МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ОДЕСЬКИЙ ДЕРЖАВНИЙ ЕКОЛОГІЧНИЙ УНІВЕРСИТЕТ

ЗБІРНИК МЕТОДИЧНИХ ВКАЗІВОК

до практичних робіт з дисципліни «ДОСЛІДЖЕННЯ ВОДНИХ ЕКОСИСТЕМ МЕТОДАМИ ГІС»

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ОДЕСЬКИЙ ДЕРЖАВНИЙ ЕКОЛОГІЧНИЙ УНІВЕРСИТЕТ

ЗБІРНИК МЕТОДИЧНИХ ВКАЗІВОК до практичних робіт з дисципліни «ДОСЛІДЖЕННЯ ВОДНИХ ЕКОСИСТЕМ МЕТОДАМИ ГІС»

для студентів I (V) курсу природоохоронного факультету факультету магістерської підготовки Спеціальність: прикладна екологія та збалансоване природокористування

> «Затверджено» на засіданні методичної комісії природоохоронного факультету Протокол № _____ від _____ 2015 р.

ГІС. Збірник методичних вказівок до виконання практичних робіт з дисципліни «Дослідження водних екосистем методами ГІС». /Селезньова Л.В./ – Одеса, ОДЕКУ, 2015. – с.

Методичні вказівки призначені для студентів I (V) курсу денної та заочної форм навчання освітньо-кваліфікаційного рівня «спеціаліст» та «магістр» за спеціальністю «Екологія та охорона навколишнього середовища».

3MICT

ПЕРЕДМОВА ПРАКТИЧНА РОБОТА №1

1.1 Створення бази даних

1.2 Загальні положення про геоінформаційні системи

1.3 Хід роботи

1.4 Висновок

ПРАКТИЧНА РОБОТА №2

2.1. Побудова карти України в ізолініях та реєстрація зображення

2.2 Стислий опис програм Surfer та MapInfo

2.3 Джерела, стандарти та формати даних

2.4 Хід роботи

2.5 Висновок

ПАРКТИЧНА РОБОТА №3

3.1 Побудова тематичних карт

3.2 Загальна інформація про тематичні карти

3.3 Області застосування тематичних карт

3.4 Хід роботи

3.5 Висновок

ПРАКТИЧНА РОБОТА №4

4.1 Прив'язка растрового зображення та його векторизація по окремим шарам

4.2 Автоматизація обробки зображень

4.3 Основні етапи векторизації

4.4 Хід роботи

4.5 Висновки

РЕКОМЕНДОВАНА ЛІТЕРАТУРА

ПЕРЕДМОВА

Вибіркова дисципліна «Дослідження водних екосистем методами ГІС» відноситься до дисциплін професійно-практичного циклу в підготовці фахівців освітньо-кваліфікаційного рівня «магістр» та «спеціаліст» для підготовки за спеціальністю «Екологія та охорона навколишнього середовища» шифр 7(8).04010601, спеціалізації – «Гідроекологія».

Основна мета вивчення дисципліни «Дослідження водних екосистем методами ГІС» полягає в оволодінні навиками комп'ютерної обробки спостережень за природними об'єктами, створення тематичних карт.

Поява та розвиток нових геоінформаційних технологій, спеціально розроблених для роботи з даними, що мають просторово часову прив'язку, зумовило їх швидке розповсюдження та широке використання в багатьох галузях науки та техніки, у тому числі і екології.

ГІС або геоінформаційні системи є новим типом інтегрованих комп'ютерних систем, що з'явилися на світ в кінці XX сторіччя. Зараз це найперспективніша та універсальна система управління геоданими.

Найзагальніше визначення для ГІС – це автоматизована інформаційна система, призначена для обробки просторово-часових даних, основою інтеграції яких служить географічна інформація.

Саме просторова прив'язка екологічного об'єкту пердставляє найбільшу цінність в системі ГІС – могутня та гнучка система управління геоданими.

За допомогою цієї методичці студенти повинні освоїти представлення даних вимірювання у формі зрозумілої для різних модулів ГІС, освоїти користування різними модулями залежно від їх призначення, освоїти складання тематичних карт для різних природних явищ.

Ця методична розробка є допоміжним матеріалом для виконання студентами практичних робіт і складається з 4 тем. Кожна робота містить загальні теоретичні пояснення суттєвих положень даної теми, практичну частину та зразок для її виконання. На останній сторінці методичних вказівок наведений перелік рекомендованої літератури.

Контроль поточних та залишкових знань контролю засвоєння змістовних модулів дисципліни «Дослідження водних екосистем методами ГІС» здійснюється через проведення контрольних робіт та індивідуального захисту кожного виконаного завдання.

Критерії оцінки модулів за лекційний модуль 25 балів (2 модуля), за практичний 25 балів (2 модуля).

ПРАКТИЧНА РОБОТА №1

1.1 «Створення бази даних»

1.2 Загальні положення про геоінформаційні системи

Географічна інформаційна система або геоінформаційна система (ГІС) - це інформаційна система, що забезпечує збір, зберігання, обробку, аналіз і відображення просторових даних і пов'язаних з ними непросторових, а також отримання на їх основі інформації і знань про географічний простір.

Дані є вірогідно найбільш важливим компонентом ГІС. Дані про просторове положення (географічні дані) і пов'язані з ними табличні дані можуть збиратися і готуватися самим користувачем, або отримуватися у постачальників на комерційній або іншій основі. В процесі управління просторовими даними ГІС інтегрує просторові дані з іншими типами і джерелами даних, а також може використовувати систему управління базами даних (СУБД), вживані багатьма організаціями для впорядковування і підтримки наявних в їх розпорядженні даних.

Будь-яка ГІС працює з даними двох типів - просторовими і атрибутивними.

Сукупність цифрових даних про просторові об'єкти утворює безліч просторових даних і складає зміст баз даних.

<u>База даних</u> (БД) - сукупність даних організованих за певними правилами, що встановлюють загальні принципи опису, зберігання і маніпулювання даними.

Створення БД і звернення до неї (по запитах) здійснюється за допомогою СУБД.

Логічна структура елементів бази даних визначається вибраною моделлю БД.

Найбільш поширеними моделями БД є *ієрархічні, мережеві, реляційні і* об'єктно-орієнтовані.

Ієрархічні моделі представляють деревовидну структуру, в цьому випадку кожен запис пов'язаний тільки з одним записом, що знаходиться на більш високому рівні.

Така система добре ілюструється системою класифікації рослин і тварин. Прикладом може також служити структура зберігання інформації на дисках персонального комп'ютера (ПК). Головне поняття такої моделі є рівень.

Кількість рівнів і їх склад залежить від прийнятої при створенні БД класифікації. Доступ до будь-якого з цих записів здійснюється шляхом проходу по строго певному ланцюжку вузлів. При такій структурі легко здійснювати пошук потрібних даних, але якщо спочатку опис неповний, або не передбачений критерій пошуку, то він стає неможливим. Для достатньо простих завдань така система ефективна, але вона практично непридатна для використання в складних системах з оперативною обробкою запитів. Мережеві моделі були покликані усунути деякі з недоліків ієрархічних моделей. У мережевій моделі кожен запис у вузлі мережі може бути пов'язаний з декількома іншими вузлами. Записи, що входять до складу мережевої структури, містять в собі показники, що визначають місцеположення інших записів, пов'язаних з ними. Така модель дозволяє прискорити доступ до даних, але зміна структури бази вимагає значних зусиль і часу.

Реляційні моделі збирають дані в уніфіковані таблиці. Таблиці привласнюється унікальне ім'я усередині БД. Кожен стовпець - це поле, що має ім'я, відповідне атрибуту, що міститься в нім. Кожен рядок в таблиці відповідає запису у файлі.

Одне і теж поле може бути присутнім в декількох таблицях. Оскільки рядки в таблиці не впорядковані, то визначається один або декілька стовпців, значення яких однозначно ідентифікують кожен рядок. Такий стовпець називається первинним ключем. Взаємозв'язок таблиць підтримується зовнішніми ключами. Маніпулювання даними здійснюється за допомогою операцій, що породжують таблиці. Користувач може легко заносити в базу нові дані, комбінувати таблиці, вибираючи окремі поля і записи, а також формувати нові таблиці для відображення на екрані.

Об'єктно-орієнтовані моделі застосовують, якщо геометрія певного об'єкту здатна охопити декілька шарів, атрибути таких об'єктів можуть успадковуватися, для їх обробки застосовують специфічні методи.

Для обробки даних, розміщених в таблицях необхідні додаткові відомості про дані, їх називають *метаданнимі*.

Метадані - каталоги, довідники, реєстри і інші форми опису наборів цифрових даних.

Формати даних визначають спосіб зберігання інформації на жорсткому диску, а також механізм її обробки. Моделі даних і формати даних взаємопов'язані.

Можна відзначити, що в багатьох ГІС підтримуються основні формати зберігання растрових *даних* (TIFF, JPEG, GIF, BMP, WMF, PCX), а також Geospot, GEOTIFF, що дозволяють передавати інформацію про прив'язку растрового зображення до реальних географічних координат, і MRSID - для стискування інформації.

Найбільш поширеним серед *векторних форматів* є - DXF.

Всі системи підтримують обмін просторової інформації (експорт і імпорт) з багатьма ГІС і системами автоматизованого проектування (САПР) через основні обмінні формати: SHP, E00, GEN (ESRI), VEC (IDRISI), MIF (Mapinfo Corp.), DWG, DXF (Autodesk), WMF (Microsoft), DGN (Bentley).

Досить часто для ефективної реалізації одних комп'ютерних операцій віддають перевагу векторному формату, а для інших растровому.

1.3. Хід роботи

a) Створення бази даних для подальшої роботи у программі Surfer.

Для створення бази даних потрібно виконати наступні дії:

- Створити файл Exel;

31

Славутич

- Користуючись глобальною мережею інтернет, відповідно до поставленої мети, знаходимо координти та абсолютні висоти 300 міст України;

- Вносимо отримані дані у файл Exel та зберігаємо його.

б) Відтворюємо кінцевий результат (табл. 1.1);

в) Робимо висновок про завершення завдання.

N⁰	Назва	Довгота	Широта	Висота
1	2	3	4	5
1	Одеса	30,72	46,45	52
2	Очаків	31,54	46,61	30
3	Гола Пристань	32,53	46,52	15
4	Скадовськ	32,91	46,11	7
5	Красноперекопськ	33,8	45,95	15
6	Євпаторія	33,36	45,19	8
7	Севастополь	33,52	44,59	150
8	Алупка	34,10	44,43	700
9	Ялта	34,17	44,50	730
10	Алушта	34,41	44,67	530
11	Феодосія	33,77	45,03	295
12	Керч	36,46	45,36	150
13	Генічеськ	34,80	46,17	14
14	Приморськ	36,36	46,73	40
15	Бердянськ	36,81	46,76	35
16	Маріуполь	37,58	47,11	80
17	Новоазовськ	38,07	47,12	72
18	Амвросіївка	38,48	47,79	180
19	Червонопартизанськ	39,78	48,07	320
20	Краснодон	39,74	48,28	180
21	Куп'янськ	37,60	49,70	175
22	Вовчанськ	36,95	50,29	178
23	Суми	34,80	50,91	214
24	Білопілля	34,31	51,14	140
25	Ворожба	34,22	51,17	140
26	Глухів	33,91	51,67	214
27	Дружба	33,93	52,04	205
28	Середина Буда	34,03	52,18	215
29	Семенівка	32,59	52,17	170
30	Городня	31.60	51 89	165

