 

1 ) at 
2tt   (inside barrier) and  

( ) 0=tg  otherwise.  These bound state EE, eigenvalue 
1  and EF for the zero-order 

Hamiltonian 
0H  coincide  with those  for the total Hamiltonian H  at  0 , 

where all the states can be classified  due  to the quantum numbers mnnn ,,, 21
 

(principal, parabolic, azimuthal) connected with E, 
1 , m by the well known 

expressions. We preserve the mnn ,, 1
 states classification in the non-zero   case. 

The scattering state functions: 

 

      Es  (  ) = f Es () gE’s () ( )|m|/2  exp (im)(2)-1/2     (13) 

 

must be  orthogonal to the above defined bound state function and to each other. 

In addition, these functions must describe the motion of the ejected electron, i.e. 

sEg 
 must satisfy the equation (4) asymptotically. Following the OPT ideology 

[57], we choose the next form of 
sEg 
: 

 

        gEs(t) = g1 (t) - z2 g2(t)                                         (14) 

 

with 
sEf 
 and ( )tg1

 satisfying the differential equations (3) and (4). The function 

( )tg2
 satisfies the non-homogeneous differential equation, which differs from (4) 

only by the right-hand term, disappearing at t . The total equation system, 

determining the scattering function, reads 

 

fEs + | |m

t

+1 f Es +[1/2E + (1 - N/Z) / t- 1/4  (t)t] f Es = 0, 

                  g1 + | |m

t

+1 g1 + +[1/2E+2  / t +  1/4 (t)t] g1 = 0,         (15) 

g2 + | |m

t

+1 g2 + +[1/2E+2  / t +  1/4 (t)t] g2 = 2gEb, 

 



 

 

( 121 =+  ). As mentioned above there remains motion quantification for 









+− 

2

1
,

2

1
Е .  At the given E  , the only quantum parameter 

1   is determined 

by the natural boundary condition: fEs at t  .  

Of course:  
11  = , 

EbsE ff =
  at EE = ; only this case is needed in the particular 

problem we deal with here. The coefficient 
2z  ensures the orthogonality 

condition 0= sEEb
: 

 

z2  = { dd (+) f 
2
Eb()gEb ()g1 ()}/ 

 

        /{ dd (+) f 
2
Eb()gEb ()g2 () }.                  (16) 

One can check that 

     Es’| E’s  = 0  for  E’E’’ 

 

The imaginary part of state energy in the lowest PT order is  

 

    ImE = /2 = |<Eb |H|Es>|2                           (17)   

 

with the total Hamiltonian H . The state functions 
Eb  and 

Es  are assumed to be 

normalized to 1 and by the ( )kk −  condition, accordingly. The action of H  on 

Eb  is defined unambiguously by (15): 

 

(H-E’) s =2|m|(2) f Es () gEb ()z2’
 exp (im/)/[(2)1/2 (+)], 

 

                     Eb|H| E’s =  dd ()|m| f 
2

Eb()f2
 Es ()gEb () '

2z .     (18) 

 

The matrix elements 
sEEb H   entering the high- order PT corrections can be 

determined in the same way. All the two-dimensional integrals in (16)-(18) and 

the normalization coefficients can be expressed through the next set of one-

dimensional integrals: 

 

                          I1 = dt fb
2(t)t|m| ,                               I2 = dt fb

2(t)t|m|+1, 

          I3 = dt  gb (t) g1 (t) t
|m| ,         I4= dt gb(t)g1(t)t

|m|+1, 

            I5 = dt  gb (t) g2 (t) t
|m| ,        I6 = dt  gb(t) g2(t)t

|m|+1, 



 

 

                        I7 = dt gb 
2 (t) t|m| ,                      I8 = dt gb

2 (t)t|m|+1,            (19) 

calculated with  the arbitrary normalized functions 
Ebf ,

Ebg ,
2f ,

2g , and 
Ebff =1

, 

Ebgg =1
. In this notation 

    ]/[32 8172

2

8

2

1

22

2 IIIIIINz s +=  , 

                             ]/[][ 526132412 IIIIIIIIz ++=                             (20) 

with 

             N2
s=

t
limX(t)/{22|m|+1[ g2

s()X2(t) + gs2()]} ,        

                            X(t)={E/2 + ( -N/Z )/t -Е t/4}1/2                                 (21) 

 

Remember that arbitrary normalized state functions are assumed in (20) and 

(21). The whole calculational procedure at known resonance energy E and 

separation parameter 
1  has been reduced to the solution of one system of the 

ordinary differential equations. This master system includes the differential 

equations for the state functions  
Ebf , 

Ebg , 
Esf , 

Esg , as well as the equations for the 

integrals 
81 II − .  

