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Abstract

General relations of the theory of classical moments and orthogonal polynomials are applied
to the construction of approximate expressions for the dynamic structure factor of statistical
systems. With the help of the Nevanlinna theorem the respective expressions which interpolate
the dynamic scattering function are constructed in terms of the static structure factor and a set
of moments which are considered to be given because of their connection with spectral line
shape parameters (integral intensitivity of scattering; shift, dispersion and asymmetry of spectral
line, etc.). The e�ciency of choice of respective interpolational expressions is proposed to be
controlled self-consistently with the help of appropriate Tchebyche�–Markov inequalities. The
correct limiting transitions to well-known results obtained within the memory function formalism
are demonstrated. The possible application of the given approach to studying critical dynamic
light scattering data, is demonstrated. c© 1999 Elsevier Science B.V. All rights reserved.

PACS: 05.20.-y; 61.20.-p; 61.20.lc
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1. Introduction

The detailed analysis of dynamic structure factors is one of the main interests of
statistical mechanical theories of condensed systems in particular because of its close
relation to the cross-section of external radiations scattering (neutrons, light). The
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development of a formalism for the description of the microscopic dynamic behavior of
di�erent statistical systems has a long history (see, for instance [1,2]) and comprises the
di�erent approximate methods mostly based on a phenomenological analysis (for ex-
ample, on the projection operator formalism). Nevertheless, in many cases, the theories
are formally even exact, because the introduced frequency and wavelength-dependent
quantities are expressed in terms of phenomenological parameters (like relaxation times)
the calculation of which is not self-consistently prescribed. This makes the general mi-
croscopic theory of dynamic structure factors incomplete. Therefore, an extension of
detailed analysis is required which may operate by alternative adjustable parameters and
which could thus provide a comparison between the di�erent alternative approaches and
respective scattering experiments. In such way we apply here the general statements
of the theory of moments from functional analysis for the semiphenomenological anal-
ysis of dynamic scattering functions. The class of probe functions (which include the
appropriate constants, extracted from the comparison of given function with the exper-
imental one) interpolating the dynamic scattering function is built on the basis of the
Nevanlinna theorem and rigorous relations from the theory of orthogonal polynomials
in terms of frequency moments. Limiting transitions to well-known results which were
obtained with the help of memory function modelling are performed.
As a practical application of the developed approach a description of the time be-

havior of the intermediate dynamic light scattering in real complex statistical systems
– ordered colloids – in terms of the spectral line shape parameters will be proposed.

2. The frequency moments analysis

The frequency moments Mj(k) of the dynamic structure factor S(k; !) are de�ned
as follows:

Mj =
∫ ∞

−∞
!jS(k; !) d!; j = 0; 1; 2; : : : : (1)

Knowing the normalized moments �j,

�j =
Mj
M0

; (2)

gives us the possibility to narrow the class of functions that includes the dynamic
structure factor. According to the theorem by Nevanlinna from functional analysis
[3–7] every nonnegative function I(k; !) that has the �rst 2n moments in common
with the function S(k; !) may be represented as

I (n)(k; !) =
M0�2n
�

�(n)(!)

[�n+1(k; !) +M2n+1(k)�n(k; !) + V (n)(!)�n(k; !)]2

+ · · ·+ [�(n)(!)]2�2n(k; !)
; (3)
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where

�n =

∣∣∣∣∣∣∣∣
1 �1 : : : �n
�1 �2 : : : �n+1

�n �n+1 : : : �2n

∣∣∣∣∣∣∣∣
; �n =

∣∣∣∣∣∣∣∣
1 �1 : : : �n
�1 �2 : : : �n+1
�n−1 �n : : : �2n−1
1 ! : : : !n

∣∣∣∣∣∣∣∣
; (4)

�0 = 1; and �(!) and V (!) are, respectively, the imaginary and real parts of the
boundary value q(!+ i0) of some function q(�)

q(�) = V (�) + i�(�) (5)

de�ned by

q(�) = �+
∫ ∞

−∞
[(t − �)−1 − t(t2 + 1)−1] ds=t (6)

Im(�)¿0; Im�¿ 0

with nondecreasing function s(t) that satis�es the condition∫ ∞

−∞

s(t)
1 + t2

dt ¡∞ : (7)

Standard relations from the classical problem of moments and formulas from the
Christo�el–Darboux theory of orthogonal polynomials [5] allow us to establish the
functions qn

qn(�) =
�n+1
�n−1

[
�2n+1 − 1

qn+1(�) + �

]
: (8)

