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Using the statistical theory of the electron energy-loss spectrum (EELS) in the simple 

disordered systems suggested earlier by Adamian and Gerasimov, simple expressions for 

describing the resonance-line shape in binary mixtures were obtained for a model with binary 

Ornstein-Zernike correlations and a Lennard-Jones shift of the excitation energy. The 

reconstruction of the correlational contribution to the intensity of the energy loss near the 

distinctive dipole-forbidden resonance in the EELS, which takes place in the framework of 

the proposed model close to critical points, is discussed. 

1. Introduction 

It is known that electron energy-loss spectroscopy (EELS) has been a 

valuable technique for exploring collective electronic excitation in different 

systems [2]. The development of the technology of this experiment gives some 

hope to study the behavior of EELS close to single resonance with a width 

--lO-’ eV, but outside of the Doppler width of a spectral line. A statistical 

theory of the line shape in EELS in this region for simple disordered systems 

was developed in [l]. It was theoretically predicted that a statistical “fine” 

strucure EELS due to many particle intermolecular correlations would appear. 

The starting point for the theory [l] is a correlational expansion method which 

is based on irreducible cluster expansions, in terms of many-particle distribu- 

tion functions. In a system with moderate density we can use the finite length 

of this general correlational series and on this way one can obtain a simple 

expression for the cross-section of the energy loss. This question was discussed 

in [l, 3,4]. At last, in [3,4] the behavior of the line shape of the single narrow 

dipole-forbidden resonance near the critical point was investigated. 

On the other hand, the broadening and shift of an optical spectral line 

caused by the interaction of the emitting (or absorbing) atoms with the 
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surrounding particles in the vapors of metals and inert gases and their mixtures 

are commonly experimentally observed in laboratory and astronomical spectra 

[5]. A particularly difficult structure which includes red and violet satellites of a 

spectral line was experimentally observed in a large number of papers [5]. 

In connection with this, the aim of this paper is to extend the statistical 

theory of the line shape in EELS to the case of binary mixtures of simple 

disordered systems, where, probably, similar effects may also be reproduced, 

but in another scale. 

It is particularly interesting to investigate the behavior of the line shape of 

the dipole-forbidden resonance in EELS which can be long-living near the 

critical point where the correlational radius tends to infinity, and for example 

in the case of the critical point of the phase transition the molecules of the 

contrary sort simply push out the coordinate sphere of the excited molecule 

which localizes the excitation. 

It is possible to formulate a rather general theory of the pressure broadening 

of line profiles (like in ref. [3]) in binary mixtures (this theory will be published 

in the next paper), but because it is a many-body problem, it is found that the 

formal expressions obtained cannot be used to calculate line shapes without the 

introduction of some additional approximations. The nature of these approxi- 

mations is determined by the molecules species and thermodynamic conditions 

in the system. 

From this point of view we confine ourselves here to a binary correlational 

approximation in combination with a pair-additive Lennard-Jones model for 

the energy shift of a single excitation. 

2. Cross-section of energy losses 

The distribution of monochromatic beam of fast electrons (E - 10’ eV) 

which is inelastically scattered by energy losses (E) in the narrow, F - 

10P’-lO~’ eV, neighbourhood of a distinctive resonance with a fixed scattering 

angle 8 < 1” in simple disordered systems of N identical, symmetrical molecules 

with volume V and a temperature T - lO* K may be simply described with the 

help of Born’s approximation [l]. Moreover, the main contribution to the 

excited level is carried by the sum over the electronic states. We shall suppose 

that the target molecules can be considered as being in rest during the 

elementary act of scattering (adiabatic approximation) and that the excited 

level of a single molecule is degenerated. We want to emphasize that the 

widening of the spectral resonance due to molecular motion A for the 

parameter values of our problem A - lo-“-lo-” eV [l]. The statistical interpre- 

tation of this problem, which operates a random distribution of scattered 
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charges, is based on the expansion of the cross section of the energy loss I,(E) 

