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Abstract 

An effective potential for a three-component charged hard-spheres mixture is studied. The critical behavior of the effective 
potential, which is interpreted as ordering tendency, is discussed. Obtained results are applied to making estimates for the 
lattice parameters of the polysterene water suspension. Qualitative agreement of theoretically predicted lattice parameters 
with the experimental values is demonstrated. 
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1. The study of critical phenomena (short order- 
ing, crystallization, melting) in concentrated colloidal 
suspensions is an important problem of liquid matter 
physics [1-10]. Such colloidal systems demonstrate 
interesting properties, in particular increasing of in- 
tensity of hydrodynamic interaction at the generation 
of the ordered phase [11]. On the other hand, crystal 
structures recently observed in colloidal suspensions 
and colloidal (dusty) plasmas [9, 12] give an excellent 
opportunity for a direct comparison between classical 
statistical mechanics and experiments. 

Here we apply the charged hard-sphere model for 
the description of a colloidal suspension. A model 
approach to the calculation of the binary distribution 
functions and the static structure factors is proposed. 
It is related to the qualitative estimates of  the effec- 
tive potentials in the system under consideration which 
could be compared with the data for structure factors 
extracted from the results of neutron, X-Ray, electron-, 
or light-scattering experiments [1, 13, 14]. Within the 
framework of the proposed approach a simple analy- 
sis of the colloidal particle ordering is performed. 

* Corresponding author. 

2. Let us consider a water suspension of polystyrene 
colloidal particles (with a size of the order of a 
0.1 ~tm. We note that in recent experiments [9] the 
crystallic phase formed by colloidal particles with the 
lattice constant R0 ~ 1 ~m could be generated. 

In the following, we shall suppose that the sys- 
tem under consideration can be described as a 
three-component mixture consisting of charged hard- 
spheres (colloidal polystyrene particles and counter 
ions) and neutral hard spheres with given dipole 
moments (solvent molecules). The condition of the 
electroneutrality of the whole system is assumed to 
be satisfied. 

In the equilibrium state the problem of the calcula- 
tion of the static correlation functions G ~ ' ( R ] ,  R2 ) = 
F ~ ' ( R , R  ')  l ( F ~ ' ( R , R / )  is the binary distribu- 
tion function) is reduced to the determination of the 
effective potentials for particles of species a and rr' 
located at the points RL and R2, respectively, 

t 

' ~ - V ~  c~ (RI,R:),'7 F~ ~ ( R ] , R 2 ) = -  ~ , (1) 

where T is the absolute temperature in energy 
units. Henceforth, subscript a denotes neutral solvent 
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molecules (o- = 1), microions (a = 2) and colloidal 
particles (c~ = 3). 

Static structure factors can be defined by the rela- 
tions 

, ~ , /  ' S ~ ( k ) = 6 ~ , +  dRe-ikR[e-r~ (I~)..r 1], 

(2) 

where R = R1 - R2, n~ is the number density of par- 
ticles species a. 

The description of the system under consider- 
ation may be done on the basis of various ap- 
proaches (see, for example, Refs.[15 20] and 
references cited therein). Here, we derive, the equa- 
tion for V~'(RI, R2) on the basis of the well-known 
Ornstein-Zernike equation, which is often used for 
the description of critical phenomena [ 15, 17, 18] 

G~'(R1,R2) = C~'(RI,R2) 
/ '  trtTii t! t 

+~n~,, dR3C 2 (RI,R3)G ~ ~ (R3,R2), (3) 
r71! 

where C S ( R t ,  R2) is the direct correlation function. 
Using the hyperchain approximation [18, 19] 

/ V~ ~ (R1,R2) = V~'(RI,R2) - ~n~,,r dR3 

,, IV~ "(R1,R3 ) 

