

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE ODESSA STATE ENVIRONMENTAL UNIVERSITY

INTERNATIONAL RESEARCH-TO-PRACTICE CONFERENCE ON 'CLIMATE SERVICES: SCIENCE AND EDUCATION'

22-24 September 2021 Odesa, Ukraine

Conference Proceedings

Odessa State Environmental University
2021

I 73 International Research-to-Practice Conference on 'Climate Services: Science and Education': Conference Proceedings. Odesa: Odessa State Environmental University, 2021. 144 p.

ISBN 978-966-186-162-5

The proceedings of the international research-to-practice conference on 'Climate Services: Science and Education' are presented in the collected volume. The reports cover the principle results of researches in the field of issues of climate services in the climate-sensitive economic sectors; education in climate services; climate risks and adaptation to climate change on regional and local levels.

Supported by the Erasmus+ Programme of the European Union. The publication reflects the authors' view, the EACEA and the European Commission are not responsible for any use that may be made of the information it contains.

Editors:

Yuriy S. Tuchkovenko, DSc (Geography)

Valeriya Ovcharuk, DSc (Geography)

Inna Khomenko, PhD (Geography)

INTERNATIONAL ORGANISING COMMITTEE

Enric Aguilar Rovira i Virgili University, Spain
Hanna Lappalainen University of Helsinki, Finland
Svyatoslav Tyuryakov University of Helsinki, Finland