 

 Stark effect for excitonic system in semiconductors 

 

The above analogous method can be formulated for description of the 

Stark effect for the Wannier-Mott excitons in the bulk semiconductors [4]. 

Really, the Schrödinger equation for the Wannier-Mott exciton looks as follows:  

 

         
=−+

+−−−

EeFreFr

remm

he

ehhhee

]

/2/2/[ 2*22*22 
                    

(22) 

where m*
e( m*

h ) are the effective-mass for the electron (hole),   is the 

background dielectric constant. Introducing the relative coordinates: hrerr −=  

and the corresponding momenta p with reduced mass p= m*
e m*

h/M (the 

momenta P with the total-mass M= m*
e + m*

h ,) and center-of-mass coordinate  

 

)'/()( ****

hehhee mmrmrm ++= , 

one could rewrite (22 as: 

 

                             
−=−

−−−−−

]8/[]

)/1/1(2//2/[
22

**222





KEFeFr

pKmmre eh



                    (23) 



 

 

         This equation then could be solved by the method, described above. The 

other details can be found in Refs. [1,4].  

A problem of the Stark effect for quantum dots requires more detailed 

consideration. For definiteness, below we study the Stark effect in the parabolic 

quantum dot.   

Within the effective-mass approximation and neglecting the band-

structure effects , the Hamiltonian of an exciton in a parabolic quantum dot with 

the same quantization energy   ( for the electron and hole), nd subjected to an 

external electric field , can be expressed as : 

                                  

heehhhh

heeee

eFreFrrermm

rmmH

−+−+

−+−=

/))(2/1(2/

/))(2/1(2/
222**

2222**22 
                                                                       

                                                                 (24) 

where all notations are defined above.  

Further, as above, using the relative coordinate, the momenta with 

reduced mass and center-of-mass coordinate and the momenta with the total-

mass M, the Hamiltonian H (7) can be represented as : 

 

 

eFzrer

pMMPH

+−+

+++=





/)2/1(

2/)2/1(2/
222

2222

.                (25) 

 

Further let us note that the part which depends only on the center-of-mass 

coordinate in Eq.(10) is corresponding to the Hamiltonian of a well-known 3D 

harmonic oscillator and the exciton properties is essentially determined by the 

relative Hamiltonian Hr.  

The field term added to the z-direction confinement describes a displaced 

harmonic oscillator centred in z0=eF/2  with the frequency r  inferior to . 

Besides, as usually [17], in order to solve the Hamiltonian Hr , one should 

introduce an interaction potential which obeys to the known Hooke's force with 

the parameter  by adding and substracting the potential:   

 

V(r)= ])2/1[( 22 − r . 

 

Surely then  the Hamiltonian H is splitted into two terms with the one term 

being exactly solvable while the other can be treated as a perturbation.  

Such a scheme is corresponding to method by Jaziri-Bastard-Bennaceur 

[17]. Our approach is in he direct numerical solving the problem. Let us remind 

that the introduced potential is similar to the interaction potential between 

electron-electron used by Johnson-Payne and it can hardly be considered as the 

correct potential for the all electron-hole separation. Nevertheless, here one 



 

 

could  adjust the interaction parameter  so in order to provide the best fit of the 

true interaction which is the Coulomb interaction, and for the dominant range of 

separation r [17].  

The attraction potential V(r) will have negative value with positive  , and 

it yields a physically reasonable fit to the exact interaction for electron-hole 

separation r<(2)1/2R0 (here  R0 is the quantum dot radius defined as / . As 

usually, the total energy corresponding to exciton ground state is obtained as : 

 
)2/()()2/3()2/3( 222 −−+=  FeE rT   

where += 1r
. The field-induced energy shifts can be expressed as: E = 

ET(F=O)-ET(F), where E(F=0)is the corresponding energy in the free (i.e. zero-

field) state. The main aim is to determine the exciton binding energy defined by 

EB= Ee+Eh-ET, where Ee,Eh are the energies corresponding to the one-particle 

Hamiltonian. 

The calculation results for Stark resonances energies in the rubidium atom 

for the electric field strength =2.189 kV/cm are presented in Table 1. For 

comparison we have also presented the experimental data [13], the results of 

calculation within the 1/n-expansion method by Popov etal [12].   For the most 

long-living Stark resonances with quantum numbers n2 = 0 , m = 0, a width of 

energy level is significantly less than a distance between them. These states are 

mostly effectively populated by -polarized light under transitions from states 

with (n1-n2) = max, m = 0.  