Now, if one has determined the 2n moments within the limited given interval of fre-
quencies, it is possible to approximate the dynamic structure factor using (3). For sim-
plicity, theory allows us even to substitute the function q(�) with a constant ih(h¿ 0)
assuming q(�) to depend weakly on frequency in the considered interval. In practice,
this constant and the moments, which are included in the consideration can be de-
termined from coincidence of the experimental data for S(k; !) with the constructed
approximation in every particular case. Let us give now several particular examples of
extrapolational formula (3) for given numbers of moments. Assuming S(k; !) to be an
even function of ! (as well as of k), which is rigorously speaking only correct in the
case of classical systems like under our consideration), putting all odd moments �2n+1
equal to zero, and using the zero- and the second-moments sum rules for S(k; !)[1; 2]∫ ∞

−∞
S(k; !) d!= S(k) ; (9)

∫ ∞

−∞
!2S(k; !) d!= k2 ·

(
kBT
m

)
≡ !20 ; (10)



516 O.I. Gerasimov, P.P.J.M. Schram /Physica A 268 (1999) 513–524

where T and m are the temperature and particle mass, respectively (note, that second
moment sum is an extension of particle conservation) and S(k) is a static structure
factor, from (3) for n= 0; 1; 2; 3 we obtain, respectively,

I (0)(k; !) =
S(k)
� · �(0)

!2 + [�(0)]2
; (11)

I (1)(k; !) =
S(k)
� · !̃20�1(k)

�21(k)(!2 − !̃20)2 + !2
; (12)

�1(k) =
!̃20
�(1)

; !̃20 = k
2
(
kBT
m

)
1
S(k)

I (2)(k; !) =
S(k)
�

�2(k)
[�2(k)!(!2 − !21l)]2 + (!2 − !̃20)2

; (13)

�2(k) =
!̃20
�(2)

(!21l − !̃20) ;

!21l =
�4
�2
=
M4
!20

;

I (3)(k; !) =
S(k)
�

(!21l − !̃20)2(�6 − !21l�4)�3(k)
�23(k) · [!2(!21l!2 − �6=!̃20)− !20!2(!2 − !21l)

+ · · ·+ (�6 − !21l�4)]2 + !2(!2 − !21l)2(!21l − !̃20)2
; (14)

�3(k) =
�6 − !21l · �4

�(3)
;

where {�(i)} are constants (with respect to !) which have individual dimensions, for
example

[�(0)] = [!]; [�(1)] = [!3]; [�(2)] = [!5]; [�(3)] = [!7]:

Replacing for example in (11) the constant �(0) (which is a constant with respect to
frequency dependence) by the expression �=Dk2 one can see an exact correspondence
to the well-known expression for the so-called single-particle dynamic structure factor
Sc(k; !) which is a Lorentzian curve centered on ! = 0 with a half-width equal to
2Dk2

Sc(k; !) =
1
� · Dk2

!2 + (Dk2)2
(15)

and S(k) = 1 (ideal gas limit). General expression (3) in the form of (11) with �(0)

replaced by Dk2 describes the Rayleigh line in dynamic light scattering spectra (see,
for instance [1,2]) and is also in exact accordance with the analytical expression for
Sc(k; !) obtained within the alternative (hydrodynamic) approach. The appropriate
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choice of the form for �1(k) and �2(k) in expressions (12) and (13) gives rise to
well-known model relations for spectra of, respectively, transverse current 
uctuations
and the self-dynamic structure factor (last one is related to the cross section for in-
coherent scattering) obtained within the alternative memory function approach under
the particular assumption, given on a quite phenomenological level, of exponentional
relaxation properties. Expression (14) therefore gives us a more detailed interpolational
expression for S(k; !) in terms of higher moments, namely M0; M2; M4 and M6. Note
here that our approach permits without any di�culties to include in the analysis also
the e�ects of shift and asymmetry of spectral lines which are connected with the odd
moments M1; M3; etc., respectively. The constructed expression for S(k; !) after the
calibration (with respect to a set of parameters {�( j)(k)}) can be inverted to give the
system of algebraic equations providing the possibility of the determination of the mo-
ments themselves included in the consideration in every particular case. Sometimes,
we need to make estimates for the moments of spectra which give information about
the parameters of spectral line style (such as: line shift or asymmetry, dispersion, etc.),
but at the same time the scattering function can be determined only in a few points of
the frequency spectrum. For such a case the inverse problem within the given scheme
of interpolation becomes useful and practical for a self-consistent analysis of the shape
and parameters of spectra. At last note, that because all the expressions (11)–(14)
include the moments {�j}= {Mj=M0} and M0 = S(k), not only the amplitude, but also
other parameters of the dynamic scattering function (like dispersion) demonstrate a
strong k-dependence which is closely related to the shape of the static structure factor
S(k).
Collecting the di�erent interpolations for S(k; !) such as

I(k; !) = AI (0)(k; !) + BI (1)(k; !) + · · · ; (16)

where A; B; etc. are constants which can be found phenomenologically, one has the
possibility of a combinational approach in describing the structure of the dynamic scat-
tering function, for example; central peaks (Rayleigh lines) are described by I (0)(k; !),
sound peaks (Brillouin lines) or plasma peaks (in the case of charged systems) are
described by I (1)(k; !), etc.