_ l y ~  (RI,R3) (e . . . . . . .  " 1), (4) 
T 

where V~ ' (R)  is the direct pair potential. 
We assume that V~'(R) and ~ ( ( R )  can be di- 

vided into a universal short-range part V~' (R)  and 
long-range parts v~ ' (R)  and I?~'(R), respectively, 
according to 

V~'(R) = V~'(R) + v~'(R),  

V{(r'(R ) = V~'(R) + P~'(R), (5) 

where 

, {oo, R < a ~ , ;  (6) 
V0 ~ ( R ) =  0, R > a ~ , ;  

and a,~, = a,, + a~,, a ,  being the radius of the solid 
core for the particles of species a. It should be noticed, 

that the hypemetted chain approximation may limit the 
applicability of the present theory to phase transitions• 
However, other approximations lead to quite similar 
results [23]. 

Substituting Eq. (5) into Eq. (4), one obtains the 
equation 

= r ~ ' ( R ) _  ~ , ,~ , ,  T /dR ' [ (e  -';~"(R','T ~'(R) 
j L \  

+7 )- -a~,,)- 
x[0(lR - R ' I -  a~,,~,)e I',"~'IR-R'I.T_ 1], 

(7) 

which is valid only at R > a~,,. 
Linearizing Eq. (7) with respect to P~'/T we find 

the equation describing the behavior of the effective 
potentials far from the critical point 

/ [  J ? ~ ' ( R ) = r ' " ( R )  ~ n , , , T  dR' O(a~, , -R ' )  
t71! 

1 -  
+TV' ' (R-  g') 0(Ig- R'I- a~,,~,)l, 

R > a~,.  (8) 

We assume that this equation can be applied to 
study the possibility ofthephase transition [21, 22]. It 
should be realized that the linearization is not meant to 
describe quantitatively correct properties of effective 
potentials, but to lead only, on basis of singularities, 
to indications of conditions for ordering. 

Eq. (8) can be solved by the Fourier method. It is 
possible to show that the Fourier representation of 
Eq. (8) may be written as 

p~' + ~ A~"(k)P~k"~' 
c;t! 

= ~ ,  - r~n~,,A~"(k)O~ ''~'. (9) 

Here 

p ~ '  = f dRe-ikg/?~'(R),  
JR 

{ ' , '~ '  dRe-'kRv ~ (R), t: h ~ 
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(id H, = 
J 

R>u dRe-‘kR 
co’ 

= $(sin ka,,f ~ ka,,f cos ka,,, ). 

The formal solution of Eq. (9) is the following: 

where 

n,,, (k) = 6,,, + n&l”“‘(k). 

Accordingly, for the structure factor S”“‘(k), we have 

S”“‘(k) = 1’ 5 U,!(k). 
nd 

Now, let us specify the long-range part of the inter- 

action potentials for the system under consideration. 

For charged particles (rr, IT’ = 2, 3) we have 

p+ cos ka,,) 
k = 4lu,z,e? ~ 

k2 ’ 
(11) 

where Z, is the charge number of particles of species 

(r (zt = 0, zl = -z3ns/n2, ~3 is the charge number of 
the colloidal particles). 

As regards the long-range interaction potentials be- 

tween the charged particles and solvent molecules, as 

well as the one between the molecules, they are equal 
to zero in the case of nonpolar solvent, i.e. L$’ = ~1” = 

0 at o- = 1,2,3, and Eqs.(lO), (11) give the formal 

solution of the problem. 
If the neutral molecules have nonzero dipole mo- 

ment, d, both effective and pair interaction potentials 
depend on the dipole orientations and the above re- 
lations should be modified. Here, we consider two 
approaches to the solution of this problem. The first 
one consists of the assumption that orientations of 
the dipoles contributing to the effective potentials are 

strongly correlated. It means that as a first step, one can 
calculate the effective potentials for the given dipole 
orientation on basis of Eq. (10) with the following 
Fourier components of the long- range part of the pair 