30,75

51,51

125

Таблиця 1.1 – Вихідні дані

Продовження табл. 1.1

		11po ₄	цовжения	140.1.1.1
32	Чорнобиль	30,23	51,26	140
33	Прип'ять	30,06	51,40	160
34	Овруч	28,80	51,32	190
35	Сарни	26,62	51,32	165
	Камень-			
36	Каширський	24,96	51,62	165
37	Любомиль	24,04	51,22	207
	Володимир-			
38	Волинський	24,31	50,82	235
39	Нововолинськ	24,16	50,72	240
40	Сокаль	24,28	50,47	253
41	Угнів	23,75	50,36	240
42	Рава-Руська	23,62	50,23	290
43	Яворів	23,38	49,94	285
44	Мостиська	23,15	49,79	295
45	Добромиль	22,77	49,56	450
46	Турка	23,01	49,15	799
47	Ужгород	22,30	48,61	302
48	Берегово	22,65	48,20	360
49	Виноградів	23,02	48,14	420
50	Хуст	23,29	48,18	450
51	Тячів	23,58	48,01	540
52	Рахів	24,21	48,05	1230
53	Сторожинець	25,71	48,15	502
54	Герца	26,26	48,15	340
55	Новоселець	26,28	48,22	320
56	Хотин	26,49	48,55	305
57	Сокиряни	27,42	48,45	275
58	Балта	29,63	47,93	235
59	Котовськ	29,52	47,74	250
60	Роздільна	30,08	46,84	145
61	Болград	28,61	45,64	105
62	Рені	28,29	45,45	102
63	Ізмаїл	28,83	45,34	40
64	Килія	29,26	45,46	10
65	Вилкове	29,59	45,40	9
66	Іллічівськ	30,65	46,30	29
67	Арциз	29,43	45,98	105
68	Сімферополь	34,11	44,95	370
69	Білогірськ	34,6	45,05	340
70	Старий Крим	35,1	45,02	520
71	Джанкой	34,40	45,71	20

Продовження табл. 1.1

		11po ₄	цовжения	14051. 1.1
72	Херсон	22,61	46,65	52
73	Цюрупинськ	32,70	46,61	25
74	Таврійськ	33,33	46,74	61
75	Берислав	33,42	46,84	67
76	Каховка	33,48	46,80	62
78	Снігурівка	32,81	47,06	62
79	Молочанськ	35,59	47,20	27
80	Токмак	35,71	47,24	105
81	Березівка	30,92	47,19	105
82	Нова Одеса	31,79	47,28	115
83	Баштанка	32,43	47,4	85
84	Дніпрорудне	34,98	47,38	85
85	Василівка	35,28	47,42	97
86	Ровеньки	39,37	48,07	270
87	Мусинськ	38,9	48,07	295
88	Сніжне	38,77	48,03	290
89	Торез	38,63	48,02	270
90	Шахтарськ	38,44	48,05	150
91	Донецьк	37,80	47,96	220
92	Пологи	36,26	47,47	180
93	Гуляйполе	36,26	47,65	157
94	Оріхів	35,78	47,56	127
95	Вільнянськ	35,44	47,94	152
96	Запоріжжя	35,17	47,83	120
97	Марганець	34,62	47,64	105
98	Нікополь	34,39	47,57	75
99	Орджонікідзе	34,06	47,66	99
100	Апостолово	33,71	47,65	92
101	Кривий Ріг	33,42	47,97	105
102	Інгулець	33,19	47,68	99
103	Новий Буг	32,52	47,69	98
104	Бобринець	32,16	48,05	100
105	Вознесенськ	31,33	47,56	85
106	Южноукраїнськ	31,17	48,82	129
107	Первомайськ	30,85	48,04	147
108	Ананьїв	29,97	47,72	204
109	Гайворон	29,85	48,34	215
110	Улянівка	30,82	48,35	202
111	Помічна	31,41	48,23	209
112	Новоукраїнка	31,53	48,32	200
113	Мала Виска	31,62	48,64	220
114	Кіровоград	32,25	48,51	200

Продовження табл. 1.1

		TIP04	цоржения	140,1. 1.1
115	Жовті Води	33,52	48,35	149
116	Вільногірськ	34,01	48,47	175
117	Верхівцеве	34,25	48,48	172
118	Дніпродзержинськ	34,6	48,5	160
119	Дніпропетровськ	34,99	48,44	165
120	Новомосковськ	35,22	48,63	120
121	Павлоград	35,89	48,52	135
122	Добропілля	37,08	48,46	195
123	Родинське	37,23	48,34	185
124	Костянтинівка	37,72	48,51	212
125	Часів Яр	37,83	48,57	235
126	Горлівка	38,03	48,32	190
127	Ясинувата	37,89	48,12	265
128	Єнакієве	38,21	48,22	275
129	Первомайськ	38,55	48,62	173
130	Алчевськ	38,81	48,47	255
131	Антрацит	39,09	48,12	325
132	Луганськ	39,33	49,56	170
133	Гірське	38,50	48,74	251
134	Лисичанськ	38,43	48,90	220
135	Краматорськ	37,57	48,72	195
136	Сватове	38,14	49,41	185
137	Ізюм	37,26	49,19	120
138	Барвінкове	37,01	48,89	180
139	Балаклія	36,83	49,45	99
140	Лозова	36,32	48,88	185
141	Красноград	35,46	49,36	105
142	Карлівка	35,12	49,45	140
143	Кременчук	33,44	49,1	120
144	Глобино	33,27	49,39	105
145	Світловодськ	33,23	49,04	160
146	Знам'янка	32,68	48,71	209
147	Чигирин	32,66	49,07	140
148	Кам'янка	32,10	49,02	215
149	Черкаси	32,07	49,42	93
150	Сміла	31,88	49,21	185
151	Городище	31,46	49,28	205
152	Шпола	31,39	48,99	205
153	Звенигородка	30,96	49,07	227
154	Тальне	30,72	48,88	214
155	Жашків	31,11	49,23	240
156	Умань	30,21	48,73	260

Продовження табл. 1.1

		11po ₄	цовжения	140.1.1.1
157	Христинівка	29,97	48,81	265
158	Гайсин	29,39	48,8	260
159	Ладижив	29,25	48,68	250
160	Іллінці	29,21	49,10	275
161	Тульчин	28,85	48,67	275
162	Вінниця	28,48	49,23	290
163	Жмеринка	28,12	49,03	320
164	Бар	27,67	49,07	269
165	Хмельницький	26,98	49,41	360
166	Дунаївці	26,85	48,88	335
167	Городок	26,57	49,16	365
168	Бощів	26,03	48,80	285
169	Чернівці	25,93	48,30	500
170	Заставна	25,84	48,52	305
171	Кіцман	25,75	48,45	320
172	Заліщики	25,73	48,65	185
173	Снятин	25,57	48,45	350
174	Вашківці	25,51	48,37	430
175	Коломия	25,05	48,53	395
176	Косів	25,09	48,31	600
177	Надвірна	24,56	48,63	870
178	Яремча	24,55	48,45	1350
179	Іршава	23,03	48,31	440
180	Свалява	22,99	48,54	850
181	Мукачеве	22,71	48,44	250
182	Трускавець	23,43	49,28	870
183	Дрогобич	23,5	49,34	500
184	Стрий	23,85	49,25	289
185	Болехів	23,85	49,05	520
186	Долина	24,00	48,99	550
187	Новий Роздол	24,15	49,47	270
188	Жидачів	24,13	49,38	260
189	Ходорів	24,31	49,40	343
190	Калуш	24,38	49,02	390
191	Івано-Франківськ	24,71	48,91	370
192	Галич	24,73	49,12	240
193	Рогатин	24,62	49,40	360
194	Бережани	24,94	49,44	320
195	Підгайці	24,40	49,27	400
196	Бучач	25,39	49,06	300
197	Теребовля	25,70	49,29	355
198	Чортків	25,79	49,02	330

Продовження табл. 1.1

		11po ₄	цовжения	14051. 1.1
199	Львів	24,04	49,83	273
200	Перемишляни	24,55	49,66	440
201	Золочів	24,90	49,80	445
202	Зборів	24,14	49,66	400
203	Тернопіль	25,60	49,54	310
204	Збарfж	25,77	49,66	405
205	Волочиськ	26,21	49,53	340
206	Красилів	26,98	49,65	380
207	Хмільник	27,95	49,56	305
208	Бердичів	28,60	49,85	272
209	Козятин	28,84	49,71	290
210	Сквира	29,66	49,73	245
211	Біла Церква	30,12	49,79	180
212	Кагарлик	30,83	49,84	185
213	Богуслав	30,87	49,54	217
214	Миронівка	31,00	49,66	160
215	Канів	31,46	49,74	240
216	Золотоноша	32,04	49,66	105
217	Хорол	33,28	49,78	145
218	Полтава	34,55	49,59	140
219	Південне	36,06	49,86	200
220	Чугуїв	36,69	49,83	134
221	Куп'янськ	37,60	49,70	173
222	Харків	36,27	49,99	195
223	Дергачі	36,11	50,11	210
224	Люботин	35,94	49,99	200
225	Богодухів	35,33	50,16	205
226	Охтирка	34,92	50,31	180
227	Лебедин	34,48	50,59	170
228	Миргород	33,63	49,96	140
229	Гадяч	33,99	50,36	145
230	Ромни	33,48	50,74	185
231	Лубни	33,00	50,01	161
232	Ічня	32,38	50,84	135
233	Пирятин	32,51	50,23	129
234	Обухів	30,63	50,10	200
235	Фастів	29,91	50,07	200
236	Бориспіль	30,96	50,34	135
237	Київ	30,46	50,44	170
238	Житомир	28,67	50,27	230
239	Полонне	27,50	50,11	260
240	Острог	26,52	50,33	245

Продовження табл. 1.1

		npo,	цовжения	таол. 1.1
241	Рівне	26,25	50,60	255
242	Дубно	25,75	50,39	330
243	Ізяслав	26,82	50,11	33
244	Берестечко	25,11	50,33	237
245	Броди	25,15	50,07	270
246	Горохів	24,76	50,49	265
247	Луцьк	25,33	50,74	245
248	Ковель	24,70	51,21	200
249	Кузнєцовськ	25,85	51,34	200
250	Сарни	26,62	51,32	165
251	Коростень	28,63	50,96	189
252	Чернігів	31,89	51,48	120
253	Корюківка	32,21	51,77	149
254	Щорс	31,94	51,81	112
255	Ніжин	31,87	51,04	120
256	Бобровиця	31,77	50,73	125
257	Борзна	32,43	51,24	135
258	Бахмач	32,8	51,17	145
259	Конотоп	33,21	51,24	149
260	Кролевець	33,39	51,54	180
261	Радомишль	29,24	50,49	190
262	Волноваха	37,49	47,59	260
263	Докучаївськ	37,68	47,75	230
264	Красногорівка	37,49	48,01	200
265	Гірник	37,38	48,05	190
266	Макіївка	37,79	48,03	250
267	Зугрес	38,27	48,01	220
268	Іловайськ	38,20	47,92	210
269	Красний Луч	38,93	48,13	315
270	Петрівське	38,89	48,29	340
271	Зимогір'є	38,94	48,58	200
272	Брянка	38,68	48,5	270
273	Алмазна	38,58	48,51	243
274	Кіровськ	38,66	48,69	190
275	Соледар	38,08	48,68	230
276	Рубіжне	38,38	49,00	150
277	Кобиляки	34,20	49,15	110
278	Олександрія	33,10	48,66	160
279	Стеблі	23,56	49,3	450
	Кам'янець-			
280	Подільський	26,59	48,65	340

		I /	1	
	Могилів -			
281	Подільський	27,81	48,46	240
282	Гнівань	28,33	49,09	300
	Корсунь-			
283	Шевченківський	31,27	49,42	205
284	Комсомольськ	33,65	49,01	120
285	Слов'яногірськ	37,57	49,03	220
286	Золоте	38,51	48,68	250
287	Щастя	39,24	48,73	140
288	Молодогвардійськ	39,72	48,35	240
289	Жданівка	38,25	48,15	270
290	Бахрушеве	38,83	48,15	315
291	Свердловськ	39,65	48,07	300
292	Харцизьк	37,98	48,05	250
	Кам'янка-			
293	Дніпровська	34,42	47,47	69
294	Бахчисарай	33,86	44,74	307
295	Монастирська	25,17	49,08	390
296	Самбір	23,2	49,51	300
297	Хирів	22,85	49,53	400
298	Судова Вишня	23,38	49,78	300
299	Пустомити	23,89	49,72	340
300	Дубляни	24,09	49,90	350

Продовження табл. 1.1

Контрольні питання

- 1. Надати визначення бази даних.
- 2. Надати визначення ієрархічних моделей.
- 3. Надати визначення мережевих моделей.
- 4. Надати визначення реляційних моделей.
- 5. Надати визначення об'єктно орієнтовних моделей.
- 6. Надати визначення методаним.

1.4 Висновок.

Під час виконання даної роботи були отримані вміння та навички створення бази даних для подальшої роботи з нею.

