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PREFACE 

 

Discipline " MATHEMATICAL AND PHYSICAL MODELS OF 

QUANTUM AND NEURAL NETWORKS " is an elective discipline in the 

cycle of professional training of graduate students (third level of education) in 

the specialty 113- Applied Mathematics. 

It is aimed at mastering (providing) a number of planned competencies, 

including the study of the modern apparatus of quantum and neural networks 

and on their basis to build new computational algorithms and software systems 

for mathematical modeling of linear and nonlinear processes in complex systems 

with regular and chaotic dynamics 

The place of the discipline in the structural and logical scheme of its 

teaching: the knowledge gained in the study of this discipline is used in writing 

dissertations, the subject of which is related to the study of properties and 

regular and chaotic dynamics of various [classes of mathematical, physical 

chemical, cybernetic, socio-economic and environmental systems. The basic 

concepts of the discipline are the desired toolkit of an experienced specialist in 

the field of applied mathematics.  

The purpose of studying the discipline is to master (provide) a number of 

competencies, in particular, the ability to develop new and improve existing 

mathematical and physical models of quantum and neural networks and build 

new computational algorithms and software for mathematical modeling of linear 

and nonlinear processes in complex systems. regular and chaotic dynamics.  

After mastering this discipline, the graduate student must be able to 

improve existing modern mathematical and physical models of quantum and 

neural networks, as well as build new efficient models, and on their basis to 

develop new computational algorithms and software for analysis, mathematical 

modeling and prediction of linear and nonlinear processes in complex systems 

with regular and chaotic dynamics.  

The study of the discipline "Mathematical and Physical Models of 

Quantum and Neural Networks" is conducted in the second year of study (4th 

semester; full-time and part-time forms of study) and includes lectures and 

practical classes. Types of control of current knowledge - tests and term papers, 

surveys, tests.   

Topics of these issue: Quantum neural network and finding the minimum 

of some objective function by nonstationary evolution of the quantum system. 



 

 

Mathematical and physical models of quantum neural networks. Paradigm of 

quantum chaotic computations. Modeling of systems described by the 

Schrödinger equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Topic: Quantum neural network and finding the minimum of some objective 

function by nonstationary evolution of the quantum system. Mathematical and 



 

 

physical models of quantum neural networks. Paradigm of quantum chaotic 

computations. Modeling of systems described by the Schrödinger equation. 

Topic ЗБ- Л4 : Квантова нейронна мережа і пошук мінімуму деякої 

цільової функції шляхом нестаціонарної еволюції квантової системи. 

Математичні та фізичні моделі квантових нейромереж. Парадігма 

квантових хаотичних обчислень. Моделювання систем, що описуються 

рівнянням Шредінгеру. 

Introduction 

In the last decade, the theory of dynamical systems and the theory of chaos are 

characterized by significant progress both in the development of new concepts, 

as well as new methods and new applications. Modern theory of nonlinear 

dynamical systems has established the main mechanisms of instability and 

scenarios of transition to chaos in many nonlinear classical systems and devices 

with many applications in various sciences, including mechanics, chemistry, 

biology, physics and others.  

In real, especially quantum systems, chaotic dynamics take much more 

complex, partially or not completely understood forms.  According to modern 

concepts, the theory of quantum chaos actually studies quantum-mechanical 

systems that are chaotic in the classical limit.  

Traditionally, quantum chaos refers to the set of effects observed in quantum-

physical systems relating to purely nonlinear effects, which are manifested in 

quantum systems described by equations of the Schrödinger type or density 

matrix. It is well known that quantum mechanics, which has existed for over 60 

years, allows us to describe both systems that integrate in the classical limit 

(such as a hydrogen atom) and classically unintegrated systems (such as a 

helium atom).  

The well-known principle of correspondence indicates that quantum 

mechanics in the quasiclassical domain at scales of the system comparable to the 

de Broglie wavelength continuously goes to the classical one. On the other hand, 

in quantum mechanics, the concept of trajectory, at least in pragmatic or 

Copenhagen interpretation, loses its usual meaning (it reappears only in the 

quasiclassical domain).  

There is an opinion that in the interpretation of the phenomenon of quantum 



 

 

chaos it is more correct to speak about such characteristic manifestations as the 

intersection of energy levels in multivariable space, elements of stochasticity in 

the spectra of particularly highly excited states of atomic and molecular systems, 

phenomena of clustering states, interference, fluctuations, and merging of 

resonances  etc. From the other side, it was considered the most natural study of 

the phenomenon of chaos on the basis of methods of classical mechanics and 

qualitative theory of differential equations, within which it is natural to operate 

concepts such as bifurcation, instability, boundary cycle, strange attractor, etc. 