interaction potentials 

,:A 
4rt 

= -,z,eikdcoskal,. 
k- 

(7 = 2, 3, 

[.l’ Yz -1’:“. IT = 2, 3, 

4TI 
I::’ = - = (kd)‘cos kal I 

k’ 

and then perform the averaging over orientation of 
dipoles. The result is 

VT’ = &(d,, - PI&‘) ~ ;(n,!). (12) 
fJ’ 

where 

(n;;,) = ; /[j 
.I 

sin udu&!(k,kd) . 
kd=kd cos I 

With the approximation (/lOci’/l(r’rii l$I”‘) = 
(@(i+7’U,) qo’, Eq. ( 12) reduces to 

(13) 

where D(k) is the determinant of the matrix tl,,~, TC,,/ 
is the cofactor to the matrix element Z7,,+. After the 

angular averaging we are led to the following expres- 
sions: 

(D(k)) =(I +~,(AII))[(~ +n2/122)(1 +rziAii) 

(VI) = (1 + n,n,,)(l + fl3n33) - ~~2f~3'l32~23, 

(7h2) = mn3(‘423ilt) - nit1 + n3.433)v?l)? 

(n21) = 312113(11,31132) - fl2(l + fl3'433)(nl2)> 

(7h3) = nl%~32('l21) ~ flit1 + n2A22)(1131)> 

(x22) = (1 l tf~l(~ll))(l +fl,n,, -mf~3(~,3~31). 

(x23) = %(I +fll(~ll),~32 - ~~ln2(~12)~32~ 

(x3,) = ~~2fl3~23(~,2) - n31123(1 +n2A22), 

(x32) = n,n3(/1,3/121)-~2~32(~ +n1(‘4,,)), 

(7c33) = (1 +nl(n,,))(l +n2n22) - fllf~3(',l21~13). 

Here 

m(nll) = ~210:’ +47mcos2a1; 

n,n,~(n,,&,) = n,n,&vp 
coskal,coskal,c 

+ h+p 

x4lw 
cos ka,,! ’ 

rJ, 0’ = 2, 3, 
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K = nld2/3T is the long-range asymptotic of  the po- 
larizability of  solvent. 

The second approach to the problem of  effective 
potentials in the system with polar solvent molecules 
consists in the generalization of  the basic equations 
( 1 ) - ( 8 )  to the case of  potentials dependent on the 
orientational variables. Introducing the binary distri- 
bution functions and the relevant effective potentials 
V~(R~ ,d l ;R2 )  and Vc~(RI,dl;R2,d2) for i on -  
dipole and dipole-dipole interaction, it is natural to 
use the following generalization of  Eq. (4): 

V~la.'(Rl,dl;Rz, d2) = V(;# (RI ,d l ;R2 ,d2)  

-~,,n~;"T/dR3/dQ347r 

[ ~-V~at(r'(R''d';R3"ds)'T - -  1 + 1 Vo(;,(R 1,dl.RB,d3) 
T eft , 

1 (;(;,, ] 
T V (RI,dj;R3, d3) 

x [e G('/(R~'a~;R~'a~)T--1], a ,a~= 1 ,2 ,3 .  

(15) 

In the notation used above, V J ' ( R l , d l ; R z , d 2 )  and 

V(;(;'(RI,dl;R2,d2) do not depend on dl or (and) 
d2 at a, or (and) a '  :/= 1; dr2 = sinvdvdcp, v and 
¢p are the angles giving the direction of  dipole, 
V~"'(Rl ,dl ;R2,d2)  is the pair interaction poten- 
tial. Representing the potentials for a homogeneous 
medium in the following form: 

V"~'(Rl ,dl ;R2,d2)  =~ V~#(R1 -- R2;dl ,d2)  
= V~(;'(R1 - R2) + v~r#(R - Rz;dl ,d2) ,  