in a correlational series. All members of this correlational series describe 

irreducible contributions in I,(e) due to inelastic scattering on many-particle 

quasi-molecular fluctuational complexes with different ranges. It is needed to 

stress that the correlational expansions, unlike of density power law, have a 

more complicated, functional character of convergence [l]. Nevertheless, in 

systems with moderate densities we can approximately use the finite length of 

the correlational series for Z,(E) [l ,3,4]. For example, if we take into account 

only the two first terms of the correlational series for 18(&), we obtain an 

expression, which describes the cross-section of the energy loss by scattering on 

a system “which consists of two-particle, fluctuational quasi-molecules”, of 

which the regular part, as follows from [l], is equal to 

(1) 

where: 12 = NIV is the number of density particles; g2(R) is the pair (“radial”) 

distribution function: 

-&,2(4, R) = lP(120),(4> @I2 > 

P1201,(4> R) is the Fourier transformation of the matrix element from the 

charge-density operator; the sum over 01 goes over the even (a = g) and odd 

(a = u) electronic states in accordance with the property of the wave function 

of a quasi-molecule consisting of two equal particles, accordinately, to conserve 

or change the sign under the inversion of electronic variables in the plane of 

symmetry; 6(Z) is the Dirac delta-function; q is the impulse of scattering; 

p,,*(R) is the shift of the energy of a single excitation due to intermolecular 

interaction in a two-particle complex; R is the distance between two particles. 

Naturally, generalization of expression (1) in the case of two-component 

binary mixtures leads to 

Z,(E) = / 5 / *( 2 1 c Z;,;“( q, R)S(E + p;‘.;“(R))&,“(R) dR 
LY 

+ nln2 .zy*y q, R)S(& + p2 “~2’(R))g~‘.2’(R) dR] , (2) 

where n,, a,2 , , a,2 
Z(‘.j)( q R) p(ly’)(R) and g(“/)(R) are partial characteristic parame- 

ters and functions which were determined vide supra but in two-component 

systems, indexes i, j = 1,2 indicate the type of component. Integration in (2) 
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(using th e ro er ies of the Dirac delta-function) gives p p t’ 

+ n2 c Z(2’,2)( q, R,.(E))‘~” 
v’ 

R%) 
si”“(R&)) } . 

R,,.(E) 

3. Model of localized excitation 

Consider a model of two-component mixtures in which both of the compo- 

nents have liquid (or gaseous) ranges that overlap in some interval of ther- 

modynamic parameters, including some neighbourhood of the critical point of 

phase separation. 

Let us consider, for example, a situation in which the excited state of the 

molecule of sort number one and also the bound states of both sorts of the 

molecules have equal symmetry (for example S) i.e. a dipole-forbidden type of 

transition in the excited state. 

We shall suppose also that the life-time of our distinctive dipole-forbidden 

resonances approximately correspond to (or are larger than) typical relaxation- 

al times for the order parameter in some neighbourhood of the critical point of 

phase separation, T, (about the conditions of the existence of the localized 

long-living excitations in simple liquids, see for example ref. [6]). Note that, 

because near the critical point the intensity of long-range correlations in- 

creases, it is possible to stabilize our nonequilibrium objects (i.e. fluctuational 

clusters which include an excited molecule) for example with the help of a 

sudden transmission of our systems in the close neighbourhood of the critical 

point [7]. Under these determinative conditions the life-time of excitations will 

probably strongly increase [6,7]. In the case of a dipole-forbidden excitation 

the functions of the shift p::;) and p:‘,*) are dependent only on the module of 

the correspondent interparticle distance R in both fluctuational two-particle 

complexes. 