[1-18].  

Their application to quantum systems is also quite acceptable, moreover, often 

the scenario of emergence of a chaotic dynamics in quantum models is (not 

always) similar to the classical one. r example, the stochastic motion of an 

electron in an atom in the external fields is naturally interpreted in the language 

of consideration of a certain type of resonance interactions of modes 

corresponding to the motion in these fields, and its manifestation area narrows 

as an interaction increases.  

The qualitative picture of the process of emerging chaotic dynamics in 

quantum systems in general is reduced to the following scenario: an external, for 

example, a magnetic field leads to the appearance of primary nonlinear 

resonances, a strong interaction between which leads to the appearance of 

secondary resonances and the emergence of stochastic oscillations, right down 

to the formation of the Arnold's web. When the external field strength is above a 

certain critical value, the various stochastic layers merge, resulting in global 

stochasticity in the system. 

An analysis of the chaotic phenomena in quantum systems was carried out not 

only based on the methods of classical mechanics (in fact, within the framework 

of the Newtonian dynamics), but also on the basis of semiclassical or semi-

quantum methods, in particular, the method of quantum trajectories 

(quantization of classical mechanics), and path integrals by Feynman-Higgs, the 

Gutswiller's theory of “periodic orbits”, the Delos closed orbit method, complex 

coordinate method, a random matrix theory, diagonalization methods and some 

others (c.g. [1-8]).  



 

 

New field of investigations of chaotic effects in theory of quantum systems has 

been provided by a great progress in a development of a chaos and dynamical 

systems theory methods [6-22].  

In previous our papers [7,8,17-19] we have presented a few new computational 

quantum algorithms to study stochastic futures and chaotic elements in 

dynamics of atomic and molecular systems in an external electromagnetic fields.  

The known mathematical tools such as power spectrum analysis, correlation 

integral and fractal algorithms, the Lyapunov’s exponents analysis and others 

have been applied to numerical analysis of chaotic features in dynamics of the 

quantum systems.  

Here it is presented an effective mathematical approach to studying 

deterministic chaos and strange attractors in dynamics of nonlinear processes in 

atomic and molecular systems in an electromagnetic field as mathematical and 

physical principal basis for quantum models of quantum neural networks. 

Paradigm of quantum chaotic computations is outlines.  Modeling of systems 

described by the Schrödinger equation is used to treat a chaotic dynamics of 

systems.  

It is  proposed the theoretical scheme that includes new quantum-dynamic 

models (based on the finite-difference solution of the Schrödinger equation, 

optimized operator perturbation theory and realistic model potential method) 

and advanced nonlinear analysis and a chaos theory methods such as power 

spectrum analysis, the correlation integral algorithm, the Lyapunov’s exponents 

and Kolmogorov entropy analysis etc. The approach is applied to study of 

chaotic phenomena in some atomic and diatomic systems in an external 

electromagnetic (magnetic) field.   

Mathematical and physical principal basis for quantum models of 

quantum neural networks. A quantum-geometric approach to 

quantum systems in electromagnetic field  

 

In the Refs. [7,8,17-19] we have given a review of new methods and 

algorithms of the chaos-geometric approach to analysis, processing, modeling 

and forecasting a chaotic dynamics for different classical and quantum systems.  



 

 

      So, here we pay attention only at  main elements. The total scheme for 

studying chaos-dynamical phenomena in quantum systems (in particular, atomic 

systems in magnetic, crossed electric and magnetic fields, Rydberg atoms in a 

electromagnetic field, molecular systems in a infrared electromagnetic field etc) 

and computing the topological and dynamical invariants in application to 

quantum systems include the following: 

A) Quantum-dynamical computing of quantum systems: Schrödinger (Dirac) 

equation for quantum system in an external field (numerical solving, the finite 

differences , model potential , operator perturbation theory etc methods); 

Preliminary analysis and processing dynamical variable series of  physical 

system; 

B) Preliminary study and assessment of the presence of chaos: the Gottwald-

Melbourne test;  Fourier decompositions, irregular nature of change – chaos; 

Spectral analysis, Energy spectra statistics, the Wigner distribution, the spectrum 

of power, "Spectral rigidity"; 