Iryna Bashmakova University of Helsinki, Finland

Alexander Baklanov Science and Innovation Department of World

Meteorological Organization, Switzerland, affiliated

professor at University of Copenhagen

Patrick Parrish, retired World Meteorological Organization Education and

Training Office, Switzerland

Marina Baldi WMO Regional Training Centre, Italy

Eduard Podgaiskii WMO-CGMS Virtual Laboratory for Training and

Education in Satellite Meteorology

Anna Timofeeva WMO Executive Council Capacity Development Panel

Valentina Khan North EurAsia Climate Centre

Kalev Sepp Estonian Life Science University, Estonia

Anton Shkaruba Estonian Life Science University, Estonia

Svitlana Krakovska Ukrainian Hydrometeorological Institute, Ukraine

Mykola Kulbida Ukrainian Hydrometeorological Center, Ukraine

Sergiy Snizhko Taras Shevchenko National University of Kyiv, Ukraine

Sergiy Stepanenko Odessa State Environmental University, Ukraine

LOCAL ORGANISING COMMITTEE AT OSENU

Sergiy Stepanenko Chair, Rector, Professor

Valerii Khokhlov Vice-Chair, Vice-Rector for Studies and Methodology,

Professor

Valeriya Ovcharuk Vice-Chair, Director of Hydrometeorological Institute,

Professor

Inna Khomenko Secretary, Associate Professor of Department of

Meteorology and Climatology

Mykola Berlinskyi Head of Department of Oceanography and Marine Nature

Management, Professor

Mariia Krachkovska Vice-Rector for Administrative Activity

Nataliia Loboda Head of Department of Hydroecology and Water

Research, Professor

Maryna Pohorelova Senior Lecturer of Department of Land Hydrology

Anatolii Polovyi Head of Department of Agrometeorology and

Agroecology, Professor

Oleh Prokofiev Head of Department of Meteorology and Climatology,

Associate Professor

Yurii Tuchkovenko Vice-Rector for Research, Professor

Oleg Shabliy Head of Foreign Relations Department

Zhannetta Shakirzanova Head of Department of Land Hydrology, Professor

TABLE OF CONTENTS

Section I.	Issues Sectors		Climate	Services	in	Climate-Sensitive 1	Economic
Achasov,	, A., A. A	chas	ova				
Visual Dec	oding of	Eroc	ded Soils	to the Sent	inel	Images	11
Amin, G	_					C	
				Solution Pe	rfori	mance in Fertilizer Dra	awn
forward Os	mosis un	der V	Water Ene			ıs Framework in Egyp	
Aweda, I	,			ahility and	1 D.	mayalanaa af Malamia	in
	_			•		revalence of Malaria	
	•				• • • • •		13
_			-	V. Dubovy	.to1 1	Eastors During the De	ried
	-	•	•			Factors During the Pennanges	
	-		•		C CI.	langes	1/
	•		ruk, O. Pro		Into	r Resources Managem	ent. 19
•				C		· ·	CIII. 19
	-		•	ık, V. Prykl r Punoff o			and
•		-				e Southern Buh River	
	•		•	-			21
				o, Y.V. Fed			(T.)
						Loxostege Sticticalis	
	_		Kraiiic	• • • • • • • • • • • •	• • • • •	•••••	23
Iheme, P	•	•	s Respon	sible for	Oro_1	Monsoon Thundersto	rme
						······································	
Katerush			_		••••	• • • • • • • • • • • • • • • • • • • •	23
				xes of Wi	nter	Climate Discomfort	t in
		-				·····	
Khomen		• • • • •			••••	• • • • • • • • • • • • • • • • • • • •	
		act	of Future	e Climate	Cha	ange on the Land-Ba	ased
	_					los	
•				yvoshein, C			
•				•		a Tool for Estimation	ı of
	_		_	•			
Kryvosh							
-		•		Security wi	th V	Vofost Model	33
Maksym				J			
_				n the Sum	of A	Active Temperatures 1	for
_			_			1	

Malovanyy, M., I. Tymchuk, V. Zhuk, R. Grechanik, A. Sereda, A. Marakhovska	
Effective Purification of Landfill Filtrates in the Context of Pollution	
Minimization Provocated by Climate Change	37
Nachtnebel, H.P., M. Herrnegger	
Climate Services and Vulnerability of Water Resources	39
Ovcharuk, V.	
Probabilistic-Stochastic Modeling of the Spring Flood Maximum Runoff	41
as a Part of the Climate Service in the Water Management of Ukraine	41
Pasechko-Dietrich, V., O. Smorochinsky, V. Kushnerenko, A. Dubinsky	
Actual Indicators of Changes in Climatic Conditions in the Agricultural	43
Sector	7.
Savenets, M.	
Estimation of NO ₂ and SO ₂ Increase during the Heating Season in Ukraine Using TROPOMI Data	45
Schwemmlein, K.	
Climate Services and Agriculture: Understanding the Demand Side. Smallholders Perceptions in Odemira, Portugal	47
Shakirzanova, Zh.R., Ye.O. Romanova, Iu.S. Medvedieva	
Scientifically Substantiated Recommendations of Water Management of	
Katlabukh Lake under Current and Future Climate Change	48
Sobol, O.M.	
Relevance of the Use of Climate Services in the Development of	
Horsemanry of Southern Ukraine	50
Sumak, K.	
Climate Services in the Republic of Belarus	52
Synylo, K.	
Measures to Mitigate Climate Change from Civil Aviation Impact	54
Traeger-Chatterjee, C., D. Lee, M. Grant	
EUMETSAT's Prototype Data Cube for Drought and Vegetation	
Monitoring	56
Tymchuk, I., M. Malovanyy, V. Zhuk, V. Sliusar, U. Storoshchuk, O. Liut	
Composting of Organic Waste – an Effective Method of Their Disposal	
and a Prospective Factor of Slowing Climate Change (on the Example of	
Lviv)	57
Voloshyna, O.V.	
Climate Characteristics of the Heating Period in the Present Time and in	
the Future	59
Moufouma-Okia, W., A. Hovesepyan	
The World Meteorological Organization Climate Services Information	
System: Advances, Challenges and Opportunities	61
Zhuk V., M. Malovanyy, I. Tymchuk, O. Popovych, N. Vronska	
Increasing the Production and Use of Biogas Using Hydrobionts as Raw	
Materials – an Effective Way to Reduce Climate Dynamics	62