ПРАКТИЧНА РОБОТА № 2

2.1 «ПОБУДОВА КАРТИ УКРАЇНИ В ІЗОЛІНІЯХ ТА РЕЄСТРАЦІЯ ЗОБРАЖЕННЯ»

Мета даної роботи полягає у ознайомленні з програмами Surfer та MapInfo Professional 6.0, та створенні з допомогою даних програм карти ізоліній України, а також формуванні вмінь та навичок реєстрації растрового зображення з можливістю прив'язки до конкретної векторної карти.

<u>Завдання:</u> використовуючи вхідні дані практичної роботи №1, виконати:

- побудову карти України в ізолініях по даним абсолютних відміток поверхні;

- створити тривимірне зображення даної карти;

- виконати приблизну реєстрацію растрового зображення;

- виконати реєстрацію растрового зображення засобами MapInfo;

-проаналізувати отримані результати при виконанні реєстрації зображення за кожним із методів.

2.2 Стислий опис програм Surfer та MapInfo

Golden Software Surfer - потужний картографічний пакет для вчених та інженерів. <u>Surfer</u> - тривимірна програма креслення карт, яка виконується в середовищі Microsoft Windows. Вона легко перетворить вихідні дані в контур, поверхню, каркас, вектор, зображення, заштриховану область. Створення високоякісних карт здійснюється досить швидко і просто. Surfer був розроблений в 1983 р. невеликою американською фірмою Golden Software, яка спеціалізується на розробці пакетів наукової графіки. Неперевершеною перевагою програми є закладені в неї алгоритми інтерполяції, які дозволяють з високою якістю створювати цифрові моделі поверхні за нерівномірно розподіленими у просторі даними.

<u>МарІпfo Professional</u> - географічна інформаційна система, призначена для збору, зберігання, відображення, редагування та аналізу просторових даних. Перша версія ГІС MapInfo Professional була розроблена в 1987 році компанією MapInfo Corp. і швидко стала однією з найпопулярніших ГІС у світі. Зараз MapInfo Professional використовується в 130 країнах світу, переведена на 20 мов, і встановлена в десятках тисяч організацій. В Україні, завдяки простоті освоєння, багатим функціональним можливостям і помірній вартості, MapInfo Professional стала наймасовішою геоінформаційної системою. Отже, ГІС MapInfo - високоефективний засіб для візуалізації та аналізу просторових даних.

2.3 Джерела, стандарти та формати даних

Реальні об'єкти, що розглядаються в геоінформації, відрізняються просторовими, тимчасовими і тематичними характеристиками.

Просторові характеристики визначають положення об'єкту в заздалегідь визначеній системі координат, основна вимога до таких даних - точність.

Тимчасові характеристики фіксують час дослідження об'єкту і важливі для оцінки змін властивостей об'єкту з часом.

Основна вимога до таких даних - актуальність, що означає можливість їх використання для обробки, неактуальні дані - це застарілі дані.

Тематичні характеристики описують різні властивості об'єкту, включаючи економічні, статистичні, технічні та інші властивості, основна вимога - повнота.

Для представлення просторових об'єктів в ГІС використовують просторові та атрибутивні типи даних.

Просторові дані - відомості, які характеризують місцеположення об'єктів в просторі та їх геометрію.

Просторові об'єкти представляють за допомогою наступних графічних об'єктів: крапки, лінії, області і поверхні.

Опис об'єктів здійснюється шляхом вказівки координат об'єктів і складових їх частин.

Точковий об'єкт - це такий об'єкт, який розташований тільки в одній точці простору, представленою парою координат Х, Ү. Залежно від масштабу картографування таким об'єктом можуть бути дерево, будинок або місто.

Лінійні об'єкти, представлені як одновимірні, які мають одну розмірність - довжину, ширина об'єкту не виражається в даному масштабі або не істотна. Приклади таких об'єктів: річки, межі муніципальних округів, горизонталі рельєфу.

Область (полігон) - площадковий об'єкт, представлений набором пар координат (Х, У) або об'єктом типу лінія, що є замкнутим контуром. Таким об'єктом може бути представлені території, займані певним ландшафтом, містом або цілим континентом.

Поверхня - при її описі потрібне додавання до площадкових об'єктів значень висоти. Відновлення поверхонь здійснюється за допомогою використання математичних алгоритмів (інтерполяції і апроксимації) початкового набору координат X, Y, Z.

<u>Для представлення просторових даних в ГІС застосовують векторні і растрові структури даних.</u>

Векторна структура даних - це представлення просторових об'єктів у вигляді набору координатних пар (векторів), що описують геометрію об'єктів.

Растрова структура даних припускає представлення даних у вигляді двомірної сітки, кожен осередок якої містить тільки одне значення, що

характеризує об'єкт, відповідний осередку растру на місцевості або на зображенні. Такою характеристикою може бути код об'єкту (ліс, луг і так далі), висота або оптична щільність.

Точність растрових даних обмежується розміром осередку. Такі структури є зручним засобом аналізу та візуалізації різного роду інформації.

Для реалізації растрових і векторних структур розроблені різні моделі даних.

До засобів просторового аналізу відносяться різні процедури маніпулювання просторовими та атрибутивними даними, виконувані при обробці запитів користувача. До них відносяться, наприклад, операції накладення графічних об'єктів, засоби аналізу мережевих структур або виділення об'єктів по заданих ознаках.

Для кожного ГІС-ПАКЕТА характерний свій набір засобів просторового аналізу, що забезпечує вирішення специфічних завдань користувача, у той же час можна виділити ряд основних функцій, властивих практично кожному ГІС-ПАКЕТУ. Це, перш за все, організація вибору і об'єднання об'єктів відповідно до заданих умов, реалізація операцій обчислювальної геометрії, аналіз накладень, побудова буферних зон, мережевий аналіз.

Растрові моделі використовуються в двох випадках.

У першому випадку - для зберігання початкових зображень місцевості. У другому - для зберігання тематичних шарів, коли користувача цікавить не тільки окремі просторові об'єкти, а й набір точок простору, що мають різні характеристики (висотні відмітки або глибини, вологість грунтів і так далі), для оперативного аналізу або візуалізації.

Існує декілька способів зберігання і адресації значень окремих осередків растру, і їх атрибутів, назв шарів і легенд.

Поверхня і цифрова модель.

Основою для уявлення даних про земну поверхню є цифрові моделі рельєфу.

Поверхні - це об'єкти, які найчастіше представляються значеннями висоти Z, розподіленими по області, визначеній координатами X та Y.

Цифрові моделі рельєфу (ЦМР) використовують для комп'ютерного представлення земних поверхонь.

ЦМР - засіб цифрового представлення рельєфу земної поверхні.

Побудова ЦМР вимагає певної форми представлення початкових даних (набору координат точок X,Y,Z) і способу їх структурного опису, що дозволяє відновлювати поверхню шляхом інтерполяції або апроксимації початкових даних.

<u>Джерела даних для формування ЦМР.</u>

Початкові дані для формування ЦМР можуть бути отримані по картах цифрування горизонталей, по стереопарам знімків, а також в результаті геодезичних вимірювань або лазерного сканування місцевості.

Найбільш поширений перший спосіб, оскільки збір по стереопарам знімків відрізняється трудомісткістю і вимагає специфічного програмного

забезпечення, але в той же час дозволяє забезпечити бажаний ступінь детальності представлення земної поверхні. Лазерне сканування являє собою перспективний сучасний метод.

Технологія побудови цифрових моделей рельєфу.

Основними процесами побудови ЦМР по картах є:

1) Перетворення початкових карт в растрові зображення, тобто сканування. При скануванні важливим є вибір дозволу отримуваного зображення, надмірно високий дозвіл вимагає великих об'ємів пам'яті для зберігання початкової інформації, в той самий час дозвіл повинен забезпечити необхідну точність збору інформації, яка визначається цілями формування ЦМР.

2) Монтаж растрових фрагментів. Монтаж або "зшивання" - це стиковка декількох зображень довільної форми в одне так, щоб межі між початковими зображеннями були непомітні. При монтажі здійснюється геоприв'язка растрових даних. У ГІС є різні модулі для вирішення цього завдання.

3) Векторизація растрового зображення. Векторизація, або дигіталізація горизонталей може виконуватися в ручному, напівавтоматичному і автоматичному режимах. Для різних ГІС розроблені окремі модулі, що реалізовують це завдання в автоматичних режимах, наприклад, Мар Edit.

4) Формування ЦМР. ЦМР створюється на основі методів інтерполяції і може бути представлена в різних форматах.

5) Візуалізація результатів. ЦМР забезпечує візуалізацію інформації про поверхні в різних формах.

Цифрова модель поверхні традиційно представляється у вигляді значень у вузлах прямокутної регулярної сітки, дискретність якої визначається залежно від конкретної розв'язуваної задачі. Для зберігання таких значень Surfer використовує власні файли типу GRID (довічного або текстового формату), які вже давно є своєрідним стандартом для пакетів математичного моделювання.

Пакет Surfer 6.0 пропонує сім алгоритмів інтерполяції: Крігінг (Kriging), Інверсні відстані (Inverse Distance), Мінімізація кривизни (Minimum Curvature), Радіальні базові функції (Radial Basis Functions), Поліноміальна регресія (Polynomial Regression), Метод Шепарда (Shepard's Method), що представляє собою комбінацію методу інверсного відстаней зі сплайнами та Триангуляція (Triangulation). Розрахунок регулярної сітки може виконуватися для файлів даних X, Y, Z будь-якого розміру, а сама сітка може мати розміри 10 000х10 000 вузлів.

Введення даних виконується з файлів форматів [.DAT] (Golden Software Data), [.SLK] (Microsoft SYLK), [.BNA] (Atlas Boundary) або простого текстового ASCII-файлу, а також з електронних таблиць Excel [.XLS] і Lotus [.WK1, .WKS]. Вихідна інформація може також вводитися або редагуватися за допомогою вбудованої електронної таблиці пакета, при цьому можливі додаткові операції з даними, наприклад сортування, а також

перетворення чисел із допомогою поставлених користувачем рівнянь.

<u>Растрове зображення</u> - це набір значень для окремих елементів (растрів, комірок, пікселів).

1. Растрове зображення можна охарактеризувати розрізненням, виміряним у одиницях dpi.

2. dpi (dot's per inch- точок на дюйм), що вказує, скільки пікселів міститься в одному дюймі зображення.

3. Для реєстрації картографічного зображення необхідно взяти не менше 4-ох точок для картографічного зображення.

4. Реєстрація растрового зображення виконується мінімум за трьома точками.

Тривимірна візуалізація.

Тривимірне зображення поверхні (3D - поверхня) - засіб цифрового об'ємного представлення поверхонь у вигляді дротяних діаграм, при цьому використовуються різні типи проекції, зображення можна повертати і нахиляти, використовуючи простий графічний інтерфейс.

Для відображення рельєфу за даними ЦМР можуть бути сформовані растрові зображення.

Растрова поверхня (зображення) - формується по Grid-модели, при цьому кожному пікселю привласнюється значення, пропорційне висоті відповідного осередку сітки.

Тіньовий рельєф (аналітичне відмивання рельєфу) - растрове відображення ЦМР, при формуванні якого окрім висоти кожної ділянки сітки Grid - моделі, враховується освітленість схилів.

Реалізовані можливості поєднання 3D - поверхонь з іншими тематичними шарами. Для досягнення реалістичності відображення об'єктів місцевості 3D - поверхні поєднуються з картографічними або ортозображеннями.

2.4 Хід роботи

Побудова будь-якої карти в Surfer зазвичай починається з підготовки файла, що містить XYZ-дані. XYZ-дані - це, як правило, числова інформація, яка складається із не менш, ніж трьох стовпців, перші два з яких найчастіше розглядаються як аргументи X і Y, а третій (або інші) - як функція (функції) Z цих аргументів. Не допускається робити перепусток при введенні таких даних, тобто для кожної пари значень X та Y обов'язково повинні бути присутніми значення всіх функцій Z. У першому рядку для кожного стовпця можна ставити короткі текстові коментарі.