C) The multi-fractal geometry: computation time delay τ using autocorrelation 

function or mutual information; Determining embedding dimension by the 

method of correlation dimension or algorithm of false nearest neighbouring 

points; Calculation of  multi-fractal spectra; wavelet analysis; 

D) Computing global Lyapynov’s exponents, Kaplan-York dimension, 

Kolmogorov entropy, average predictability measure; Methods of nonlinear 

prediction (classical and quantum neural network algorithms, the algorithm 

optimized trajectories, stochastic propagators, memory functions etc...; 

 

    The key idea in the study of the spectra of chaotic systems and, in particular, 

quantum systems, is provided by the fact that a definition of quantum chaos is 

interpreted primarily as a property of a group of states of the spectra of the 

system. It is the interpretation of one of the mechanisms of quantum chaos 

through the induction of resonances in the spectrum of the system, their strong 

interaction with subsequent overlapping, the emergence of stochastic layers and 

further transition to a global stochasticity in the system.  

     It has led to the most common criterion for chaos in spectral research 

(especially from the point of view of the mechanism of overlapping and merging 

of resonances), i.e. the criterion of a chaos by Chirikov.  



 

 

     In this scheme, the overlap of nonlinear resonances is defined as the ratio of 

the sum of the half-widths of the resonances to the distances between them 
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where Гi та Еi are, respectively, the width and energy of the "i" -th resonance. It 

is usually assumed that at sufficiently large values (K 4) the phenomenon of 

chaos is realized in the system. 

     Among the spectral characteristics, which are usually calculated when 

studying the elements of chaos in the spectra of systems, one should include: 

1) The relative value of the interlevel distances  , which is standardly defined 

as: 

 

                                        ,                                  (2) 

 

where ρ(E) is a density of levels.  

2) Function P (S) of the distribution of the relative value of the interlevel 

distances ; 

if the position of the levels in the spectrum is not chaotic, then P(S), as a rule, 

has the form of a Poisson distribution ;  if there is chaos in the 

system, then the Wigner-Dyson distribution is realized (in general, the Brody 

distribution). 

3) Characteristics of the degree of ordering of levels in the spectrum at large (in 

comparison with the interlevel distance)  the spectral stiffness  , which is 

defined as follows: 

 

                                                   (3)                     

 

It should be borne in mind that for a sequence of levels , normalized to a unit 

density , a step function n(ε), equal to the number of levels with 

 is used.  

    By construction, n(ε), has the form of a ladder with a single average slope. 

The value of , averaged over the values of x from the region in which the 

nature of the fluctuations of the spectrum can be considered constant, depends 



 

 

only on L and is denoted by . The function  describes the ordering of the 

spectrum over large areas: the slower the growth of  with increasing L, the 

less probable in the spectrum are close clusters of levels and gaps with reduced 

level density. 

4) Correlation coefficients C (n) values of energy intervals, divided by a fixed 

number of levels, determined in the usual way: 

 

                                                     .                     (4) 

 

Finally, another of the most common characteristics of nonlinear (chaotic) 

dynamics is the so-called power spectrum, which is determined in a standard 

way. 

More detailed characteristics of spectral methods are given, for example, 

in [7-19].  

    In Table 1 we present the main blocks of the combined quantum-dynamical 

and chaos-geometric approach to nonlinear analysis, modelling  and prediction 

of chaotic dynamics of quantum system in an electromagnetic field. 

Table 1. Combined quantum-dynamical and quantum-geometric approach to 

nonlinear analysis, modelling  and prediction of chaotic dynamics of quantum 

(atomic, molecular and nuclear) system in an electromagnetic field. 

 

I. Quantum-dynamical computing of quantum systems: 

1. Schrödinger (Dirac) equation for quantum system in an 

external field 

(numerical solving, the finite differences , model potential , 

operator perturbation theory etc methods) 

2. Preliminary analysis and processing dynamical variable 

series of  

physical system 

 

II. Study and assessment of the presence of chaos: 

3. Fourier decompositions, irregular nature of change – 

chaos; 



 

 

4. Spectral analysis, Energy spectra statistics, the Wigner 

distribution, the spectrum of power, "Spectral rigidity"; 

 

III. The multi-fractal geometry of the phase space. : 

5. Autocorrelation function and mutual information; 

5. Method of correlation dimension 

6.  Wavelet analysis; 

 

IV. Prediction model: 

6. Computing global Lyapynov indicators; Kaplan-York 

dimension,   

7. Methods of nonlinear prediction.  

 

In Refs. [7,8] the total approach has been used for studying the chaotic features 

in spectrum of the hydrogen atom in a magnetic field, diatomic molecules 

interacting with a linearly polarized electromagnetic field.  It is shown that the 

chaotic features are realized in the nonlinear dynamics of diatomic molecules in 

a linearly polarized electromagnetic field that is in a reasonable agreement with 

the classical modelling data by Berman, Kolovskii, Zaslavsky, Zganh et al [1-5]. 