Let us introduce now the model in which both of these functions (which, in 

principle, must be calculated by means of quantum mechanics methods) will be 

determined in the form of a Lennard-Jones potential, 
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CUJ) c(l.1) 
py(R) = -A$ - A$ ) 

cw c(lA 
p;l.2)(R) = L& - +- ) 

CW) 
12.a 7 

cU.1) 
6,rr 3 

cw 
12 ) 

cY.2) > 0 . (4) 

At last, let us introduce the simplest Ornstein-Zernike form for a correlational 

function which describes order-parameter fluctuations near the critical point of 

a phase separation or liquid-vapor phase transitions, 

where Acixi) is a proportionality constant which varies only slowly with tem- 

perature and density and x (i9i) is the inverse correlational radius between the 

molecules of different or equal species which tends to zero for corresponding 

correlations as a power law near the critical point of phase separation or 

gas-liquid phase transition (i, j = 1,2). 

4. EELS near the critical point 

Let us investigate now the behavior of the cross section of energy loss IO(e) 

in the small neighbourhood of distinctive dipole-forbidden resonance, particu- 

larly near the critical point of phase separation T,, where particularly the 

radius of correlation between the molecules of species 1 and 2 tends to infinity 

(but still limited radiuses of correlations between the molecules are both of 

species 1, or both of species 2). From model approximations (4), (5) and (2,)) 

(3) the next expression for IO(s) follows in this case: 

I,(&) = (+)‘nJ; n1 c zk’,;“( q, Ry’(E))‘R’ 
u,v, 

IR~,‘)(E)[~ 
x IE _ c~~;h’o~~,l’(~))-121 &wcy4) 

+ n2 F .@72’(q, R:f.2)(4)(R) ,F _ c;;2;;;f;&_12, 

12 Y’ 

(6) 
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where 

and 6 = ?l. It is needed to stress that in accordance with the physical meaning 

of {Rt;“} with the help of our model we can investigate I@(E) in the interval of 

energy losses when F E {-m; max([C~;~)]*/4C~$} only. Near the points 

{Fan} = {[Ci;h’]‘/4C’,l;ih} in EELS sharp peaks may appear. These sing- 

ularities are analogous to the singularities of Van Hove for the spectral density 

of states. 

If we deal with our model system, for example near the point of the first 

component liquid-vapor phase transition, with help of (3), (5) similar to (7) 

the following expression for Z,(E) can be obtained: 

Al(&) = (gll,(; n, c zh’,jys, R”cx(~>>‘f’) 
“.“<, 

lR!,;."(t$ 

’ IF - CI::P(Rld,"(s))~"i r 1 + A(l.l) exp(-x (I.I)R(1.1) 
“U > 

RI(;."(E) 1 

(R;!.')(F)~~ 
+ n2 F =%‘% ~l%v) IF _ C(I.2)(R(l.2)(F))~12, 

12 11’ 

x g2 ".2i(R!,'~Y)(E))) . (8) 

Expressions (6)-( 8) on the one hand give the possibility of a direct determina- 

tion of partial pair distribution functions (or parameters of a different model of 

them) in an individual point by measurement of the intensity of the energy 

losses in simple two-component disordered systems (particularly across the 

liquid-liquid and gas-liquid critical lines), instead of the usual procedure, 

which includes the inverse Fourier transform of the structure factor of scatter- 

ing. This is important because due to irregular convergence of the Fourier 

series this last procedure is a source of inexactitudes in the determination of 

pair distribution functions. On the other hand, in the case of a statistically 

determined system, expressions (6)-(g) give the possibility of a determination 

of the distribution of the charge density in the neighbourhood of localized 
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excitation in binary complexes. Let us consider now several formal limits of 

expressions (6)-( 8)) namely: 

+ n2Zy)(q, m)(n)(Cb’.*))“* 

x I1 + A(l,l)(_?_)1’6 exp(-x(‘.*)(~)1’6)]E-~~* 

+ n2Z(,l.“(q, ($)‘16)l”ig)‘1* 

X [ 1 + A(‘.‘)( $,“” exp( -X’1,2’($)1’6J]} , 

&>O, &-+O+A, 

X 

1 + P(gJ exp(-x(l.2’( c;3”6) 
-312 

& 

&>O, E+ {%“> T (9b) 
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(94 

As follows from (9) the spectral line is strongly asymmetric and the velocity of 

changing of the I,(E) in stokes and anti-stokes neighbourhoods of resonances is 

different. Elementary analysis of (9) shows that the EELS near the single 

dipole-forbidden resonances has a complex behavior and is strongly dependent 

on the distances to the critical points, values of the spectral intervals of energy 

losses close to impact core A, concentrations of the molecules both of species 1 

and 2. 