Section II. Education in Climate Services

Agayar, E., N. Mishchenko, I. Semenova, A. Semerhei-Chumachenko Training Course for Experts in Climatology and Meteorology	
"Introduction to Climate Change"	65
Boqué-Ciurana, A., A. Font-Barnet, J. X. Olano Pozo	
"Co-Creation of Climate Services with Local Agents" Course: Adapting	
WMO Climate Service Competencies in the Frame of Bachelor Degree on	
Geography of Rovira i Virgili University	67
Burchenko, S.V., V.O. Voronin, N.V. Maksymenko, I.M. Shpakivska	
Internship of Erasmus+ "Intense" for Evaluation of Green Infrastructure	
and Ecosystem Services of Foresty Landscapes in Lviv	69
Dyman, N.	
Ways of Implementing Non-Formal Climate Education for Young People	71
Fedoniuk, V.V., O.T. Kosthiv, M.A. Fedoniuk	
About the Possibility of Automated Monitoring of Environmental-	
Chemical Indices of Atmosphere Precipitation	73
Hrytsiv, T.H.	
Ecological Security and Sustainable Development as One of the Platforms	
of National Revival in the Modern Education Space	75
Lakhtadyr, T.V., I.V. Dzevulska, R.F. Kaminskyi	
Medical Education in the Conditions of Distance Learning	77
Mahura, A., V. Ovcharuk, T. Kryvomaz, H. Lappalainen, K. Lauri, I. Khomenko, O. Shabliy, V. Kabin, M. Frankowicz, Yu. Rashkevych, L. Riuttanen, S. Tyuryakov, I. Bashmakova	
Online Approaches for Climate-Oriented Education	79
Maksymenko, N., K. Utkina, G. Titenko	
Inter-Faculty Course «Weather and Climate: Global Warming» as a Part	
of Basic Education for Climate Services	81
Nezhlukchenko, T., V. Kushnerenko, N. Nezhlukchenko	01
The Educational Content for the Learning Environment in Economic,	
Meteorological and Agricultural Sciences	83
Utkina, K., G. Titenko, N. Maksymenko, A. Nekos, A. Achasov, A. Kucher, I. Bodak, O. Chernikova	32
Erasmus+ Project "Integrated Doctoral Program for Environmental Policy,	
Management and Technology - Intense": Karazin University Team	0.5
Courses	85
Utkina, K.	
MOOC "Precautionary Principle and Sustainability Transition": Up-Dated	_
Structure and Content	86
Vonitova, N.D.	
You Will Help Water – You Will Cause Trouble and Then the Ecology of	
the Earth Will Rise Again	88

Section III. Climate Risks and Adaptation to Climate Change on Regional and Local Levels

Amin, G.	
Low Carbon Roadmap – the Case Study of Egypt	91
Agayar, E.V., D.O. Zhuk,	
Climate Change and the Frequency of Squalls on the Territory of the North-Western Black Sea Region	92
Baklanov, A.	
The WMO Vegetation Fire and Smoke Pollution Warning Advisory and Assessment System (VFSP-WAS): Methodology, Current Capabilities and Possible Applications for Ukraine	94
Bohushenko, A., S. Stepanenko, I. Khomenko	
Characteristics of Extreme Temperature and Precipitation in Ukraine Based on ETCCDI Indices	95
Budnik, S.V.	
Displays of Changes of a Climate in Basins of the Western Bug and Pripyat Rivers.	97
Danyliv, I., S. Mamedov	
Productivity Features of Romanov Sheep in Kherson Region Conditions	99
Dmitriiev , S., S. Reshetchenko	
The Impact of Climatic Changes on the Water Regime of the Siverskiy Donets' Basin.	101
Dokus, A.O., Zh.R. Shakirzanova,	
Detection of the Climate Change Impact on the River Runoff of Spring Flood in Pivdenny Bug River Basin	103
Khokhlov, V., E. Serga, L. Nedostrelova	
Using Ensemble of Regional Climate Models for Assessment of Future Climate in North-Western Coast of Black Sea	105
Klok, S.V., A.O. Kornus, O.H. Kornus	
Analysis of Precipitation and Their Extremeness according to Observation Data at Odessa Meteorological Station for the Period 1976-2019	107
Kuryshyna, V., O. Pavlov	
Air Temperature Regime in Odessa in Past and Present	109
Kuryshyna, V.	
Air Temperature Regime in Odessa in Future	111
Lappalainen, H.K., A. Mahura, S. Tyuryakov, I. Bashmakova	
Pan-Eurasian Experiment (PEEX) Program: Current Approach and Collaboration	113