The detailed description of the every stage in the scheme (Table 1) is earlier 

presented in the Refs. [7,8,17-30]. All calculations are performed with using 

“Geomath”, “Superatom”, “Quantum Chaos”, “ScanPoints” computational 

codes [7,9,17-19,31-44].  

Chaotic dynamics of atoms and molecules in electromagnetic field: 

Numerical solution of the Schrödinger equation and power spectrum 

analysis 

 

In this subsection we present the results of modeling the hydrogen and rubidium 

spectra in an external magnetic (crossed electric and magnetic) filed. In Ref. 

[7,8,18,44] it has been developed an effective nonperturbative quantum and 

chaos-dynamic approach to modeling the chaotic dynamics of atomic systems in 

homogeneous magnetic field, which is based on the operator optimized 



 

 

perturbation theory and finite-difference solution of the Schrödinger equation 

for an atom in the field (in a cylindrical coordinate system z||В; iMe~ ). The 

cited equation can be written as follows: 
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where =В/Во, Во=2.3505105Т, Vc(r) – potential electron self-consistent field, 

including the Hartree potential plus the Kohn-Sham exchange-correlation 

potential (other notations are standard).  

     The quantitative modeling of regular and chaotic dynamics, computation 

power and spectral parameters for the atoms of hydrogen, neon in a uniform 

magnetic field ( = 0.01-10000) showed that the system generated quantum 

chaos, which is manifested in a very complex and irregular dependences of state 

energies upon the magnetic field amplitude,  the presence of the level 

intersections (as example, for the Ne quasi-intersections in dependence of the 

energy states N0|  and 02| p upon the magnetic field amplitude at  = 158.7, 02| p  

and 21| s  states- at =40.2), in a photoionization cross sections, power spectra 

etc.   

     We have calculated and carried our analysis of the photoionization spectrum, 

power spectrum, the energies and widths of resonances, the distribution of 

resonances in the hydrogen atom in the special magnetic field with the strength  

5.96 T (the energy interval 20-80 cm-1).  

     According to our data, the density of states in the middle of each channel 

(Landau resonances) is 33 cm-1 for the average resonance width - 0.004 cm-1, 

which is consistent with experimental data Kleppner et al: 0.004-0.006cm-1 (c.g. 

[7,8,18,44]). 

Further we present the results of modelling the chaotic dynamics of atomic 

systems in the crossed electric F1 and magnetic  fields, based on the numerical 

solution of the Schrödinger equation:  
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the operator perturbation theory and  density functional method [18,44].  



 

 

     Here  we use the following denotations:  

 

                                              3/4
1

~ −= Ff , =Eion--2/3 ,   

 

where Eion is an ionization energy of a free atom.      We have carried out 

modelling a chaotic dynamics for the Rydberg Li, Rb (n ~ 100 , m = 0) atoms in 

a static magnetic (B = 4.5T) and oscillating electric field with frequency 

=102Мгц (=-0.03,=0.32, -1/3 in the range 35-50; f = 0.000-0.070 ).  

     Figure 1 shows the power spectrum of Rb: a- in a magnetic field (f = 0, the 

electric field is absent); (b)  in a static magnetic field and oscillating electric 

field f = 0.0035 (our data).  

 

S 

Fig. 1. The power spectrum of Rb: (a)- in a magnetic field (f = 0, the electric 

field is absent); (b)  in static magnetic field and oscillating electric field f = 

0.0035 (our data). 



 

 

The scenario of transition to chaos in the system includes the induction of 

nonlinear resonances by a magnetic field, their strong interaction and further 

merging with the appearance of global chaos when critical field strength is 

exceeded. 

     Further  we shortly present the advanced data for the modeling the temporal 

dynamics (polarization parameter) of the diatomic molecule PbO  in the 

resonant electromagnetic field. This molecule in the linearly polarized field has 

been studied, for example, in ref. [7,8]. All information about the key 

characteristics of electromagnetic field as well as spectral molecule parameters 

is listed in the cited Refs. The new element here is using more efficient approach 

to solving the Schrödinger equation with the realistic density functional theory 

potential curve of diatomic molecule U (x) [7,8].   We numerically studied the 

corresponding temporal dependence of a  polarization (which is normalized to 

the intensity of the field interaction with the molecule) on the basis of the 

quantum-geometric   approach to analysis of a chaotic dynamics of the molecule 

interacting with a resonant linearly polarized field.  