Отже, для створення файлу з ХҮΖ, слід використовувати таблицю вихідних даних(табл. 1.1) практичної роботи №1 і виконати ряд дій, відкривши програму Surfer:

a) виконати команду File/New на панелі інструментів Main з'явиться діалогове вікно «Новый». Якщо вибрати Worksheet (Робочий лист) і натиснути на «Ок», то з'явиться нове вікно робочого листа у який ми копіюємо з табл. 1.1 наступні колонки «довгота», «широта» та «абсолютна висота»;

б) для збереження набраного файлу з даними слід виконати команду Файл/Сохранить как - на панелі інструментів. У списку вибрати пункт Golden Software Date(*DAT), ввести назву файлу та натиснути «Ок»

<u>Сіткові файли</u> потрібні для створення мережевих карт. До таких картах відносяться: контурні карти (contour maps), образні карти (image maps), карти з тіньовим рельєфом (shaded relief maps), векторні карти (vector maps), каркасні карти (wireframe maps) і карти поверхні (surface maps). Сіткові файли створюються за допомогою команди Grid/Data у режимі плотдокумента.

Таким чином необхідно виконати команду Файл/Новый і створити «Plot Document», потім на панелі інструментів натискаємо «Сетка/Данные». Вікно, що з'явится дає змогу відкрити уже створений файл з ХҮΖ даними, що має наступний вигляд та формат .xls:

Рисунок 2.1 Вікно знаходження файлу з ХҮΖ даними.

Натиснувши «Открыть» ми отримаємо індикатор процесу створення сітки:

Scattered Data Interpolation 🛛 🔀						
Data General Search Faults and Breaklines						
Геометрические линии сетки Минимум Х Руководство 22.3	Максимум 39.78	Интервал 0.1765656566	# из линии 100 📫			
Y Руководство 44.43	52.18	0.1802325581	44 🕂			
Сеточный метод Кriging Опции						
D:\Documents and SettingsV	Admin\Рабочий с	тол\22\2.grd	≥			
✓ Воспроизвести сообщение						
		ОК	Отмена			

Рисунок 2.2- Індикатор процесу створення сітки.

Дане вікно дозволяє вибрати метод побудови сіткового файлу, створити (за необхідністю) рапорт, який генерує статистичний звіт про використані дані, та виконати налаштування геометричний ліній сітки.

Якщо відмітка у полі «Воспроизсести сообщение» була поставлена, то програма запропонує зберегти рапорт та відобразить вікно на екрані, яке має наступний вигляд:

Surfer - Report1	🛛 🔀
File Edit	
	<u>^</u>
Data Filter Report	Ш.
Source Data File Name:	D:\Documents and S
X Column:	A
Y Column: Z Column:	B
	č
Data Counts	
Number of Active Data:	298
Number of Original Data:	300
Number of Excluded Data:	0
Number of Deleted Duplicates:	2
Number of Retained Duplicates:	2
<	1

Рисунок 2.3 Статистичний звіт про процес створення сіткового файлу

Звіт має актуальність у разі виникнення будь-яких проблем та при виборі оптимального методу створення сіткового файлу. Також він автоматично розраховує ряд статистичних показників по кожному стовпцю вихідних параметрів, зміст файлу (рис 2.3) наведено нижче:

Data Filter Report

Source Data File Name:	D:\Documents	and	Settings\A	.dmin\Рабочий
V Columna	•			
A Column:	A			
Y Column:	B			
Z Column:	C			
Data Counts				
Number of Active Data:	298			
Number of Original Data:	300			
Number of Excluded Data:	0			
Number of Deleted Duplica	ites:	2		
Number of Retained Dupli	rates:	2		
Number of Artificial Data:	0	-		
Filter Rules				
Duplicate Points to Keep:	First			
X Duplicate Tolerance:	0			
Y Duplicate Tolerance:	0			
Exclusion Filter String:	Not In Use			
Duplicate Data				
X Y	Z		ID	Status
26.62 51.32	- 165		35	Retained

37.649.717521Retain37.649.7173221Delete	26.62 26.62	51.32	165	35 250	Deleted
37.6 49.7 173 221 Delete	37.6	49.7	175	21	Retained
	37.6	49.7	173	221	Deleted

Data Statistics Report

Data Counts	
Number of Active Data:	298
Number of Original Data:	300
Number of Excluded Data:	0
Number of Deleted Duplicat	tes:
Number of Retained Duplic	ates:
Number of Artificial Data:	0
<u>X Variable Statistics</u>	
X Range:	17.48
X Midrange:	31.04
X Minimum:	22.3
X 25%-tile:	26.49
X Median:	31.88
X 75%-tile:	35.12
X Maximum:	39.78
X Average:	31.3186
X Standard Deviation:	5.0107
X Variance:	25.1072

Y Variable Statistics	
Y Range:	7.75
Y Midrange:	48.305
Y Minimum:	44.43
Y 25%-tile:	48.05
Y Median:	48.74
Y 75%-tile:	49.71
Y Maximum:	52.18
Y Average:	48.7764
Y Standard Deviation:	1.53339
Y Variance:	2.3513

Z Variable Statistics

Z Range:	1343
Z Midrange:	678.5
Z Minimum:	7
Z 25%-tile:	140
Z Median:	205
Z 75%-tile:	290
Z Maximum:	1350
Z Average:	236.584
Z Standard Deviation:	163.515
Z Variance:	26737.2
Z Coef. of Variation:	0.691151

X	Y	Z	
— X: 1 Y: Z:	-0.245044 1	-0.430652 0.0245623 1	

Inter-Variable Correlation

Inter-Variable Covariance

	X	Y	Z	
<u> </u>	25.1072	-1.88277	-352.845	
Y:		2.3513	6.15859	
Z:			26737.2	

Gridding Report

Search Rules	
Use All Data:	true
Gridding Rules	
Gridding Method:	Kriging
Kriging Type:	Point
Semi-Variogram Model	
Component Type:	Linear
Variogram Slope:	1
Anisotropy Angle:	0
Anisotropy Ratio:	1
Polynomial Drift Order:	0
Kriging standard deviation a	grid:

Grid Summary

Grid File Name: стол\22\2.grd	D:\Documents	and	Settings\Admin\Paбочий
Minimum X:	22.3		
Maximum X:	39.78		
Minimum Y:	44.43		
Maximum Y:	52.18		
Minimum Z:	-14.5		
Maximum Z:	1272.42		
Number of Rows:	44		
Number of Columns:	100		
Number of Filled Nodes:	4400		
Number of Blanked Nodes:	0		
Total Number of Nodes:	4400		

Тобто звіт містить у собі такі обчислені показники по даним як: середні, мінімальні та максимальні значення рядів, дисперсію, коефіцієнт варіації, коефіцієнт асиметрії та інші відомості про XYZ- дані.

В ході роботи відповідно рекомендаціям та завданню ми створюємо сіткову карту. Відомо, що сітковими картами називаються такі карти, для побудови яких потрібне попереднє створення сіткового файлу: контурні, образні, векторні, каркасні, карти із тіньовим рельєфом і карти поверхні. Побудова карт, також як і створення сіткового файлу проводиться в режимі плот-документа. Тому, перш ніж починати створення будь-якої карти, треба перейти в цей режим.

Далі натискаємо «Карта»/«Контурная карта» → «Новая контурная карта». Вікно, що з'явится запропонує нам вибрати створений раніше файл з розширенням «grd». Після чого відразу з'явиться вікно властивостей контурної карти, що має 2-і вкладки: «Опции»(рис.2.4) та «Уровни»(рис2.5).

Contour Map Prope	rties	
Опции Levels Ввод сетки файла D:\Documents and	 Settings\Admin\Paбoчий ст	on\22\222.grd 🚯 🚔
Заполн.контур Конт.заполн. Цвет масш.	Сглаживание Сглажив.контуров Колич.: Low	Области бланка Заполн.: None Линия: Invisible
Свойства ошибок лі	аний: ОК	Отмена Применить

Рисунок 2.4 – Діалогове вікно власті	ивостей контурної карт	<mark>и (вкладка</mark>
<mark>«Опции»</mark>))	

Дане вікно відображає інформацію про місцезнаходження сіткового фалу, що був взятий за основу, також пропонує (за необхідністю) згладжувати та заповняти потрібним кольором контури карти.

Наступна вкладка (рис 2.5) дає можливість користувачу привести контурну карту до необхідного вигляду - змінювати кількість рівнів та їхню частоту проведення, товщину ліній, заповнення кольором, підписувати лінії надавати їй штрихованого вигляду.

Contour Map	Propertie	is				×
Опции Leve	ls					
Level	Line	Fill	Label	Hach		Добавить
0 25			Yes No	No No	≡	Удалить
50 75			No No	No No		
100			No Yes	No No		
175			No No	NO No No		
200 225 250			No	NO No No		Загрузить
230			162	110		Сохранить
			OK	Отм	ена	Применить

У ході виконання практичної роботи, для побудови контурної карти України, рівні слід провести через 25м, а підписати і збільшити товщину ліній необхідно через 50м. Отриману карту необхідно зберегти у форматі ВМР та JPG. Приклад наведено на рис. 2.6:

Рисунок 2.6 - Карта ізоліній абсолютних відміток на території України

Наступним етапом виконання практичної роботи є створення отриманої поверхні та співставлення з нею. Нагадаємо, що тривимірна поверхня - це об'ємне тіньове подання сіткового файлу, де висота поверхні визначається значенням Z відповідного вузла сітки.

Отже, для створення даної поверхні необхідно відкрити у вікні програми Surfer раніше створену контурну карту або створити її знову. Після цього натискаємо «Карта/Обьемная карта (3D)» У вікні, що з'явиться, необхідно вибрати той файл з розширенням «grd», який був основою для створення контурної карти. Відразу після його відкриття з'явиться вікно властивостей каркасу, яке наведено нижче (рис. 2.7):

Wireframe Properties	×
Options Z Уровни Цветовая Схема Файліс сеткой: D:\Documents and Settings\Admin\Paбочий стол\ 👔	
График Линии из Констант Ваза Г Х Г Показать базу Г Х Показать вертикальные линни Возвышение: -14.49990326 Опорные Опорные	
 Показать верхнюю поверхность Показать нижнюю поверхность Граница None ОК Отмена Применит 	ь

Рисунок 2.7- Вікно властивостей каркасу об'ємної карти.

Вкладки даного вікна також дозволяють підібрати кольорову схему. Для співставлення даних карт необхідно на контурній карті натиснути правою кнопкою миші і вибрати «3D view». Вікно, що з'явиться (рис 2.8) дає можливість змінити просторове розміщення даного зображення, тобто нахилити його на потрібну кількість градусів.

Рисунок 2.8 Вікно зміни вигляду зображення.

Отриманий результат тривимірної візуалізації наведено на рис. 2.9

Рисунок 2.9- Трьохвимірна візуалізація отриманої поверхні.

Наступним етапом даної роботи стає реєстрація отриманого растрового зображення, тобто контурної карти (рис. 2.6) до території України, яка виконувалась:

<u>Приблизно</u>, тобто реєстрація зображення, була виконана шляхом візуального співставлення карти України, яка надана як вихідні дані з картою ізоліній. Для цього необхідно у програмі Word розмістити растрові зображення так, щоб контурна карта знаходилась перед картою України, що досягається шляхом натиснення правої кнопки миші, після наведення на карту, та вибором у рядку «Обтекание текстом» положення «Перед текстом» Результат приблизної реєстрації представлений на рис. 2.11.

Реєстрація градусної сітки, на даному етапі необхідно поєднати аналогічно вищевказаному прикладу створену контурну карту з градусною сіткою, яка створена у програмі MapInfo і наведена нижче (рис. 2.10):

Рисунок 2.10 – Градусна сітка території України

Дане поєднання є можливим, так як контурна карта створена не тільки по висотним відміткам, але і по координатам. Результат наведено на рис 2.12.

Рисунок 2.11- Відображення результату приблизної реєстрації контурної карти з картою України.

Рисунок 2.12- Ресстрація контурної карти та градусної сітки території України

Реєстрація засобами MapInfo є суттєво точнішою за попередні способи реєстрації контурної карти. Потрібно виконати реєстрацію контурної карти як формату BMP так і формату JPG. Для виконання даного завдання необхідно відкрити програму MapInfo. Натиснути «Файл/Открыть таблицу». вікна, 3 допомогою шо з'явиться слід відшукати файл «госграница.tab»(даний файл, як і ряд інших, наданий для виконання завдань у програмі MapInfo). Наступним файлом, який необхідно відкрити є зображення формату JPG, тому у вікні «Открыть таблицу» тип файлів змінюємо на «Растр», що вказано на рис 2.13.