Malkhazova, S., V. Mironova, I. Bashmakova	
Natural Focal Diseases of the Arctic Region of Russia	114
Martazinova, V., G. Melnyk	
Variations of Atmospheric Circulation and Geomagnetic Field in the North	
Hemisphere	115
Nezhlukchenko, T., N. Nezhlukchenko	
Dependence of Wool Productivity of Sheep and Climate	116
Nguyen Thi, Minh Hoa, Phu Bao Nguyen, Hong Nhat Pham, Tuan Anh Ha, That Lang Ton	
An Integrated Framework for Assessing Climate Risks to Population	
Sustainability: a Case Study in Ho Chi Minh City, Vietnam	118
Papakina, N., A. Nosko	
The Impact of Climate Change on the Productivity of Dairy Cattle	119
Papakina, N., T. Oskirko	
Indexes of the Live Weight of Lambs of Different Types of Birth	121
Polevoy, A.N., L.E. Bozko, E.A Barsukova	
The Impact of Climate Change on the Conditions of Growing Vegetable	
Crops in the Steppe Zone of Ukraine	123
Prakharenia, M.	
Possibilities for Complex Storm Detection and Forecasting of Severe	
Convective Structures Based on Modeling and Satellite Data	125
Pysarenko, L., S. Krakovska,	
The Effect of Partial Deforestation on Surface Wind Speed	127
Reshetchenko, S., E. Boryskina	
Temperature Regime as a Factor of Influence on the Territory	129
Semenova, I.	
The Role of Satellite Monitoring for Climate Services	131
Smalyukh, O.P.	
Ecological Education and Environmental Safety Issues	133
Timofeyev, V., O. Mazepa	
Scientific, Methodological and Educational Aspects of Climate Change of	
the Antarctic Peninsula Region	134
Tuchkovenko, Yu., V. Khokhlov, N. Loboda	
Assessment of Climate Change Impact on Parameters of Freshwater	
Balance in Lagoons of North-Western Black Sea Coast	136
Voloshkina, O., T. Shabliy, T. Tkachenko, A. Goncharenko, O. Zhukova	
Relationship between Air Pollution, Global Climate Change and	
Distribution of Covid-19.	138
Zakharova, M.V.	
Annual Distribution of the Oka River Flow in Kaluga under the Conditions	
of Climate Change	140
Author index	142

ASSESSMENT OF CLIMATE CHANGE IMPACT ON PARAMETERS OF FRESHWATER BALANCE IN LAGOONS OF NORTH-WESTERN BLACK SEA COAST

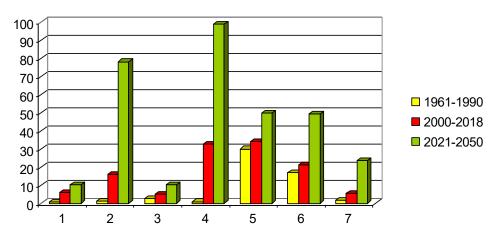
Yurii Tuchkovenko, Sc.D., Prof., Valeriy Khokhlov, Sc.D., Prof., and Nataliia Loboda, Sc.D., Prof.

Odessa State Environmental University, Ukraine

The study has been aimed to assess quantitatively the impact of regional climate change that occurred and expected in the near future on the freshwater balance of "choked" lagoons in the north-western Black Sea coast. These lagoons have no constant connection with the sea and are sporadically connected to the sea by artificially created channels or other waterworks. The ecosystems of the lagoons are the most sensitive and vulnerable to climate change. These include the Tylihulskyi, Dofinovskyi, Khadzhibeiskyi, Kuialnytskyi, Budakskyi limans, Tuzla lagoon group, and the Sasyk reservoir, which should be renaturalized in the future by restoring contact with the sea.

The incoming components of the freshwater balance for these "choked" lagoons include precipitation falling on the water surface of lagoons and the freshwater inflow from small and medium rivers, and the evaporation from the water surface of the lagoons is the component of expense. If during the year the amount of incoming components is less than the ones of the expense, then a deficit of annual water balance is observed. This deficit should be compensated by water from other external sources in order to prevent shallowing and salinization of a lagoon, deterioration of its water quality, ensuring the sustainable functioning of the ecosystem.

The climate changes of meteorological parameters in the north-western Black Sea coast, which determine the components of the lagoons' water balance, were assessed for the current period 2000-2018 and the near future 2021-2050, compared with the period 1961-1990 (according to the Climate Cadastre of Ukraine). Expected climatic conditions in the near future were determined by the results of the Euro-CORDEX project for two climate change scenarios RCP4.5 and RCP8.5. The 'best' run by the regional climate model CLMcom-CCLM4-8-17 was selected from the ensemble of 14 runs. This run provided the near-future monthly precipitation and evaporation from the lagoon water surface calculated by the data on temperature and relative humidity.