3. Estimate of the e�ciency of the proposed interpolation formulas on basis of the
Tchebyche�–Markow inequalities

Using the general theory of orthogonal polynomials one can propose a scheme of
estimating the frequency region in which the given interpolation formulas (or other
approximations for the dynamic structure factor) become most adequate. Note, that in
the case of our analysis such a scheme of estimates becomes self-consistent. Namely,
the most tight lower and upper bounds of the integral

∫ !
0 S(k; !

′) d!′ with the in-
terpolational expression S(k; !) are determined by non-model Tchebyche�–Markow
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inequalities [3–7] for the given n moments of I(k; !)∑
!z¡!

g(!s)6
∫ !−0+

−∞
I (n)(k; !′) d!′6

∫ !+0+

−∞
I (n)(k; !′) d!′6

∑
!s¡!

g(!s) + g(!) ;

(17)

where g(!s) are the point masses of the canonical representation �xed in the points
{!s} which are distributed on the left-hand side of the given frequency !′ on a fre-
quency axis, being the roots of the equation

�n+1(!′)�n(!)−�n+1(!)�n(!′) = 0 ; (18)

where {�n(!)} are the polynomials de�ned by (4) and the masses g(!s) are to be
found by the solution of the following equation:

Ml = !lg(!) +
n∑
s=1

!lsg(!s); l= 0; : : : ; 2n : (19)

Here n is the number of given moments. The Tchebyche�–Markow inequalities (17)
become precise in the case of a “correct” (or genuine) function S(k; !) and can be
violated at some points ! if the number of moments which are used to calculate
the masses g(!s) by (19), exceeds the number of existing moments included in the
construction of the interpolational expression for I (n)(k; !) utilized as an integrand in∫ !
−∞ I

(n)(k; !′) d!′.
For instance, if we limit ourselves in the construction of TM-inequalities to only

zeroth and second moments S(k) and !20 of the dynamic structure factor, the respective
calculations based on (19), (18) and (4) lead to

1− !20
!2 + !20

6
2
S(k)

∫ !

0
I(k; !′) d!′61 : (20)

If we choose now self-consistently the interpolational expression (11) for I (0)(k; !), it
follows from (20) that

1
1 + !20=!2

6
2
� · arctg !

�(0)
61 : (21)

Thus the limiting frequency !c for I (0) is to be found as a solution of the equation
1

1 + !20=!2c
=
2
� · arctg !c

�(0)
: (22)

For !c=�(0)¿ 1, one can determine this frequency by considering the asymptotic ex-
pansion for the right-hand side of Eq. (22)

!c =
2
�
!20
�
: (23)

Then I (0)(k; !) adequately describes the “low-frequency” behavior (0¡!¡!c) of
S(k; !). Otherwise Eq. (22) can be solved numerically.
The same analysis can be done in the case of all other approximate forms I (n)(k; !),

giving of course also modi�cations of frequency intervals for the validity of the
higher-order interpolation formulas for I n(k; !).
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4. Intermediate scattering function and critical modes analysis

Consider now as an example the description of coherent dynamic light scattering
from colloidal systems which consist of dispersions of charged or neutral macroions
suspended in, say, water, in the presence or absence, respectively, of counterionic com-
ponents which stabilize the system charge. It is known that such system for appropriate
values of the internal parameters (such as charges – in the case of charged suspensions
and volume fraction – in the case of neutral systems) can create Wigner crystallic states
for the colloidal component with a lattice parameter within a few diameters of the hard
core of the particles. For a detailed review of this subject see, e.g. [8,9]. From typical
light scattering experiments (see [10–12]) the coherent intermediate partial scattering
function g(k; t) (which is a Fourier transform of S(k; !)), as a function of scattering
vector k and delay time t can be determined.
To make a preliminary comparison of our theoretical results with the experimental

data, one should �rst �nd the intermediate scattering function. For instance Fourier
transforming (16), with the help of (11), (12), we obtain

g(k; t) =
S(k)
� · {Ae−�(0)t + B · Ĩ (1)(k; t)} ; (24)

where

Ĩ
(1)
(k; t)