     The concrete  step is an analysis of the corresponding  time series with  the 

n=7.6103 and t=510-14s.  

In Table 2 we list the computed values of the correlation dimension Dc, 

the Kaplan-York attractor dimension (DL), the Lyapunov’s exponents (Li, i=1-

3), the Kolmogorov entropy (KE). In conclusion of this subsection let us 

underline, that difference between the presented data and data of the Ref. [8] on 

the  

 

Table 2. The correlation dimension Dc, Lyapunov’s exponents (Li, i=1,2),  

Kaplan-York attractor dimension (DL), Kolmogorov entropy (KE) 

 

Dc L1 L2 DL KE 

2.83 0.153 0.0185 2.58 0.172 

 

 

topological and dynamical invariants can be explained by processing different 

polarization time series.   



 

 

Concluding remarks 

Here it is presented an effective mathematical approach to studying 

deterministic chaos and strange attractors in dynamics of nonlinear processes in 

atomic systems in an electromagnetic field as mathematical and physical 

principal basis for quantum models of quantum neural networks. Paradigm of 

quantum chaotic computations is outlined.   

Modeling of systems described by the Schrödinger equation is used to 

treat a chaotic dynamics of systems. We presented the fundamentals of a 

computational approach to studying deterministic chaos and strange attractors in 

dynamics of nonlinear processes in atomic  systems in an electromagnetic field. 

To treat chaotic dynamics of systems it is constructed effective scheme that 

includes new quantum-dynamic models (based on the finite-difference solution 

of the Schrödinger equation, optimized operator perturbation theory and realistic 

model potential for quantum systems) and advanced analysis methods of  

dynamical systems and chaos theory. As illustration we presented some 

numerical results for atoms of hydrogen and rubidium in a magnetic and crossed 

magnetic and oscillating electric field. The numerical values for a set of 

dynamical and topological invariants are listed.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

2. Task options for self-sufficient work 

 

Task Option 1. 

 

1). Give the key definitions: Quantum neural network and finding the minimum 

of some objective function by nonstationary evolution of the quantum system. 

Mathematical and physical models of quantum neural networks. Paradigm of 

quantum chaotic computations. Modeling of systems described by the 

Schrödinger equation. 

2). Propose the key elements of mathematical approach to studying deterministic 

chaos and strange attractors in dynamics of nonlinear processes in atomic 

systems in an electromagnetic field as mathematical and physical principal basis 

for quantum models of quantum neural networks. Propose your paradigm of 

quantum neural networks chaotic computations. 

3). Construct quantum-dynamic models (based on the finite-difference solution 

of the Schrödinger equation, optimized operator perturbation theory and realistic 

model potential for quantum systems) and advanced analysis methods of  

dynamical systems and chaos theory.  

4). Perform numerical modelling for atoms of hydrogen and sodium in a 

magnetic and crossed magnetic and oscillating electric field (using Fortran 

Power Station , Version 4.0; PC Code: “Superatom-Stark” ;necessary numerical 

parameters should be self-taken).   

 

Task Option 2. 

 

1). Give the key definitions: Quantum neural network and finding the minimum 

of some objective function by nonstationary evolution of the quantum system. 

Mathematical and physical models of quantum neural networks. Paradigm of 

quantum chaotic computations. Modeling of systems described by the 

Schrödinger equation. 

2). Propose the key elements of mathematical approach to studying deterministic 

chaos and strange attractors in dynamics of nonlinear processes in atomic 

systems in an electromagnetic field as mathematical and physical principal basis 

for quantum models of quantum neural networks. Propose your paradigm of 

quantum neural networks chaotic computations. 



 

 

3). Construct quantum-dynamic models (based on the finite-difference solution 

of the Schrödinger equation, optimized operator perturbation theory and realistic 

model potential for quantum systems) and advanced analysis methods of  

dynamical systems and chaos theory.  

4). Perform numerical modelling for atoms of hydrogen and rubidium in a 

magnetic and crossed magnetic and oscillating electric field (using Fortran 

Power Station , Version 4.0; PC Code: “Superatom-Stark” ;necessary numerical 

parameters should be self-taken).   