Открыть таблицу	? 🔀
Папка: 📙 500 💌 🖛 🛍 (-™
1_ETAP DEFAULT	
Имя файла:	Открыть
Тип файлов: Pactp (*.bil;*.tif;*.grc;*.bmp;*.gif;*.tga;*.jpg;*.g 💌	Отмена
	Справка
Представление: Как получится 💌	

Рисунок 2.13- Вікно встановлення типу файлів для їх пошуку.

Після чого програма відразу запропонує зареєструвати зображення. Дане вікно матиме наступний вигляд:

Рисунок 2.14 – Вікно переходу до реєстрації карти

Натиснувши «Регистрировать», ми починаємо реєстрацію растрового зображення по трьом опорним точкам. Для цього необхідно у вікні реєстрації (рис.2.15) визначити координати першої з трьох опорних точок.

Рисунок 2.15- Вікно реєстрації зображення.

Поставивши точку у відповідному місці, ми викликаємо наступне вікно у яке слід замість нулів внести відповідні координати X та Y (рис. 2.16):

Добавить контрольную точку 🛛 🔀
Введите новую информацию о контрольной точке
<u>Т</u> очка: Точка 1
Х на <u>К</u> арте: 24,0 deg
Ү на К <u>а</u> рте: 52.0 deg
Х на дастре: 71
Ү <u>н</u> а растре: 22
ОК Отмена Справка

Рисунок 2.16-Приклад внесення інформації (координат) створюваної точки.

Аналогічно додаються дві наступні опорні точки. Після чого ми отримуємо зображення наступного вигляду (рис. 2.17):

Далі необхідно, натиснувши правою кнопкою миші на зображенні, зайти у вікно «Управление слоями» вибрати «госграница»→ «Оформление» і поставити відмітку напроти «Единообразно», що надасть змогу вибрати колір для карти (рис. 2.18):

госграница - Оформление 🛛 🔀
Оформление
🔽 Единообразно
Масштабный эффект
🔲 Показывать в пределах:
Минимум: km
Максимум: km
 Показ направлений линий Показ узлов Показ центроидов
ОК Отмена Справка

Рисунок 2.18- Оформлення карти.

На даному етапі робоче вікно набуде наступного вигляду (рис. 2.19):

Рисунок 2.19 – Карта України з наданим кольором.

Для завершення побудови карти ізоліній України необхідно виконати команду «Таблица/Растр/Подстройка изображения». У вікні, що з'явиться слід поставити відмітку поряд з «Прозрачный», що активує «Подбор цвета», після чого необхідно буде вказати на растровому зображенні у даному вікні прозорий колір, що має наступний вигляд (рис 2.20):

Рисунок 2.20 – Налаштування зображення.

Натиснувши на «Ок» та перемістивши у вікні «Управление слоями» контурну карту зверху шару «госграница». Ми отримуємо необхідний результат, який представлено на рис 2.20. Аналогічно слід виконати реєстрацію зображення з розширенням ВМР, приклад результату наведено на рис. 2.21.

Контрольні питання

- 1. Надати стислу характеристику програми Surfer.
- 2. Надати стислу характеристику програмі MapInfo.
- 3. Що визначають просторові характеристики?
- 4. Що визначають тимчасові характеристики?
- 5. Що визначають тематичні характеристики?
- 6. В яких випадках використовуються растрові моделі?
- 7. Що таке поверхня?
- 8. Що таке цифрова модель?
- 9. Технологія побудови цифрових моделей.
- 10. Надати визначення растровому зображенню.

11.Що таке тривимірна візуалізація?

2.5 Висновок

Під час виконання практичної роботи було проведено ознайомлення з програмами Surfer та MapInfo Professional 6.0, створено, з допомогою програми Surfer, контуру карту (у форматах BMP та JPG) та її тривимірне зображення. Реєстрація даної карти у ході роботи виконувалась за трьома методами. Перші два які поступаються у точності останньому методу. За яким було отримано під час реєстрації 2-го зображення. При реєстрації карти у форматі JPG- «брудне» зображення, а при форматі BMP- «чисте», що свідчить про втрати при стисненні, які відбуваються під час збереження графічної інформації у форматі JPG.

Таким чином ми сформували вміння та навички створення сіткових карт та реєстрації растрового зображення з можливістю прив'язки до MapInfo Professional 6.0.

Рисунок 2.20 - Карта України в ізолініях (JPEG) (точна реєстрація двох растрів)

Рисунок 2.21 – Карта України в ізолініях (ВМР)

ПРАКТИЧНА РОБОТА №3

3.1 «ПОБУДОВА ТЕМАТИЧНИХ КАРТ»

Крім оглядових загальногеографічних і топографічних карт у практиці географічного аналізу і подання даних широко використовуються тематичні карти, створені на основі аналізу атрибутивних даних, пов'язаних з тим чи іншим набором просторових об'єктів (наприклад, кількість населення в містах або адміністративних одиницях). Тематичні карти і картодіаграми використовуються для візуального аналізу просторово-розподіленої інформації, у зв'язку з цим сприйняття й аналіз таких карт людиною значною мірою залежать від методики їхньої побудови і візуальних характеристик.

Тому мета даної роботи полягає у створенні з допомогою програми MapInfo таблиці вихідних даних для побудови тематичних карт, що виражені у числових значеннях, а також у створеннях тематичних карт України (серед міст) за такою тематикою як абсолютна висота, чисельність населення, сумарна забрудненість навколишнього середовища, екологічна оцінка стану повітря та грунтів міст України.

3.2 Загальна інформація про тематичні карти

За змістом карти розподіляються на <u>загальногеографічні та</u> <u>тематичні.</u>

<u>Тематичними</u> називаються карти, основний зміст яких визначається конкретним даними, що відображаються, спеціально присвячені якомунебудь елементу або явищу, наприклад, населеним пунктам, клімату, грунтам, транспорту, подіям історії і тому подібне. Вони підрозділяються на карти природних явищ (физико-географічні) і карти суспільних явищ (соціально-економічні), які далі діляться на групи карт вужчої області картографування, до кожної з яких вже відноситься ряд карт конкретної тематики.

Наприклад, до групи геологічних карт відносяться стратиграфічні, тектонічні, гидрогеологічні, металевогеничні, інженерно-геологічні та інші карти; до групи ботанічних карт відносяться геоботанічні, флористчні карти лісів та інші.

У ряді випадків ці карти відносяться одночасно до двох різних областей картографування, наприклад, агрохімічні карти можуть бути віднесені до грунтових і до геохімічних карт, а сейсмічні - до геологічних і до геофизичних карт. Таке "подвійне підпорядкування" також зустрічається на більш високому рівні.

Наприклад, вся група медико-географических карт (нозогеографічного, медико-географичного прогнозування та ін.) може бути віднесене і до карт природних явищ, і до карт суспільних явищ.

Тематичні карти діляться також і по ширині обхвату теми - на загальні, такі, що відображають відносно ширшу тему, і приватні, або галузеві,

присвячені вужчій темі. Ступінь широти теми може визначатися на різних рівнях, наприклад, карти промисловості по відношенню до загальноекономічних є галузевими, а по відношенню до карт текстильної промисловості - загальними.

Побудова тематичних карт і картодіаграм i3 використанням просторової основи у вигляді точкових, лінійних, полігональних об'єктів і пов'язаних з ними записів з табличних баз даних є однією з найбільш: поширених функцій ГІС. При побудові картодіаграми пов'язана з об'єктом інформація візуалізується у вигляді картографічних знаків, що відбивають якісні або кількісну характеристику кожного об'єкта. Процедура побудови тематичної карти або картодіаграми звичайно реалізована у вигляді спеціального програмного модуля, виклик якого здійснюється за допомогою спеціального пункту меню. У більшості програмних продуктів ГЇС реалізована побудова декількох типів карт за тематичними шаблонами. Користувач має можливість вибрати тип створюваної карти та вибрати з атрибутивної бази дані характеристики, за якими буде будуватися карта, вибрати стиль оформлення карти (колір, тип символу та ін.).

<u>Легенда</u> є обов'язковим елементом карти, у якій подаються всі текстові і числові пояснення до графічного оформлення об'єктів на карті. У різних програмних ГІС - пакетах підходи до створення й оформлення легенд можуть бути різними: легенда автоматично створюється при завантаженні кожного тематичного шару, постійно відображається на екрані і модифікується при редагуванні зовнішнього вигляду просторових об'єктів (ArcGIS); або легенда відображається в спеціальному вікні в процесі створення відповідної тематичної карти (Mapinfo). Шаблони тематичних карт і картодіаграм автоматично генерують свою легенду зі своєю системою пояснювальних умовних знаків і підписів. Користувач має можливість модифікувати умовні знаки і підписи їх; зміни одночасно відображаються на карті і легенди. Так само користувач має можливість змінювати розмір і форму вікна легенди, створювати заголовки вікна легенди. Легенди растрових карт генеруються в спеціальній області екрана при використанні того чи іншого методу візуалізації.

3.3 Області застосування тематичних карт.

Карти застосовуються в науках про Землю для вирішення найрізноманітніших завдань. Зараз важко назвати яке-небудь дослідження в географії, геології, планетології, яке обходилося б без карт. Тому перерахувати всі напрями використання карт означало б дати повний перелік дослідницьких завдань вирішуваних в науках про Землю. Втім, такий перелік ніколи не буде повним.

<u>Геологічні карти.</u> Це обширна група, куди входять карти тектонічні, структурні, стратиграфічні, метологічні четвертинних відкладень, гідрологічні, корисних копалин, сейсмічні, неотектонічні, охорона геологічного середовища та ін., вони використовуються для пізнання глобальних, регіональних і локальних особливостей будови земної кори, процесів, що відбуваються в ній, пошуку корисних копалин і так далі.

Останніми роками з'явилася тенденція сумісного використання геологічних карт, аерокосмічних знімків, космофотогеологічних карт для пізнання глобальних геологічних систем, особливо літосфери і рифтових зон, а також для пошуку корисних копалин, оцінки сучасних геологічних процесів і небезпечних явищ.

<u>Геофізичні карти.</u> Карти магнітного, гравітаційного, сейсмічного, електричного, теплового та інших фізичних полів Землі використовуються для вивчення геодинамічних явищ і процесів, що протікають в надрах Землі та її ядрі, для пошуків і розвідки корисних копалини. Користуючись сейсмічними картами визначають розташування якісних і кількісних характеристик землетрусів, а також супутні явища.

<u>Карти рельсфу</u>. Гіпсометричні, геоморфологічні, палеогеоморфологичні карти використовують для вивчення морфології, генезису, віку і динаміки рельєфу суші і морського дна.

По картах вирішують наступні завдання:

1. Вивчення вираженості тектонічних, неотектонічних структур різного рангу і геофизичних аномалій в рельєфі, морфоструктурний аналіз рельєфу;

2. Вивчення екзогенних рельефоутворюючих чинників, ерозійноакумулятивних, дефляційних, карстових, креагенних та інших процесів;

3. Прогноз корисних копалини;

4. Інженерна - геоморфологічна оцінка рельєфу для забезпечення різних видів будівництва і освоєння території;

5. Вивчення рельєфу, як головного компоненту навколишнього середовища, його динаміки і зв'язків з іншими компонентами для планування і проведення природоохоронних заходів;

6. Створення цифрових моделей рельєфу, як основи банків тематичної інформації.

По картах рельєфу складається безліч похідних морфометричних карт: глибини і густини розчленовування, яружності, озерності, закарстованності території, крутизни, довжини, експозиції і освітленості схилів, кривизни і асиметрії різного порядку, залишкового рельєфу, подовжніх профілів річкових долин і їх деформацій.

<u>Кліматичні карти</u> використовуються, перш за все, для аналізу і прогнозу клімату територій і його елементів по місяцях, сезонах, роках, кліматичних періодах, епохах.

За кліматичними картами отримують картолітрічні і математикостатичні характеристики кліматоутворюючих факторів, термічного режиму, зволоження, вітрового режиму, атмосферних явищ.

Одна з головних сфер практичного застосування - оцінні дослідження:

a) умов життя населення, дії клімату на здоров'я людей і можливостей адаптації до несприятливих кліматичних чинників;

б) агрокліматичних умов і впливу коливань клімату на врожайність сільськогосподарських культур;

в) умов освоєння території для цивільного, промислового та інших видів будівництва;

г) рекреаційних умов місцевості.