Using the changes in the meteorological parameters, it was revealed that from the beginning of the 21st century: (i) the air temperature is gradually increasing - the annual air temperature for 2000-2018 is 11-14% higher than for 1961-1990, and the expected temperature for 2021-2050 is 26-28% higher; (ii) the relative humidity for 2021-2050 is reducing by 11-18%; (iii) the annual evaporation from the lagoons' water surface is increasing by 13-15% in 2000-2018 along the northern coast and by 7-9% along the west coast of the northwestern part of the Black Sea; the annual evaporation is increasing in 2021-2050 by 16-20% due to the rising air temperature only and by 33-56% considering

also the expected decrease in relative humidity; (iv) the annual precipitation is increasing by about 3% in 2000-2018 and is decreasing by 5% (up to 15% in the southern part) in 2021-2050 for the scenarios RCP4.5 and RCP8.5 as compared with 1961-1990.

The expected freshwater inflow from rivers into the lagoons in natural and disturbed water management conditions was estimated using the "climate-runoff" model using meteorological data of scenarios RCP4.5 and RCP8.5. It was revealed that in 2021-2050 as compared to the reference period 1990s, on average, the volume of freshwater inflow into the lagoons under natural conditions of runoff formation will decrease by 30% under the RCP4.5 scenario and by 49% under the RCP8.5 scenario.

These estimates indicate that climatic changes, which have already occurred and will be expected in the 21st century, are resulting in an increase in the deficit of the annual freshwater balance of "choked" lagoons in the north-western Black Sea coast; moreover, some lagoons can disappear (see Figure). According to the vulnerability to climate change due to a significant annual deficit of freshwater balance in the absence of other sources of water (e.g. from the Black Sea), the lagoons are ranked in the following order: Kuialnytskyi, Dofinovskyi, Budakskyi (in the absence of water from the Dniester estuary), Tuzla lagoon group, Sasyk, Tylihulskyi, Khadzhibeiskyi (in the absence of anthropogenic runoff). This requires the development of new strategies for their water and environmental management.

An effective solution to the problem of stabilizing the hydro-ecological regime of "choked" lagoons in the north-western Black Sea coast under the increasing deficit of freshwater balance due to climate change is to ensure constant year-round many-directional water exchange with the sea through artificial connecting channels with morphometric characteristics preventing salinization of lagoons in the long-term perspective.

Fig. 1. Percentage of annual deficit of freshwater balance from the average annual volume of water in the "choked" lagoons in the north-western Black Sea coast under RCP8.5 scenario (1 - Tylihulskyi, 2 - Dofinovskyi, 3 - Khadzhibeiskyi, 4 - Kuialnytskyi, 5 - Budakskyi limans, 6 - Tuzla group, 7 - Sasyk).