As a result, the sharp isolated resonances (their positions under E>0 are 

determined by energies of quasi-stationary states with n2=0 , m=0) are appeared 

under photo ionization from these states in a case of -polarization 

In ref. [4] there are listed the preliminary estimates of the Stark shifts of 

the n=2 state of excitons in the Cu20 semiconductor (yellow series) at the 

electric field strength 600 V/cm results and indicated on the physically 

reasonable agreement with the  known results by Thomas and Hopfield (TH) 

[14]. Our final value for the Stark shift of the n=2 state excitons in the Cu20 

semiconductor (yellow series) at the electric field strength 600 V/cm results in – 

0,308 meV in a good agreement with experimental data of Gross et al.[28]. 

Under increasing the electric field strength changing a potential on a small 

enough distance (the orbits diameter) will become  comparable with the bond 

energy of particle on this orbit 

 

 

 

 



 

 

Table 1. The energies (cm-1)of the Stark resonances for the Rb atom (=3,59 

kV/cm):  

A-experimental data ; B- Popov et al; C- OPT approach. 

 

n1n2m
  A B C 

23,0,0 

22,0,0 

21,1,0 

20,2,0 

21,0,0 

20,1,0 

20,0,0 

18,1,0 

16,2,0 

18,0,0 

0,656 

0,681 

0,517 

0,400 

0,708 

0,531 

0,737 

0,561 

0,428 

0,802 

133,1 

157,0 

161,1 

163,9 

185,2 

186,3 

217,2 

248,4 

- 

- 

132,8 

157,1 

159,5 

163,2 

184,2 

185,4 

214,6 

247,2 

    - 

    -   

132,9 

157,2 

160,6 

163,7 

184,8 

185,8 

214,9 

247,3 

- 

     

133,0 

157,1 

160,9 

163,9 

185,1 

186,2 

216,9 

248,2 

285,5 

289,3 

 

. According to our data and data by Gross et al., the corresponding electric 

field is ~ 9103 V/cm. we have tried to discover the chaotic behavior of the 

exciton dynamics in an electric field, however near ionization boundary  exciton 

does not demonstrate behaviour of quantum chaotic system, which is similar to 

hydrogen or on-H atom dynamics in a strong field and manifested as unusual 

features in a photoionization spectra  (alkali atoms) [5,14]. Further we list some 

data on the Stark shifts excitons in a GaAs semiconductor quantum dot (table 2).   

 

Table 2. The Stark shifts (meV) for exciton in the GaAS quantum dot: A- Jaziri-

Bastard-Bennaceur method; B- OPT approach 

F 

(kV/cm) 

R (A) A B 

50 50 3.9 4.0 

50 80 14 14.1 

50 120 45 45.2 

100 50 13 13.1 

100 80 56 56.6 

100 120 158 159.8 

 

Comparison of the presented preliminary data shows that the different 

results are in the physically reasonable agreement. The corresponding accuracy 



 

 

is of the order of 1%, however, is should be noted [17] that though the method 

[17] is much simpler in comparison with the direct variational approach, but it 

cannot enviseaged for any strength electric field and/nor any quantum dot size. 

The important feature of the operator perturbation theory formalism is that it can 

be applied for any strength electric field.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

2. Task options 

Task Option 1. 

1). Give the key definitions in mathematical and physical models of quantum 

neural networks. An array of quantum dots in a semiconductor heterostructure as 

an example of a quantum neural network and a way to construct adiabatic 

quantum computers. Excitonic system in semiconductor and atom in electric 

field and Stark effect. Computing the Stark resonances using the standard  

quantum-mechanical amplitude approach  and new formalism of operator 

perturbation theory by Glushkov-Ivanov:  

2). Mathematical and physical essense of quantum-mechanical approach   to 

treatment of the excitonic system in semiconductor and atom in electric field and 

Stark effect. 

3).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

the Stark resonances energies and widths of the excitonic system in 

semiconductor InP and atom in electric field Fr.  Construct the simple 

mathematical and physical models of quantum NNW. To perform its pracrical 

realization (using Fortran Power Station , Version 4.0; PC Code: “Superatom-

Stark” (all necessary numerical parameters should be self-taken).   

 

Task Option 2. 