 

 

Task Option 3. 

 

1). Give the key definitions: Quantum neural network and finding the minimum 

of some objective function by nonstationary evolution of the quantum system. 

Mathematical and physical models of quantum neural networks. Paradigm of 

quantum chaotic computations. Modeling of systems described by the 

Schrödinger equation. 

2). Propose the key elements of mathematical approach to studying deterministic 

chaos and strange attractors in dynamics of nonlinear processes in atomic 

systems in an electromagnetic field as mathematical and physical principal basis 

for quantum models of quantum neural networks. Propose your paradigm of 

quantum neural networks chaotic computations. 

3). Construct quantum-dynamic models (based on the finite-difference solution 

of the Schrödinger equation, optimized operator perturbation theory and realistic 

model potential for quantum systems) and advanced analysis methods of  

dynamical systems and chaos theory.  

4). Perform numerical modelling for atoms of hydrogen and caesium in a 

magnetic and crossed magnetic and oscillating electric field (using Fortran 

Power Station , Version 4.0; PC Code: “Superatom-Stark” ;necessary numerical 

parameters should be self-taken).   

 

 

 

 

 

 

 



 

 

Task Option 4. 

 

1). Give the key definitions: Quantum neural network and finding the minimum 

of some objective function by nonstationary evolution of the quantum system. 

Mathematical and physical models of quantum neural networks. Paradigm of 

quantum chaotic computations. Modeling of systems described by the 

Schrödinger equation. 

2). Propose the key elements of mathematical approach to studying deterministic 

chaos and strange attractors in dynamics of nonlinear processes in atomic 

systems in an electromagnetic field as mathematical and physical principal basis 

for quantum models of quantum neural networks. Propose your paradigm of 

quantum neural networks chaotic computations. 

3). Construct quantum-dynamic models (based on the finite-difference solution 

of the Schrödinger equation, optimized operator perturbation theory and realistic 

model potential for quantum systems) and advanced analysis methods of  

dynamical systems and chaos theory.  

4). Perform numerical modelling for atoms of hydrogen and francium in a 

magnetic and crossed magnetic and oscillating electric field (using Fortran 

Power Station , Version 4.0; PC Code: “Superatom-Stark” ;necessary numerical 

parameters should be self-taken).   

 

Task Option 5. 

1). Give the key definitions: Quantum neural network and finding the minimum 

of some objective function by nonstationary evolution of the quantum system. 

Mathematical and physical models of quantum neural networks. Paradigm of 

quantum chaotic computations. Modeling of systems described by the 

Schrödinger equation. 

2). Propose the key elements of mathematical approach to studying deterministic 

chaos and strange attractors in dynamics of nonlinear processes in atomic 

systems in an electromagnetic field as mathematical and physical principal basis 

for quantum models of quantum neural networks. Propose your paradigm of 

quantum neural networks chaotic computations. 

3). Construct quantum-dynamic models (based on the finite-difference solution 

of the Schrödinger equation, optimized operator perturbation theory and realistic 

model potential for quantum systems) and advanced analysis methods of  

dynamical systems and chaos theory.  



 

 

4). Perform numerical modelling for atoms of hydrogen and magnesium in a 

magnetic and crossed magnetic and oscillating electric field (using Fortran 

Power Station , Version 4.0; PC Code: “Superatom-Stark” ;necessary numerical 

parameters should be self-taken).   

 

 

Task Option 6. 

1). Give the key definitions: Quantum neural network and finding the minimum 

of some objective function by nonstationary evolution of the quantum system. 

Mathematical and physical models of quantum neural networks. Paradigm of 

quantum chaotic computations. Modeling of systems described by the 

Schrödinger equation. 

2). Propose the key elements of mathematical approach to studying deterministic 

chaos and strange attractors in dynamics of nonlinear processes in atomic 

systems in an electromagnetic field as mathematical and physical principal basis 

for quantum models of quantum neural networks. Propose your paradigm of 

quantum neural networks chaotic computations. 

3). Construct quantum-dynamic models (based on the finite-difference solution 

of the Schrödinger equation, optimized operator perturbation theory and realistic 

model potential for quantum systems) and advanced analysis methods of  

dynamical systems and chaos theory.  

4). Perform numerical modelling for atoms of hydrogen and lithium in a 

magnetic and crossed magnetic and oscillating electric field (using Fortran 

Power Station , Version 4.0; PC Code: “Superatom-Stark” ;necessary numerical 

parameters should be self-taken).   
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