V~r ' (Rl ,d l ;R2,d2)  ==- Vjr'(R1 - R2;dl ,d2)  
= V~ ' (RI  - R2) + Vein'(R1 - R2;dl,d2),  

where V~(;'(R) is defined by Eq. (6) and linearizing 

Eq. (15) with respect to e~/T and V~ ' /T ,  we ob- 
tain the following k-representation of  the linearized 
Eq. (15) 

frt! Y 

~Ta"(;' ( dtl ,4t ~ 
X k t ~  ' ~  ~' 

J ( u , u ' )  T E  f dQ" 
-  o"J 

¢7 II 

43 

where 

,G~7 ! ! ! r,. (a ,a  ) =  , 7 ; (a ) , . , (¢ ) ,  

(~(,  4 x  , 2 = ~Z~Z(; e coska(;(;,, (17) 

ikd/zme, a = 1, 
q~(d) = 1, a = 2, 3, 

_ _ _  f Z m ,  ( ;  = 1, 

~ - ~ z., a=2,3,  
Zm is the effective charge number of  the particles in- 
volved in the dipole. 

Using the above representation for pair potentials, 
Eq. (16) may be reduced to 

V ' "  (d, d' f dQ" (z(;",' r# '  a' ~t~",' k ) + ~ n , , ,  ~,, j ~ - ~  k ~ " , "  --k 

,, . . . .  fd~2"  
-~  E n ~(;a v k (a , a )~ . , , ( d  ) (;,,Vk , 4 a ~ l ~ -  " ' " 

(;it 

~t';(; t * ! 
= v k G ( d ) ~ b , ( d  ) 

r 
tl I [ ¢7ff1! 

- T ~  , I . , ,O~ " 0 k 

L ¢;H 
+ r / ~ ( d ) ( 1  - 6~,1) l 

(18) 

On basis of  this equation, it is possible to show that 
the averaged values of  the effective potentials 

p . ,  d~ dO p(;(;, ,. 

are given by 

I 7~ '  T , T - - I ,  
k = - - ( G , ,  - n(;,O~" ) - - - I I ( ; .  (k), (19) 

where 

.0 , (k )  = 6 . . ,  + n.,  0 7 f +  , 

, 4rt _ _ , , cos kaoa, 
~g°k (; = k~ZaZa C" 

4rt• COS kao, cos kay, ] 
x 1 e.0(k) cos ka~ ,  J 

s0(k) = 1 + 4rt~ccoskall. 

(20) 

(;~. v k (&d) ~,,~, 
x O k + T O k , (16) 
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Here £~ is defined by the relation in the case of nonpolar solvents 

~. = (211 z , a = 3 , 2 .  

Comparing Eqs. ( 19)-(21 ) with Eqs. (10), ( 11 ), we 
see that the presence of dipole moments leads to a 
specific renormalization of the pair electrostatic inter- 
action between the charged particles. Namely, 

, 4 x  ~ 
V~ ~ = kyz . z . , e  coska.. ,  -~ (,)~ 

4r~ 
- . . ,  z .z . ,e" cos kaa.,, 

k2g0 (k) 

where 

g~'  ( k ) 

~o(k )coska~,  
= .(22) 

~:0(k) cos ka,,,  - 4xK cos karl cos kay, I 

Notice that the long-wave limit of the "effective di- 

electric permittivity matrix" gg"' (k) coincides with the 
dielectric constant of the solvent 

.~¢70 -I lime0 ( k ) =  l+4~ztc-=e0. k----,0 

It shows that the use of e0 for the description of po- 
lar properties of the solvent can be an appropriate ap- 
proximation only at ka,,,  << 1. Since in the case of 
colloidal suspensions this condition can be violated, 
it is better to use the general expression for "effective 
dielectric permittivity" (22). 