It is stressed, that if all { Cy,;ih}+ 0, the anti-stokes neighbourhood of 

resonance simply disappears, and in neglecting the correlational effects 

(g$“’ = 1) we obtain that I;)(E) - ~~~~~ + const. Besides, the numerical value 

of the constant in this expression (and in (9)) depends on relative concen- 

trations of the molecules of both species. 

For investigation of the behavior, particularly of the correlational contribu- 

tion I~““’ (E) in the total cross section of energy loss I@(E), let us introduce the 
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spectral density of states [see ref. [3]); N(E) = Z,(E)/Z~)(F), Nccorr)(c) = 

Z~oTr)(~) /IF’ (E) (N(E) = 1 + N(corr’(~)). Here Z;‘(O) means the cross section of 

energy loss in “ideal-gas two-component mixtures” in neglecting the interparti- 

cle correlations (within the framework of a model with the van der Waals shift 

of energy of the single excitation). By definition, N(E) (N”““‘(E)) describes the 

difference in behavior of Z,(E) (I?“’ (c)) in relation to Zp’ (c). For simplicity 

we shall suppose in what follows that the difference between even (g) and odd 

(u) terms is negligible (particularly, it means that Ct;i’ = C$,‘,” = Ci,“, 
C(i,i) 

12.g = Cy;!J = C’:;“). Within the framework of approximations which were 

adopted, with help of (9), we obtain 

N(E) = 1-t a(n,, n2, T)E cos (zJexp[_~] 

x”(1.2) 
+ b(n,, n2, Z)E”~ exp -7 + C(n,, n2, T)e3’2, 

L 1 

&>O, F+O+A, 

IV(&) = 1+ 
[ 

n,Z(,‘q2E)h, ~I.lqSP)““)/,l _ &$A, 

+ nzZj1%2)(2~)( $&7)1’~(1~2’(nl, n2, T) 
6 

x exp( -s)/]l - F/F$~]] 

+J, “q2E)/Il - E/&$ + n,r(,‘.2)(2E) / 11 - ElEV$] ) 

&>O, &-+ {&A} , i=1,2, 

N(E) = 1+ [ n,z-, ~l,l~hy~( ( W)‘-“) 

+ n,zy) $g YP,ynl, n2, T) ( 1 
12’ 

X exp( -.x(1’2)( $)1’6)] 

(104 

(lob) 

l[n,zy) + n2zy2)], 

E<O, I+O+A, (104 



where 

a(n,, n2, T) = [C~,‘,f)]m1’6 
n, r’,‘*“(A) 

~1, r;‘,“(A) + r~,l-(,‘.~)(A) 
A(13’)(n,, T) , 

b(n, > n2, 
q = p-;wy n,f ‘I““(A) 

+7;‘,‘)(A) + n2+3A) A(1’2)(nf’ ‘*’ T, ’ 

c(n,, n2, T)= 
L 
n,r:'.')h:'.') 

((gy6, 

+ n,+.2) @;; 7~6~~';z~~".z'(nl, n2, T) 

( -1 
I7 

x CXp(l+&"6j] 

l(n,Z’(‘.“(A) + n,~“.*)(A)) , 

p”(L) = PwyCjlLy~ ) T(i.1) = ~(~,j)(C~,l))“~ , i, j = 1, 2, 
(11) 
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Note that in (10) we have carried out the correspondent limit transitions also 

for function Z;)(E). Also note that in (10) we used the next asymptotic form 

for hi’.“(Z), when Z+m [8]: 

h;‘,“(Z) - z AYnl~ z-1 exp(_-rcu.‘)q cos(pu.‘)z + p)) 
7 

(12) 

where A(‘*‘), xc”‘), PC1211 and 8’l.l) are constants. 