=




!̃20�̃
(1)

2
√
2(1− (�̃(1)2=2!̃60))

√
1 + (�̃(1)2=2!̃60)

· e−t
√
2!̃0

√
1−(�(1)2=2!̃60); 1¿

�(1)2

2!̃60
;

1

2
√

�2
2!̃60

− 1
·


 e−t!̃0

√
(�(1)2=2!̃60)−1−(�=!̃30)

√
(�2=4!̃60)−1

!̃0

√
(�2=2!̃60)− 1− (�=!̃30)

√
(�2=4!̃60)− 1

−
e−t!̃0

√
(�(1)2=2!̃60)− 1 + (�=!̃30)

√
(�2=4!̃60)− 1

!̃0

√
!̃20((�(1)2=2!̃

6
0)− 1) + (�=!̃0)

√
(�2=4!̃60)− 1


 ; 1¡ �(1)2

2!̃60
:

(25)

From (25) it is straightforward to show that

ln g(k; t) = ln
AS(k)
� − �0t + ln

(
1 +

B
A
Ĩ
(1)
(k; t) e�

(0)t
)
: (26)

Thus it is evident that for all values of k the long-time k2t -dependence of ln g(k; t) is
roughly linear and the function g(k; t) is quite well described by a single exponential
for large enough t. Consider the short- and the long-time behavior of intermediate
scattering function given in the second-moment approximation (26). Namely, when
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t → ∞ it follows simply from (26) (if we put also for de�niteness 1¿�(1)2=2!̃60) that

ln
{
g(k; t)
S(k)

}
= ln

(
A
�

)
− �(0)t + 0

[
B̃
A
e−(�−�

(0))t
]
; (27)

where

B̃ =
� · !̃20 · B

2
√
2(1− (�̃ (1)2=2!̃60))

√
1 + (�̃ (1)2=2!̃60)

;

� =
√
2!̃0

√
1− �(1)2

2!̃60
: (28)

Thus the long-time k2t dependence of ln (g(k; t)=S(k)) as mentioned before, is roughly
linear. This also clearly coincides with the experiment [12], see Figs. 1 and 2. Due to
the condition of satisfying expression (27) and experimental data plotted in Fig. 1 we
have ln A=−0:062 and �(0)=k2 =8:56×10−8 cm2=s. The last numerical value gives rise
to the conclusion that �(0) =D0, where D0 - s.c. mean free-particle di�usion coe�cient
for the dilute suspension. If we compare (27) with the data extracted from experiments
with more dense suspensions, see Fig. 2, one has �(0)=k2 ' 3:5 × 10−7 cm2=s, which
again allows us to put �(0) = Deff · k2, where Deff ' 3:5 × 10−7 cm2=s practically
coincides with the value of the e�ective di�usion coe�cient under the appropriate
parameters of the system (remember here that we calibrate the value of �(0) in every
particular case independently). If we look now for the short-time limit t → 0, assuming
B̃=A e−(�−�

(0)) t ¿ 1, from (26) and (27) we can obtain

ln
{
g(k; t)
S(k)

}
= ln B̃− �t : (29)

Thus, in the short-time limit we have again single-exponential behavior of the scattering
function but with a relaxation-time � which of course di�ers from �(0) (see Figs. 1 and 2).
The best agreement of (29) with the experimental data could be achieved with the help
of a particular choice of parameter �(1) (note that de�nitely, for the considered colloidal
systems we have �(0) =D0; e� ¡ 2!̃0 =k0=S�

√
2kb�=m, where k0 is the �xed value of a

wave vector, which is normally put equal or close to the coordinate of the �rst peak in
the static structure factor. In Figs. 1 and 2 we can see (after the calibration of constant
A and �(0)), a good agreement between theory and experimental data from [12] in
the limit of large times. For the intermediate time as one can see from (25)–(28) we
de�nitely have a two-exponential �t in describing g(k; t). These theoretically predicted
facts, as follows from data presented in Figs. 1 and 2, are in good agreement with the
experiment. Consider now the critical mode formalism to describe the line shape close
to the critical region of ordering in the considered systems. As expounded in [13],
when k → k0 (where k0 is a critical value of the wave vector for mode generation)
S(k0) → ∞, i.e. mimics singular behavior. From (25)–(28) it follows that in this
case the contribution S(k) · Ĩ (1)(k; t)=� also becomes singular, repeating the singular
behavior of S(k) due to other than amplitude e�ects. This tendency in the dynamic
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Fig. 1. Normalized intermediate scattering function g(k; t)=S(k) against k2t in semilogarithmic scale: closed
circles represent the experimental data for a dilute sample (with a density of the colloidal particles
' 2 × 10−4 g cm−3) of the 250 �A radius polystyrene spheres in a NaCl solution, at room temperature
T =293 K for the �xed scattering angle (or wave-vector k) from [14]. The full line is the theoretical curve
given from the single exponential �t (see expression (24) in the text) at the following numerical values of
the initial parameters (which were self-consistently extracted from the comparison between theoretical and