<u>Гідрологічні карти</u> застосовуються для вивчення розподілу режиму, складу і властивостей поверхневих вод суші, водного балансу і ресурсів територій. Кількісна оцінка параметрів річкової і озерної мережі структури річкових басейнів виконується за допомогою добре розроблених прийомів гідрологічної картометрії і морфометрії, топологічний аналіз гідрологічної мережі здійснюється методами математико-картографичного моделювання.

У числі нових напрямів використання гідрологічних карт слід зазначити вивчення малих річок і малих водозборів, динаміки водних потоків і водосховищ.

Практичні народно - господарські потреби ведуть до розробки методики застосування карт для оцінки водних ресурсів, прогнозу небезпечних гідрологічних явищ, дослідження руслового режиму річок, вивчення впливу стоку на інтенсивність ерозійних процесів.

<u>Океанологічні карти.</u> Використання тематичних карт для вивчення світового океану - одна з найактуальніших сфер застосування картографічного методу дослідження.

Круг наукових і практичних завдань, що вирішуються з широким залученням карт, охоплює:

1) вивчення стану і динаміки природи океану: структур і рельєфу дна, розмірів акваторій і їх частин, об'ємів водних мас і розчинених речовин, геофизичних і геохімічних полів, клімату, біогеографія та ін.;

2) аналіз взаємодії океану з літосферою, атмосферою і біосферою, процесів массо- і енергообміну між ними;

3) освоєння мінеральних і біологічних ресурсів морів, перш за все, в межах шельфу, абезпечення рибного промислу;

4) охорону середовища океану, особливо найуразливіших прибережних зон і естуарієв, моніторинг різних видів забруднення.

Специфіка досліджень океанічних геосистем пов'язана з вивченням просторового розподілу всіх параметрів і процесів не тільки по горизонтах, але і по вертикалі, углиб, і з великою мінливістю цих параметрів в часі. Тому активно розробляються тривимірні картографічні моделі (блок діаграми і метахронні діаграми), а також прийоми зіставлення карт різних рівнів.

<u>Карти трунтів.</u> Основні напрями практичного застосування карт пов'язані з кадастровим обліком ґрунтових ресурсів, економічною оцінкою ґрунтів, розробкою агрономічних заходів і меліорацією, боротьбою з ґрунтовою ерозією. Карти ґрунтів безпосередньо використовуються на всіх етапах сільськогосподарського освоєння територій.

Широко практикується вивчення ґрунтових карт сумісно з іншими картами природи, населення і господарства.

Для практичних і дослідницьких цілей дуже важливі приватні ґрунтові карти, що характеризують окремі властивості ґрунтів: кислотність, солонцюватість, засолення і тому подібне, а також прикладні карти.

<u>Карти рослинності.</u> Існує 5 головних напрямів використання карт рослинності:

1. Інвентаризація і оцінка рослинних ресурсів.

2. Виявлення зв'язків рослинності з найголовнішими чинниками навколишнього середовища, що визначають структуру і динаміку рослинного покриву.

3. Аналіз можливостей сільськогосподарського освоєння території, умов життя населення, рекреаційного потенціалу.

4. Контроль за станом і динамікою рослинного покриву, ступенем її порушенності; розробка заходв з охорони рослинного світу і всього навколишнього середовища.

5. Індикація геологічних структур, корисних копалини, четвертинних відкладень і грунтів, гідрогеологічних і мерзлотних умов, корисних копалин і геохімічних ареалів.

<u>Зоогеографічні карти</u> застосовуються для інвентаризації, вивчення розміщення, міграції тварин, їх зв'язків з місцем існування, для розробки заходів з охорони і відтворенню тваринного світу. У практичному плані має значення виявлення ареалів і картометрічної оцінки ресурсів промислових тварин, визначення умов промислу.

<u>Ландшафтні карти.</u> Ландшафтним картам, так само як і картам рослинного покриву, належить провідна роль в комплексних дослідженнях природи і взаємодії людини з навколишнім середовищем.

<u>Соціально-економічні карти.</u> До цієї обширної групи входять карти економіки населення, і господарства, науки, освіти i культури, обслуговування суспільства. охорони здоров'я, історії розвитку i Збільшується питома кількість всіх карт, що синтезують природну і соціально-економічну тематику, що відображає підстильну взаємодію суспільства з навколишнім середовищем. Це карти економічної оцінки природних ресурсів, агрокліматичні, інженерно-географічні, оцінки умов життя і відпочинку населення і так далі.

Соціально-економічні карти використовуються в науках про Землю і при розробці проектів освоєння ресурсів Світового океану, для економічної оцінки ресурсів, планування заходів з їх охорони і відтворенню, розвитку і розміщенню відтворення, видобутку корисних копалин на шельфі і так далі також соціально-економічні карти притягуються для реалізації крупних науково-дослідних програм і проектів.

Планування і проведення природоохоронних заходів вимагає не тільки наявність об'єктивної інформації про екологічну обстановку досліджуваної території, але і її уявлення в наочному і зрозумілому споживачеві вигляді.

Сьогодні картографічний метод пізнання стає одним з найважливіших методів вивчення стану біосфери і її окремих компонентів. Його застосування сприяє раціональнішому плануванню подальших екологічних досліджень. Тому планування природоохоронною вивчення i i природовикористацької діяльності без відповідного картографічного забезпечення нераціонально і скрутно.

Екологічне картографування розробляє методи і технології об'єктивного, інформативного і наочного відображення результатів взаємодій в системі "чоловік - природа". Цілями цієї наукової дисципліни є узагальнення всієї екологічної інформації, що цікавить споживача, її територіальна прив'язка і уявлення в найбільш зручною для аналізу і порівняння формі.

Основною продукцією екологічного картографування є екологічні карти, структура, що відображають гостроту екологічних проблем в межах конкретних територіальних одиниць.

Призначення цих карт полягає в сприянні вирішення екологічних проблем, що сформувалися на території, яка картографувалася, і запобіганню появі нових. Такі карти використовуються фахівцями екологічних комітетів, санітарно-епідеміологічного нагляду, природоохоронних науково-дослідних організацій як науково-довідкова допомога при ухваленні конкретних рішень по поліпшенню якості навколишнього середовища.

3.4 Хід роботи

1.Для побудови тематичних карт території України слід створити таблицю вихідних даних, що вміщуватиме такі характеристики як: назва міста, довгота, широта, абсолютна висота, населення, сумарна забрудненість навколишнього середовища, екологічна оцінка стану повітря та грунтів, тобто 7 колонок по 300 значень:

1	🚝 MapInfo Professional - [_3 Список]									
	🖳 Файл Правка Программы Объекты Запрос Таблица Настройки Окно Список Справка									
	Назва	довгота	широта	абсвис	населення	сумарна забрудненість	екологічна оцінка			
	Одеса	30,72	46,45	52	1 014 852	5	2			
	Очаків	31,54	46,61	30	14 632	5	2			
	Гола Пристань	32,53	46,52	15	14 870	5	2			
	Скадовськ	32,91	46,11	7	22 287	5	2			
	Красноперекопськ	33,80	45,95	15	29 830	5	2			
	Євпаторія	33,36	45,19	8	106 877	4	2			
	Севастополь	33,52	44,59	150	343 156	3	1			
	Алупка	34,10	44,43	700	8 520	2	1			
	Ялта	34,17	44,50	730	78 115	2	2			
	Алушта	34,41	44,67	530	28 418	2	1			
	Феодосія	33,77	45,03	295	70 043	5	2			
	Керч	36,46	45,36	150	145 319	5	3			
	Генічеськ	34,80	46,17	14	20 487	5	2			
	Приморськ	36,36	46,73	40	12 183	3	1			

Рисунок 3.1 таблиця вихідних даних для побудови тематичних карт

Перші чотири колонки – взяті з табл. 1.1 вихідні дані; відомості про чисельність населення міст України взяті з «Вікіпедії»; останні дві колонки заповнюються відповідно до карти сумарної забрудненості природного середовища та карти екологічної ситуації в Україні. Слід зазначити, що для заповнення останніх двох колонок потрібно виконати прив'язку даних карт до території України, тобто слід відкрити в Mapinfo «госграница.tab», «города.tab» та растрове зображення, що в даному випадку є картою «екологічної ситуації та стану питних вод в Україні» Натиснувши на меню «Регистрировать» (рис 3.2):

Рисунок 3.2 – Вікно початку реєстрації растрового зображення.

Після чого по трьом точкам(координатам міст) виконуємо реєстрацію даної карти. Зайшовши у меню «управление слоями» розташовуємо дані шари у такому порядку (рис 3.3):

Косметический слой города Карта_загрязнения_водоем госграница	1111 1111 1111		Отмена
орода (арта_загрязнения_водоем госграница	2 2 2 3 7 3 7 3 7 3 7 5 7 5 7 7 5 7 7 7 7 7 7	Ě	
			Оформление
			Подписи
			Тематика
Слой — П	ереместить	,	Геолинк

Рисунок 3.3 – Вікно «управления слоями», порядок розміщення шарів

В результаті отримаємо (рис. 3.4):

Рисунок 3.4 - Завершений результат ресстрації растрового зображення.

Також аналогічне виконання прив'язки другої карти, як і даної значно спростить пошук приналежності даного міста до відповідного значення екологічної оцінки чи ступеня забруднення. Що в кінцевому результаті дозволить завершити створення таблиці вихідних даних для побудови тематичної карти, яку слід зберегти під відповідною назвою для подальшого використання.

2. Для створення тематичних карт, на першому етапі, слід «создать точечные обьекты».

Отже, відкривши таблицю вихідних даних (рис. 3.1) і натиснувши «Таблица», а потім «создать точечные обьекты», ми викликаємо дане меню (рис. 3.5):

оздать точечные объекты			
Создать точки в таблице: 3		-	OK
пометить символом:			Отмена
Извлечь координаты X из колонки:	довгота	-	Проекция
Извлечь координаты Ү из колонки:	широта	-	Справка
Координату X умножить на:	1		2
Координату Ү умножить на:	1	1-1	

Рисунок 3.5 – Вікно створення точкових об'єктів.

Що після натискання на «Ок» створить «точечные обьекты» у вибраній нами таблиці. Натиснувши на інструментальній панелі на значок «Новая карта» ми отримаємо зображення (рис. 3.6):

Рисунок 3.6 – Приклад завершеного створення точкових об'єктів (міст)

Для перевірки правильності побудови слід відкрити разом із створеною точковою картою шар «госграница» та «города». Співпадіння точок з центрами населених пунктів буде вказувати на правильність виконаної роботи (рис 3.7). Фрагмент даного поєднання вказано на зображенні розташованому нижче:

Рисунок 3.7 – Фрагмент співставлення створених точкових об'єктів з територією міст України

3. Для колонок «Абсолютна висота», «Населення», «Сумарна забрудненість» та «Екологічна оцінка» слід створити тематичні карти для міст України.

Розпочинати побудову слід відкривши створений раніше точковий об'єкт та натиснувши на «Карта», потім – «создать тематическую карту». Таким чином з'явиться вікно (рис 3.8):

Имя Шаблона		Зэгоповок
ны Столбчатая картодиаг	рамма, стандартная рамма, черно-белая	Подзаголовок
ая		 Переменная Переменная
1		
5 75		

Рисунок 3.8- Вікно визначення типу створюваної топографічної карти

Дане вікно місти у собі перший крок до створення тематичної карти, на якому ми вибираємо тип майбутньої тематичної карти.

Наступний крок (рис 3.9) допоможе вибрати поле для якого буде створюватись діаграма.

Толя	
Поля из таблицы:	Поля для диаграммы:
широта абсвис забруднення Поле7 Объединение Выражение	Добавить >> << Удалить
	Вверх Вниз

Рисунок 3.9 – Вікно вибору «поля» для створюваної діаграми.

Останній крок є завершальним (рис.3.10), він допомагає створити легенду до діаграми та надати їй потрібний вигляд.

Столбцы _3	Варианты	
	Стили	
населення	Легенда	
	Шаблон	
Порядок в легенде	Сохранить как.	
	Заменить	

Рисунок 3.10 – Вікно вибору стиля та легенди тематичної карти.