From (lo)-(12) it follows that in the fixed neighbourhood of the critical 

point of phase separation (x(1.2) # 0) scaling behavior of the correlational 

contribution in relation to the “ideal gas mixture” limit, approximately, takes 

place near the impact core A in the stokes neighbourhood and also in the 

asymptotic region of anti-stokes neighbourhood of single resonance, i.e. 

r C(n,, n2, T)E”‘~ , &>O, &+O+A, 

n,ry)(.rr) 
n,zy)(@J) + n2rj’x2)(q 

h;',"(O) (13) 

N(E) = 1+ g 

+ 

I &CO, I&l+-. 

Stressed that with help of (13), in principle, we obtain the possibility of direct 

determination of h$‘z”(0) (or ,gi”“(O)), and the behavior of hi”“(R) 

(g;‘.“(R)) on a small distance R. 

Then in the neighbourhood of Van Hove’s singularities both types { .&$} of 

scaling behavior disappear, namely 

(14) 

As follows from (14) we obtain that the density of state in the narrow stokes 

neighbourhood of the different types of Van Hove points have a different 

behavior (in the case of the first type Van Hove’s point oscillation takes place). 

At last, the anti-stokes impact core neighbourhood is practically constant 

and it depends only on the thermodynamic state of the system. The limit 

transition _x(~,‘)+ 0 as follows from (14) induces scaling behavior of N(E) also 

close to second type Van Hove points, i.e. N(E) = 1 + 
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(2EIC~,2))1’bA(‘,2)(n,) n2, T,). It is interesting to stress that the correlational 

structure of EELS in the stokes neighbourhood near the impact core of single 

resonance close to the critical point has a complex nonmonotonic behavior and 

in the double limit x(‘,*)-+ 0, E -+ 0 + A the index of the power law changes 

which describes scaling, in accordance with the next rule: 

N(E) = 1 + a(n,, n2, T)E cos gf exp(_g, 

+ b(n,, n2, T)E”’ exp(- FJ 

+ c(n,, n2, T)E”‘~+ c(n,, n2, T)E3” , 

F>O, E+O+ A, x('.~)#O, (154 

N(E) = 1 + a(n,, n2, T)E cos E!pexp( -EL)] 

+ b(n,, n2, T)E”~ + c(n,, n2, T)&“2 

-+b(n,, n2, T,)E”’ + c(n,, n2, TC)E3’*+ b(n,, n2, TC)&“’ 2 

E>O, &+O+ A, x(‘,~)*O. (15b) 

Thus, close to the impact core in the different neighbourhoods of single 

dipole-forbidden resonances near the critical point of phase separation, at first, 

nonmonotonic, then two-index and at last one-index scaling behavior of 

correlational contribution in I,( E) takes place. Similar expressions can be 

obtained with the help of (8) in the case of critical point gas-liquid types (see 

ref. [4]). 

Thus, in the narrow stokes neighbourhoods of distinctive dipole-forbidden 

resonance which is formed by a long-range interparticle correlation an essential 

change of correlational structure of the EELS takes place particularly close to 

the critical point of phase separation where the corresponding correlational 

radius tends to infinity. Contrary, in the asymptotic anti-stokes neighbourhood 

of the single resonance the correlational contribution (which is formed due to 

short-range correlation) is naturally practically independent from the critical 

behavior of the system target. 

Note that on a way of fracton interpretation of the spectral density of states 

in the EELS [3], as follows from (13)-( 15), fracton dimension d, which 

describes the scaling behavior of the correlational contribution: N(E) - Ed-‘, 

changes not only in the different neighbourhoods of the critical point, but also 

in the different neighbourhoods of the single dipole-forbidden resonance and 
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belongs to the interval [l. 17; 2. 51. It means that fractal sets, if they appear in 
the tasks about the line shape in the EELS (two-particle fluctuational clusters 
which include an excited molecule play a role of localized fractal object 
fractons), have a spectrum of scaling indexes (see, also ref. [9]). 
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