1). Give the key definitions in mathematical and physical models of quantum 

neural networks. An array of quantum dots in a semiconductor heterostructure as 

an example of a quantum neural network and a way to construct adiabatic 

quantum computers. Excitonic system in semiconductor and atom in electric 

field and Stark effect. Computing the Stark resonances using the standard  

quantum-mechanical amplitude approach  and new formalism of operator 

perturbation theory by Glushkov-Ivanov:  

2). Mathematical and physical essense of quantum-mechanical approach   to 

treatment of the excitonic system in semiconductor and atom in electric field and 

Stark effect. 

3).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

the Stark resonances energies and widths of the excitonic system in 

semiconductor GaN and atom in electric field Rb.  Construct the simple 

mathematical and physical models of quantum NNW. To perform its pracrical 

realization (using Fortran Power Station , Version 4.0; PC Code: “Superatom-

Stark” (all necessary numerical parameters should be self-taken).   



 

 

Task Option 3. 

1). Give the key definitions in mathematical and physical models of quantum 

neural networks. An array of quantum dots in a semiconductor heterostructure as 

an example of a quantum neural network and a way to construct adiabatic 

quantum computers. Excitonic system in semiconductor and atom in electric 

field and Stark effect. Computing the Stark resonances using the standard  

quantum-mechanical amplitude approach  and new formalism of operator 

perturbation theory by Glushkov-Ivanov:  

2). Mathematical and physical essense of quantum-mechanical approach   to 

treatment of the excitonic system in semiconductor and atom in electric field and 

Stark effect. 

3).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

the Stark resonances energies and widths of the excitonic system in 

semiconductor GaAs and atom in electric field K.  Construct the simple 

mathematical and physical models of quantum NNW. To perform its pracrical 

realization (using Fortran Power Station , Version 4.0; PC Code: “Superatom-

Stark” (all necessary numerical parameters should be self-taken).   

 

 

Task Option 4. 

1). Give the key definitions in mathematical and physical models of quantum 

neural networks. An array of quantum dots in a semiconductor heterostructure as 

an example of a quantum neural network and a way to construct adiabatic 

quantum computers. Excitonic system in semiconductor and atom in electric 

field and Stark effect. Computing the Stark resonances using the standard  

quantum-mechanical amplitude approach  and new formalism of operator 

perturbation theory by Glushkov-Ivanov:  

2). Mathematical and physical essense of quantum-mechanical approach   to 

treatment of the excitonic system in semiconductor and atom in electric field and 

Stark effect. 

3).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

the Stark resonances energies and widths of the excitonic system in 

semiconductor AlAs and atom in electric field Li.  Construct the simple 

mathematical and physical models of quantum NNW. To perform its pracrical 

realization (using Fortran Power Station , Version 4.0; PC Code: “Superatom-

Stark” (all necessary numerical parameters should be self-taken).   



 

 

Task Option 5. 

1). Give the key definitions in mathematical and physical models of quantum 

neural networks. An array of quantum dots in a semiconductor heterostructure as 

an example of a quantum neural network and a way to construct adiabatic 

quantum computers. Excitonic system in semiconductor and atom in electric 

field and Stark effect. Computing the Stark resonances using the standard  

quantum-mechanical amplitude approach  and new formalism of operator 

perturbation theory by Glushkov-Ivanov:  

2). Mathematical and physical essense of quantum-mechanical approach   to 

treatment of the excitonic system in semiconductor and atom in electric field and 

Stark effect. 

3).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

the Stark resonances energies and widths of the excitonic system in 

semiconductor CdTe and atom in electric field Cs.  Construct the simple 

mathematical and physical models of quantum NNW. To perform its pracrical 

realization (using Fortran Power Station , Version 4.0; PC Code: “Superatom-

Stark” (all necessary numerical parameters should be self-taken).   

 

Task Option 6. 

1). Give the key definitions in mathematical and physical models of quantum 

neural networks. An array of quantum dots in a semiconductor heterostructure as 

an example of a quantum neural network and a way to construct adiabatic 

quantum computers. Excitonic system in semiconductor and atom in electric 

field and Stark effect. Computing the Stark resonances using the standard  

quantum-mechanical amplitude approach  and new formalism of operator 

perturbation theory by Glushkov-Ivanov:  

2). Mathematical and physical essense of quantum-mechanical approach   to 

treatment of the excitonic system in semiconductor and atom in electric field and 

Stark effect. 

3).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

the Stark resonances energies and widths of the excitonic system in 

semiconductor InGa and atom in electric field Na  Construct the simple 

mathematical and physical models of quantum NNW. To perform its pracrical 

realization (using Fortran Power Station , Version 4.0; PC Code: “Superatom-

Stark” (all necessary numerical parameters should be self-taken).   
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