Таким чином для кожного поля був підібраний та створений власний тип діаграми: Для колонки «Абсолютна вистота» - «поверхність», «населення» - «стовбчаста», а для «Сумарна забрудненість» та «Екологічна оцінка» - «колова».

Важливим при створенні тематичної карти типу «поверхность» є вибір таблиці «с границей отсечения» (рис.3.11). На що слід звернути увагу при побудові карт даного типу.

T a6 at a	× 2				1000
таолис	a. _3				
Поле:	довгота				-
🗌 Пре	пустить нул	и и пус	тые значе	ения	
пасі	лоика повер	эхности			
Выбе	рите таблиц	цу с гра	ницей отс	ечения:	
Табл	ица: госгра	аница			•
Имя	райла повеј	рхности	:		
D:\D	OCUMENTS	AND S	ETTINGS	ADMIN'	\PA
1					

Рисунок 3.11- Створення тематичної карти.

Особливої уваги при побудові тематичних карт потребує створення легенди (за необхідністю), після створення тематичної кари. Яке відбувається у три етапи. Для цього необхідно, натиснути на «Карта», потім «Создать легенду». На першому етапі необхідно вибрати шар або декілька шарів із відкритих у вікні Маріпбо для якого буде створена легенда.

Создать легенду - Шаг 1 из 3		×
Для карты: _11,госграница Карта		
Слои:	Раздел легенды: _11 (Столбцы - населення)	
госграница	Добавить >> << Удалить	
	Вверх Вниз	
Справка	Отмена Далее > Завершит	ь

Рисунок 3.12 – Вікно створення легенди крок 1 із 3-х.

Натиснувши кнопку «Ок» Відкривається наступне вікно (рис.3.13), що дає можливість змінювати властивості легенди:

Создать леге	нду - Шаг 2	из З		×	
Для карты: _11,госпраница Карта					
Свойства ле	Свойства легенды				
Заголовок окна: <Стандартный>					
 Линейки прокрутки 			🖲 Книжная 🔿	Альбомная	
Стандартное оформление раздела легенды					
Шаблон заголовка: Шаблон стиля подписи:			4: 0 I		
# Легенда					
Шаблон подз	аголовка:	Aa	🔲 Стиль р	амки	
# :	= имя слоя		% = подпись си	мвола	
Справка	Отмена	< Назад	Дальше >	Завершить	

Рисунок 3.13- Вікно створення легенди крок 2 із 3-х.

Останній крок дозволяє змінити атрибути для одного або декількох шарів легенди:

Создать легенду - Шаг 3 из 3			
Создать летенду - шат 5 из 5 Выберите и установите атрибуты для ка: Разделы легенды: 11 госграница _11 (Столбцы - населення)	заждого раздела легенды Заголовок: 		
	 Уникальные стили карты Уникальные значения для колонки Подписи из: 		
Справка	Сохранить настройки раздела в метаданных Отмена < Назад Завершить		

Рисунок 3.14- Вікно створення легенди крок 3 із 3-х.

Після завершення ми отримуємо легенду із необхідними параметрами. Нижче наведені створені тематичні карти відповідно до завдання практичної роботи (рис.3.15-3.18).

Контрольні питання.

- 1. Надати визначення тематичним картам.
- 2. Що таке легенда?
- 3. Надати опис геологічним картам.
- 4. Надати опис геофізичним картам.
- 5. Надати опис картам рельсфу.
- 6. Надати опис кліматичним картам.
- 7. Надати опис гідрологічним картам.
- 8. Надати опис океанологічним картам.
- 9. Надати опис картам грунтів.
- 10.Надати опис картам рослинності.
- 11. Надати опис зоогеографічним картам.
- 12.Надати опис ландшафтним картам.
- 13. Надати опис соціально-економічним картам.

3.5 Висновок.

Під час виконання практичної роботи було освоєно теоретичну частину побудови тематичних карт, та засвоєно дані знання практично, в результаті було створено таблицю вихідних даних, що містить 7 полів для чотирьох із яких було побудовано тематичні карти, з відповідним типом. Отриманні знання дозволять будувати карти, основний зміст яких визначається конкретною темою, яка спеціально присвячена якому-небудь елементу або явищу, що значно прискорить розгляд тих чи інших важливих проблем, які можна буде розглянути як тематичні карти.

Рисунок 3.15 – Екологічна оцінка стану повітря та грунтів міст України

Рисунок 3.16- Сумарна забрудненість міст України

Рисунок 3.17 - Карта абсолютних відміток України.

Рисунок -3.18 Карта чисельності населення міст України.

ПРАКТИЧНА РОБОТА №4

4.1 «ПРИВ'ЯЗКА РАСТРОВОГО ЗОБРАЖЕННЯ ТА ЙОГО ВЕКТОРИЗАЦІЯ ПО ОКРЕМИМ ШАРАМ»

Дана робота присвячена процесам автоматизації обробки растрових зображень з метою перетворення їх у векторний формат. Наведено короткий опис завдання векторизації. Також у ході роботи описано алгоритм виконання даної роботи з використанням програми MapInfo Professional 6.0, що допоможе освоїти навички реєстрації та векторизації растрових зображень по окремим шарам.

У даній практичній роботі за вихідні дані растрового зображення були взяті топографічні карти Генерального штабу УССР (Одеської обл.) станом на 1981р. з масштабом 1:50000 (в 1см 500м): Щербанка, Іванівка, Новоукраїнка та Роздільна. Пласти для векторизації розподілені таким чином:

- ізолінії;

- дороги;

- водойми;

- земельні ділянки;

- зелені насадження.

Також для прив'язки даних растрів у програмі MapInfo 6.0, як файл вихідних даних, надається уже створена для роботи у даній програмі карта Одеської обл. – («Од обл. с врезкой» - що містить 5 файлів з розширенням: ТАВ, DAT, ID, IND та MAP)

4.2 Автоматизація обробки зображень

Топографічні карти — докладні, єдині за змістом, оформленням і математичною основою географічні карти, на яких зображені природні і соціально-економічні об'єкти місцевості з властивими їм якісними і кількісними характеристиками і особливостями розміщення. Карти Генерального штабу СССР є найбільш достовірним і якісним джерелом картографічної інформації для території колишнього СССР, тому для векторизації території України дані карти є надійною основою, яку для використання слід лише доповнити змінами, що відбулися з моменту складання карти.

В наш час у світі інформаційних технологій з кожним днем з'являється все більша кількість завдань, рішення яких переноситься на комп'ютер. Рішення будь-яких задач на комп'ютері поки що представляє собою великий комплекс обчислень за заданими алгоритмами. Тому розглянутий у даній роботі алгоритм векторизації, видається корисним та цікавим для завдань, пов'язаних з автоматизацією обробки зображень. Областю застосування алгоритму можуть бути пакети графічних редакторів (векторно-растрові) і різні геоінформаційні системи (ГІС). Особливо актуальний алгоритм векторизації саме для ГІС, так як процес складання і формування цифрових карт є дуже трудомістким і, як правило, цей процес ручного (експертного) походження.

У ГІС рішення задачі векторизації здійснюється з допомогою спеціальних програм. Їх призначення - це обробка растрової карти місцевості з метою отримання корисної інформації про об'єкти на карті і збереження цієї інформації в спеціальних векторних форматах даних на будь-якому виді носія або в базах даних.

4.3 Основні етапи векторизації

Термін «векторизація» передбачає процес перетворення растрового виду інформації у векторний формат, який сприймають програми автоматизованого проектування. Природно, векторний формат більш точно передає графічну інформацію і більш компактний, ніж растровий. Крім того, будь-яке редагування растрових файлів вкрай важко і потребує великих витрат комп'ютерних ресурсів і часу оператора.

У світі до цього моменту поки не придумали єдиного алгоритму векторизації растрових зображень. Це пояснюється тим, що існує багато умов як на вхідні формати і види растрових зображень, що використовуються в різних областях життєдіяльності людини, так і на формати вихідних векторних даних. У кожної відомої ГІС є свій набір стандартів і сфер діяльності, для яких і створюються векторизатори.

Можна виділити наступні етапи перетворення растра в його векторне подання:

- завантаження растру (дискові або інші операції);

- настройка зображення;

- виділення контурів і «крайніх» точок областей;

- групування точок однієї області, формування багатокутника (вектора);

- коригування;

- формування векторного формату.

Деякі типи зображень вимагають попереднього налагодження. Налагодження - це процес обробки вихідного растрового зображення з метою приведення його до такого вигляду, який передбачає конкретний алгоритм векторизації. Розрізняють такі види установок:

- ручне налаштування в растровому графічному редакторі (експертна установка);

- автоматичне налаштування із застосуванням графічних фільтрів і методів обробки.

- комбіноване налаштування.

Ручне налаштування проводиться експертом, знайомим з обмеженнями векторизації. Експерт вручну редагує растр, наприклад, він виділяє залишившиїся після сканування нечіткі лінії і промальовує їх більш чітко. Він також може змінювати співвідношення контрасту і яскравості

зображення, видаляти «шум».

Автоматичне налаштування - визначена заздалегідь послідовність графічних фільтрів, що застосовуються до вашого зображення. В результаті такої обробки передбачається отримати потрібне растрове зображення.

Комбіноване налаштування - результат синтезу двох попередніх налаштувань залежно від специфіки проблеми.

Виділення контурів областей та крайніх точок - наступний етап, необхідний для попереднього виділення точок які описують ці області. Але отриманий результат не дасть інформації про те, яка група точок описують задану область, адже замкнутих областей одного кольору на зображенні скільки завгодно Групування точок вирішує проблему може бути впорядкування і приналежності. Алгоритми, які дозволяють це робити, дуже різноманітні і в загальному випадку зводяться до наступних можливих рішень: обхід контуру; побудова опуклої оболонки; кластеризація. Метод обходу контуру є одним з найбільш популярних алгоритмів. Він простий у реалізації, досить швидкий і ефективний. В результаті обробки алгоритмом растру можуть бути отримані списки «крайніх точок, а також всіх інших точок контуру; в порядку направлення обходу контуру. Ці точки утворюють багатокутники, що описують області карти.

Коригування служить для видалення «зайвих» багатокутників. Слово «зайві» говорить про надмірність інформації. Зазвичай в таких завданнях є деякі обмеження на кількість областей, їх лінійні розміри і т.д. Для нас таким критерієм служать лінійні розміри областей.

Формування векторного формату - кінцевий етап, на якому вирішуються додаткові завдання. Сюди відносять знаходження різних статистичних характеристик як всього зображення, так і характеристик деяких областей. Отриману векторну та іншу додаткову інформацію заносять у певну структуру даних, яка зберігається на носіях і використовується в подальшому сторонніми додатками. Така структура визначена заздалегідь.

4.4 Хід роботи

1 На першому етапі виконання практичної роботи слід виконати прив'язку растрових зображень у програмі MapInfo 6.0, тобто карт Генерального штабу СССР масштабом 1: 50000 до Одеської області. Для цього необхідно уважно розглянути кожну з них та з допомогою графічного редактора обрізати кожну по контуру карти, при цьому записавши координати, що містяться на кожному із кутів карти для подальшого використання і переведення їх із хвилин у градуси, тобто хвилини потрібно перевести у десяті долі градусу. Наочно це має такий вигляд: Розглянемо верхній лівий кут однієї із топографічних карт до обробки (А) та після (Б) (рис 4.1):

Рисунок 4.1- Фрагменти топографічної карти.

Як видно із зображення (А) координати кута становлять 30°30' сх. д, 47° 00' пн. ш; При переводі хвилин у градуси (1°=60') ми отримаємо 30,50° сх. д. та 47,00° пн. ш. Перехід від хвилин (') до градусів (°) обов'язковий, так як у програмі MapInfo використовується градусна сітка.

2. Після виконаного редагування кожної з карт можна починати прив'язку топографічних карт до Одеської області.

Для цього необхідно відкрити у програмі MapInfo файл, що був наданий як один із вихідних даних для робіт з програмою, а саме Од обл._с врезкой. МАР (рис. 4.2):

Рисунок 4.2- Карта Одеської області.