experimental curves): ln A =−0:062; �(10)
k2

= 8:56× 10−8 cm s−1 :

scattering function for the systems mentioned above was clearly observed in a recent
experiment [14].
Using the interpolations I (0)(k; !); I (1)(k; !) and I (2)(k; !) in (16) let us consider

also the appproximation for dynamic scattering function I(k; !) in the following form:

I(k; !) =
S(k)
� ·

{
A

�(0)

!2 + [�(0)]2
+ B

!̃20�̃
(1)

(!2 − !̃20)2 + [�(1)]2!2

+ C
!̃20(!

2
1l − !̃20)�̃(2)

!2(!2 − !21l) + [�̃(2)]2(!2 − !̃20)

}
; (30)
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Fig. 2. Function ln {g(k; t)=S(k)} for a sample mentioned in the capture on Fig. 1 (upper curve) and for
a sample as in Fig. 1 but with a di�erent concentration of 1:25 × 10−3 g cm−3. Experimental data (closed
circles) from [14]. Full line is the theoretical curve (24) given from the two-exponential �t (see, also the
text).

applying the critical mode method. Here we use the de�nitions

�̃ (1) =
�(1)

!̃20
; �̃ (2) =

�(2)

!̃20(!
2
1l − !̃20)

: (31)

Considering again the critical mode generation condition:

S(k)|k→k0 6=0 → ∞ :

(we are speaking here again about the s.c. ‘hard’ critical modes which satisfy to crys-
tallic state generation criteria, say within a colloidal suspension), one can see that close
to the critical region (k → k0); !̃

2
0 → 0 and thus �̃ (1); �̃ (2) → ∞. From S(k)|k→k0 → ∞

it follows in this case that

I (0)(k; !)|k→k0 → ∞ ; (32a)

I (1)(k; !) ∼ !40
�(1)S(k)!2

∣∣∣∣
k→k0

→ 0 ; (32b)

I (2)(k; !) ∼ !40!
4
1l

�(2)S2(k)!4

∣∣∣∣
k→k0

→ 0 : (33)

Thus the amplitude of the central peak in (26) is increased at the same time that
the amplitudes of the shifted peaks are decreased. Note this dynamic behavior of the
spectra of 
uctuations, i.e., the redistribution of the intensivity (with a conservation
of the integral intensivity), close to critical region well known in the theory (and less
clear in the experiment) of the Rayleigh–Brillouin spectra of dynamic light scattering
close to the region of hydrodynamic instabilities [18].
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5. Conclusions

Clearly, we have a wide area for applications and practical use of the above results.
Among them we select only several ones which are closely related to extremely in-
teresting static and dynamic properties of ordered (within mesoscopic scale) colloidal
systems like liquid suspensions and dusty plasmas (including one-component plasmas).
Here dynamic light scattering plays the role of diagnostic test for the investigation
of kinetic properties promising to clarify these in many respects not well-understood
phenomena. We refer the readers to several recent reviews on such �elds [8–11].
As follows from experiments with colloidal suspensions [12–16] the behavior of

the dynamic scattering function g(k; t) (which is a Fourier transform of S(k; !)) in a
semilogarithmic plot as a function of time, demonstrates at least two-exponential �ts
in the di�erent short-time and long-time limits. To explain this phenomenon within the
memory function approach with an exponential relaxation, a speci�c structure of the
relaxation time could be arti�cially assumed. In our approach, however, see expressions
(11)–(14), (16) and Fig. 1, several typical relaxation times appear, providing the pos-
sibility to give quantitative and qualitative comparison between theory and experiment.
Also, it is possible to show that expressions I (1)(k; !) and I (2)(k; !) have a de�nitive
extrema (maxima) as functions of ! for the appropriate values of the parameters, and
that the amplitudes of peaks increase with increasing S(k). This suggests to use the
approach developed for the dynamic analysis of critical modes in the static case, which
are related to a formation of ordered states [17]. The obtained results give, of course,
the possibility to use in (11)–(14), (16) any model approximate expressions for a set of
frequency moments at S(k; !) to construct other practical interpolational expressions
for S(k; !) with a controlled accuracy. A detailed analysis of this and some other
related questions will be discussed in a subsequent paper.
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