AUTHOR INDEX

Abdullahi, M., 15-16	Klok, S.V., 107-108	Popovych, O., 62-63
Achasov, A., 11-12, 85-86	Koman, M., 31-32	Prakharenia, M., 125-126
Achasova, A., 11-12	Kornus, A.O., 107-108	Prokofiev O., 19-20
Agayar, E., 65-66, 92-93	Kornus, O.H., 107-108	Prykhodkina, V., 21-22
Amin, G., 13-14, 91	Kosthiv, O.T., 73-74	Pysarenko, L., 127-128
Aweda, E.D., 15-16	Krakovska, S., 127-128	Rashkevych, Yu., 79-80
Baklanov, A., 94	Kryvobok, O., 31-32, 33-34	Reshetchenko, S., 101-102,
Barsukova, E.A., 123-124	Kryvomaz, T., 79-80	129-130
Bashmakova, I., 79-80, 113,114	Kryvoshein, O., 31-32, 33-34	Riuttanen, L., 79-80
Bodak, I., 85-86	Kucher, A., 85-86	Romanova, Ye.O., 48-49
Bohushenko, A., 95-96	Kuryshyna, V., 109-110, 111-112	Savenets, M., 45-46
Boqué-Ciurana, A., 67-68	Kushnerenko, V., 43-44, 83-84	Schwemmlein, K., 47
Boryskina, E., 129-130	Lakhtadyr, T.V., 77-78	Semenova, I., 65-66, 131-132
Bozko, L.E., 123-124	Lappalainen, H., 79-80, 113-114	Semerhei-Chumachenko, A., 65-66
Budnik, S.V., 97-98	Lauri, K., 79-80	Sereda, A., 37-38
Burchenko, S.V., 69-70	Lee, D., 56	Serga, E., 105-106
Chernikova, O., 85-86	Liut, O., 57-58	Sewilam, H., 13-14
Danyliv, I., 99-100	Loboda, N., 136-137	Shablii, O., 79-80
Dmitriiev, S., 101-102	Mahura, A., 79-80, 113-114	Shabliy, T., 138-139
Dokus, A.O., 103-104	Maksymenko, N., 35-36, 69-70, 81-	Shakirzanova, Zh.R., 48-49,
Dubinsky, A., 43-44	82, 85-86	103-104
Dubovy, O.V., 17-18	Malkhazova, S., 114	Shpakivska, I.M., 69-70
Dubovy, V.I., 17-18	Malovanyy M., 37-38, 57-58, 62-63	Sliusar, V., 57-58
Dyman, N., 71-72	Mamedov, S 99-100	Smalyukh, O.P., 133
Dzevulska, I.V., 77-78	Marakhovska, A., 37-38	Smorochinsky, O., 43-44
Fedoniuk, M.A., 73-74	Martazinova, V., 115	Sobol, O.M., 50-51
Fedoniuk, V.V., 73-74	Mazepa, O., 134-135	Stepanenko, S., 95-96
Fedorenko, V.P., 23-24	Medvedieva, Iu.S., 48-49	Storoshchuk, U., 57-58
Fedoruk, Y.V., 23-24	Melnyk, G., 115	Sumak, K., 52-53
Font-Barnet, A., 67-68	Mironova, V., 114	Synylo, K., 54-55
Frankowicz, M., 79-80	Mishchenko, N., 65-66	Timofeyev, V., 134-135
Goncharenko, A., 138-139	Moufouma-Okia, W., 61	Titenko, G., 81-82, 85-86
Goptsiy, M., 19-20	Nachtnebel, H.P., 39-40	Tkachenko, T., 138-139
Gorbachova L.O., 21-22	Nasr, P., 13-14	Ton, That Lang 118
Grant, M., 56	Nedostrelova, L., 105-106	Traeger-Chatterjee, C., 56
Grechanik, R., 37-38	Nekos, A., 85-86	Tuchkovenko Yu., 136-137
Ha, Tuan Anh 118	Nezhlukchenko, N., 83-84, 116-117	Tymchuk, I., 37-38, 57-58, 62-63
Herrnegger, M., 39-40	Nezhlukchenko, T., 83-84, 116-117	Tyuryakov, S., 79-80, 113-114
Hornovska, S.V., 23-24	Nguyen Thi, Minh Hoa 118	Utkina, K., 81-82, 85, 86-87
Hovesepyan, A., 61	Nguyen, Phu Bao 118	Voloshkina, O., 138-139
Hrytsiv, T.H., 75-76	Nosko, A., 119-120	Voloshyna, O.V., 59-60
Huzieieva, T., 35-36	Olano Pozo, J., X., 67-68	Vonitova, N.D., 88-89
Iheme, P., 25-26	Oluleye, A., 25-26	Vorobyov, V.I., 17-18
Kabin, V., 79-80	Oskirko, T., 121-122	Voronin, V.O., 69-70
Kaminskyi, R.F., 77-78	Ovcharuk, V., 19-20, 41-42, 79-80	Vronska, N., 62-63
Katerusha, H., 27-28	Papakina, N., 119-120, 121-122	Zabolotna, O., 31-32
Katerusha, O., 27-28	Pasechko-Dietrich, V., 43-44	Zakharova, M.V., 140-141
Khokhlov, V., 105-106, 136-137	Pavlov, O., 109-110	Zhuk, D.O., 92-93
Khomenko, I., 29-30, 79-80, 95-96	Pham, Hong Nhat 118	Zhuk V., 37-38, 57-58, 62-63
Khrystiuk B.F., 21-22	Polevoy, A.N., 123-124	Zhukova, O., 138-139
MIII YSUUK D.F., 21-22	1 OKVUY, M.IN., 123-124	ZIIUKUVA, U., 130-137

Наукове електронне видання

МІЖНАРОДНА НАУКОВО-ПРАКТИЧНА КОНФЕРЕНЦІЯ «КЛІМАТИЧНЕ ОБСЛУГОВУВАННЯ: НАУКА І ОСВІТА»

МАТЕРІАЛИ КОНФЕРЕНЦІЇ

22-24 вересня 2021 Одеса, Україна

(англійською мовою)

Видавець і виготовлювач

Одеський державний екологічний університет вул. Львівська, 15, м. Одеса, 65016 тел./факс: (0482) 32-67-35 E-mail: info@odeku.edu.ua Свідоцтво суб'єкта видавничої справи ДК № 5242 від 08.11.2016