Після чого починаємо реєстрацію растрових зображень:

«Файл» - «Открыть таблицу» у графі «Тип файлов» вибираємо «Растр» і знаходимо першу з відредагованих карт. Програма запропонує нам реєструвати зображення, що ми і вибираємо:

Рисунок 4.3 - Початок реєстрації растрового зображення

Пригадаємо, що реєстрацію слід виконувати за трьома точками, тобто координатами трьох із чотирьох кутів однієї карти.

Рисунок 4.4 – Нанесення контрольних точок на растрове зображення

Вказавши на растрі контрольну точку (один із кутів) ми вносимо у вікно що з'явиться її координати (Х - довгота; У - широта). В результаті після добавлення трьох контрольних точок. Завершуємо реєстрацію карти натиснувши на «Ок». Натиснувши правою клавішею один раз, вибираємо меню «управление слоями» у колонці «видимый», поряд із зареєстрованим зображенням буде стояти відмітка фіолетовим кольором:

Управление слоями	\mathbf{X}	Од_облс_врезкой - Оформл 🔀
	a or l	Оформление
Слой: 🛛 🕾 🖉 🦄 😒		📙 Единообразно
Косметический слой 🔽 🗖 🗖 🖉	Отмена	
L_36_37_Б_Ивановка 🛛 🔽 🗖 🗖		Масштабный эффект
	Оформление	🔽 Показывать в пределах:
	Подписи	Минимум: 0,000 km
	Тематика	максимум: 100 000 km
J		🔲 Показ направлений линий
Слой Переместить	I еолинк	🗌 Показ узлов
Добавить Удалить Вверх В	Справка	ОК Отмена Справка

Рисунок 4.5 – Вікно управління шарами та оформлення шару

Спочатку у вікні «управление слоями» потрібно вобрати необхідний шар, як показано на рис 4.5 (у даноми випадку це шар з назвою «Од_обл_с_врезкой») Потім натиснувши на «Оформление» відчиняється вікно з назвою робочого шару, прибираємо відмітку в полі «Показывать в пределах», а потім натискаємо на «Ок» відмітка у колонці «видимый» стане відображатися чорним кольором і реєстроване зображення, після натискання на «Ок» у меню «Управління слоями» з'явиться у вікні поверх карти Одеської області.

Аналогічно виконуємо реєстрацію ще трьох топографічних карт. І по завершенні отримуємо наступний результат (рис 4.6):

Рисунок 4.6 - Вигляд зареєстрованих топографічних карт

Сходження на межах приєднання карт частин будівель, доріг та інших об'єктів топографічних карт вказує на правильність виконання прив'язки растрів (топографічних карт) до території Одеської області. Обов'язковим є збереження робочого набору.

3 Наступний етап виконання практичної роботи полягає у векторизації, тобто у процесі цифрування растрового зображення на екрані комп'ютера. З поміж існуючих способів, у програмі MapInfo використовується ручна векторизація, при якій оператор обводить мишею на зображенні кожен об'єкт. Відповідно до поставленого завдання топографічні карти будуть розділені на 5 пластів, що вказувалося вище.

Розпочинати векторизацію слід відкривши створений раніше робочий набір. Після чого у меню «управление слоями» Поряд з пластом «Косметический слой» слід поставити відмітку у колонках «изменяемый» та «доступный». Що матиме такий вигляд (рис 4.7):

🚄 MapInfo Professional	-[Од_облс_врезкой,	.,L_36_37_Б_Ивановка	і Карта]	
🔁 Файл Правка Програм	мы Объекты Запрос Табли	ща Настройки Окно Ка	рта Справка	
			N (R) 🖉 🗔 🛉	QQ(® 1//
	Иправление слоями Слой: Косметический слой Од.облс.ерезкой L.36.37.Д.Раздельная L.36.37.Г.Новоукраинка L.36.37.Б.Ивановка L.36.37.Б.Ивановка		ОК Отмена Формление Подписи Тематика	
	Слой Добавить Удалить	Переместить Вверх Вниз	Геолинк Справка	

Рисунок 4.7 - Активація косметичного шару у вікні «управление слоями»

Натиснувши на «Ок», ми активуємо на інструментальній панелі роботу з «Пеналом»:

Наприклад, натиснувши на («багатокутник» () можно обвести будинки, земельні ділянки тощо, а натиснувши на («стиль області» () ми вибираємо штриховку та колір фігури, що створюватиметься, стиль її контурів з відповідним кольором, а також товщину ліній з відповідним прикладом до вибраних параметрів (рис 4.8):

Стиль региона		
Штрих		
Рисунок:		±
Цвет:		±
🔲 Цвет фона:		*
Граница		
Стиль:		±
Цвет:		±
-Толщина-		
О Пиксел	[±
• Точек	0,7	-
Образец —		
ОК	Отмена	Справка

Рисунок 4.8- Вікно «стиль региона»

Аналогічно, залежно від об'єкта, який нам слід обвести ми вибираємо інші фігури та змінюємо їх параметри.

Як приклад опишемо створення одного із необхідних шарів (ізолінії).

Для цього необхідно у «Пеналі» вибрати («ламану лінію» ()) та задати їй відповідний колір та товщину натиснувши на ?? і встановивши відповідний стиль і товщину ліній (рис 4.9):

Стиль линии 🔀
Стиль: Перекресток
Цвет: Образец
Толщина Пиксел Точек 0,2
ОК Отмена Справка

Рисунок 4.9 - Вікно «стиль линии»

Після чого звичний курсор 🗈 зміниться на указник 🖽, з допомогою якого ми будемо наводити ізолінії топографічної карти (рис. 4.10).

Рисунок 4.10- Приклад наведених ізоліній топографічної карти.

Зайшовши у меню «Управление слоями» і прибравши відмітку з карти, на якій обводимо ізолінії, ми залишимо, таким чином тільки косметичний шар, який матиме такий вигляд:

Рисунок 4.11- Косметичний шар створених ізоліній.

Після опрацювання ізоліній усіх карт чи перед завершенням роботи із програмою - слід зберегти косметику, що є обов'язковим, для подальшої роботи з даним пластом. Для цього слід зайти у меню «Карта» - «сохранить косметику» присвоївши створеному файлу відповідну назву. Шар ізоліній в кінцевому результаті матиме такий вигляд (рис 4.12) (для двох районів):

Рисунок 4.12 - Карта ізоліній частини території Одеської обл. (м.Роздільна, смт.Іванівка)

По завершенню векторизації, ізоліній слід підписати їх значення, відповідно до значень вказаних на топографічній карті. Для цього відкриваємо у одному вікні косметичний шар ізоліній та прив'язану карту:

Рисунок 4.13- Фрагмент топографічної карти зі значенням абсолютної висоти.

У даному випадку одна ізолінія має значення 120 м, яке нанесено на карті (рис 4.13). Для підпису даної ізолінії у косметичному шарі необхідно виділити її курсивом і на інструментальній панелі натиснути на «Новий список» (), після чого у вікні, що з'явиться необхідно вибрати таблицю з назвою, що відповідає назві косметичного шару ізоліній:

Новое окно Списка	×
Список Таблицы:	
Selection	ОК
косметизол	
	Отмена
	Справка

Рисунок 4.14 - Приклад знаходження сформованої при векторизації таблиці.

Натиснувши на «Ок» з'явиться таблиця, що матиме такий вигляд (рис 4.15):

Рисунок 4.15- Таблиця сформованих даних

Слід зазначити, що кількість записів у таблиці є рівною загальній кількості проведених ізоліній, чи їх частин.

Виділену ізолінію можна відшукати за чорною відміткою у квадраті, що знаходиться ліворуч від «ID» ізолінії (рис 4.16), знайшовши дану колонку, слід внести відповідну зміну, що матиме такий вигляд:

Рисунок 4.16 Приклад внесення змін у таблицю.

Згорнувши дане вікно, слід натиснути на «подпись» (i), що знаходиться на інструментальній панелі. І навівши її на потрібну ізолінію виділити її. Відразу з'явиться надпис який необхідно редагувати, навівши на нього курсор та клацнувши 2 рази мишею отримаємо нове вікно (рис 4.17):

🚄 MapInfo Pro	ofessional -	- [косметизол,L_36_37_А_Раздельная Карта]
🔁 Файл Правк	ка Програми	мы Объекты Запрос Таблица Настройки Окно Карта
	3) 🔏 🖻	
4	100	Too I wood the
0000	9	Стиль подписи 🛛 🔀
000	1215	Шрифт: Привязка Чказка Стиль: Чет Стиль: Линия Стрелка Угол поворота: 299,6 град Смещение 2 точек Текст: 120
10	12	ОК Отмена Справка

Рисунок 4.17- Вікно «стиль подписи»

Після редагування стилю отримуємо такий результат (рис. 4.18):

Рисунок 4.18 - Приклад створеного підпису ізолінії.
Після того як ми залишимо тільки косметичний шар, він матиме наступний вигляд (рис. 4.19):

Рисунок 4.19 - Приклад косметичний шару ізоліній зі вказаною висотою.

Також підписати ізолінії чи будь-який інший створений об'єкт можливо шляхом виділення його попередньо натиснувши «Подпись» ()). І два рази, вибравши курсив, натиснути мишею на нуль, який з'явиться за замовчуванням ми відкриємо «Стиль подписи» що допоможе відредагувати підпис. Аналогічно підписуємо необхідні ізолінії. Та зберігаємо зміни у таблиці та пласті ізоліній.

Використовуючи панель інструментів створюємо векторні шари, які задані в умовах та зберігаємо їх під відповідними назвами. Колір об'єктів задаємо відповідно кольору на топографічній карті. Після створення таких шарів як: ізолінії, дороги, водойми, земельні ділянки та зелені насадження. В результаті ми маємо отримати 5 файлів з розширенням ТАВ., кожний з яких відповідає певному шару і має певну назву.

Створені файли слід відкрити поетапно у одному робочому наборі.

У даному випадку топографічні карти після векторизації з допомогою програми MapInfo набудуть наступного вигляду (рис 4.20 та 4.21):

Рисунок 4.20 - Векторна карта території Одеської області (м. Роздільна, смт. Іванівка)

Рисунок 4.21 - Збільшений фрагмент створеної карти частини Одеської облаті

Контрольні питання

- 1. Що таке топографічні карті?
- 2. Що являє собою векторизація?
- 3. Надати визначення процесу налагодження.
- 4. Що таке ручне налаштування?
- 5. Що таке автоматичне налаштування?
- 6. Що таке комбіноване налаштування?
- 7. Що таке виділення контурів областей та крайніх точок?
- 8. Що таке формування векторного формату?

4.5 Висновок.

У ході виконання практичної роботи було зроблено прив'язку топографічних карт Генерального штабу УССР (Одеської обл.) станом на 1981р. з масштабом 1:50000 (в 1см 500м): Щербанка, Іванівка, Новоукраїнка та Роздільна, а також виконано оцифрування даних карт з допомогою програми MapInfo, тобто ручну векторизацію за такими шарами як ізолінії, дороги, водойми, земельні ділянки та зелені насадження. Результати роботи наведені графічно під час опису роботи.

РЕКОМЕНДОВАНА ЛІТЕРАТУРА

ЗБІРНИК МЕТОДИЧНИХ ВКАЗІВОК ДО ПРАКТИЧНИХ РОБІТ З ДИСЦИПЛІНИ «ДОСЛІДЖЕНЯ ВОДНИХ ЕКОСИСТЕМ МЕТОДАМИ ГІС»

Укладач: Селезньова Л.В.

Підп. до друку Умовн. друк. арк.

Формат 60×84/16 Наклад 50 Папір Зам. №

Надруковано з готового оригінал-макета

Одеський державний екологічний університет 65016, м. Одеса, вул. Львівська, 15

МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ ТА СПОРТУ

УКРАЇНИ

ОДЕСЬКИЙ ДЕРЖАВНИЙ ЕКОЛОГІЧНИЙ УНІВЕРСИТЕТ

ЗБІРНИК МЕТОДИЧНИХ ВКАЗІВОК

до практичних робіт з дисципліни «ДОСЛІДЖЕННЯ ВОДНИХ ЕКОСИСТЕМ МЕТОДАМИ ГІС»

"Затверджено"

на засіданні методичної комісії природоохоронного факультету Протокол № _____ від _____ 2015 р. Голова комісії ______ Чугай А.В.

"Затверджено"

на засіданні кафедри гідроекології і водних досліджень Протокол № ____ від ____ 2015 р. Зав. кафедри _____ Лобода Н.С.