As follows from the solutions for the effective po- 
tentials (10), (13) and (19), singularities of the k - 
representation of these potentials are defined by the 
secular equations 

D(k ) = det I I , , , (k  ) = O, (23) 

{D(k)) = 0, (24) 

and 

~ - - 1  
/)(k) = det H. . , ( k  ) = O, (25)  

respectively. These singularities determine the spatial 
dependence of the effective potentials. For example, 

i t  : 

- , , ' L ' A ' ~  ~ ' k '  T J ~  Ut l  t ) k e  ikR 4- c.c., 
k,  a t /  

(26) 

where ~}-~'-k, implies that the summation over the solu- 
tions of Eq. (23) at Rekr >~0, link,. >~0. Similar repre- 
sentations describe the effective potentials also in the 
case of polar solvents. 

If Eqs. (23) (25) have only imaginary solutions, 
Eq. (26) (or, similar equations for the case of po- 
lar solvents) describe exponentially decreasing poten- 
tials. On the other hand, appearance of real roots of 
Eqs. (23) (25) leads to oscillating behavior of the ef- 
fective potential, which may be interpreted as a ten- 
dency to spatial ordering in the system. 

It is interesting to compare the results obtained with 
those related to another model for effective potentials 
following from Kirkwood's theory [21-23]: 

V J ' ( R I , R 2 )  = V~:"(RI,R2) 

f " - ~ n ~ , ,  dR3V ~ (RI ,R3)  
c'; t / , ]  

xe ~'"~x"R~):r[e-li~"IR~"~Yr-- 1]. (27) 

As is easy to see, in this case the relations (10), 
/ 

(19) remain still valid if one takes 0~ ~ = 0. Notice, 
that within the framework of this model in the case of 
Coulombic long-range potentials, Eq. (10), as well as 
secular equation (23) are reduced to the ones derived 
by Hastings [22]. 

3. Let us consider the secular equations (23)-(25)  
in more detail. For example, in the case of polar sol- 
vents with strongly correlated dipoles (which seems 
to be reasonable for water solutions), Eq. (24) can be 
rewritten in the following dimensionless |brm: 

+ F  ~ . 

q~2 COS(~Y/23))21-~- 2fl(Y/33A(~'g/23) 

-- ~" 3rl l3rl l2A( grll3 )A (g~/12) q~2 c°s (gt/23) 3 3 ~" 



O. Gerasimov et al./Physica B 228 (1996) 40 50 45 

q~2fl4rgK COS (£r/13)COS(~12 )) 

( F COS (~g/22 )) -/~ \~2~(~,~2) + 

X (3r/63 Zl2(ffr/13 ) + ~4/rt¢ cos2(~rll3 )) 

( ~-2F 2~)_ - f l  k8A(2~) + cos 

(3~/62 A2(v/12 ) _1 - C (~r/12)) } x ~2-27~ 4rc~c cos 
q~fi 

F q (r/~2A(~r/22) +3~ {e [8A(2~) + ~ cos2~ + 

q - ~  COS (~/22))]- fl (3~/~3~]2(~/13) 

q-<.~F~ 4g ~C COS2 (~r/13 ))-flq(3rl~2A2({rll2) 

r o, + q2 ~2----~ 4nK = 

where 

= ka3, a = n3(2, 

4/ra3 e2z2 
f i = n l f 2 ,  Q----~- 3, F =  

Ta3 ' 

Z3 _ _  172 _ _  aa ÷ a a, 

q = n3 t]aa' a3 

sin ff - ff cos 
A ( ~ )  - ~3 , 

= l + 3flr/t i3(~rl~l ) + 4xK cos(~r/~ ). 

(28) 

In the domain of small ~ Eq. (29) has the solution 

= 3:¢F [1 + 2:~ + ~(1 + 8~ - ~fl) - ~/~e0] 

x - -  - 1 - 8c~ + q~2 
~'0 
+ 3 M ' - I I + 5 ( 6 + l - ( 1 6 - f l ) ) + a °  ] q  

~-2 

Putting 

30~2/~2 }-1 
80 

q 

0 (.~ --+ O, ~ ~ O, :~[~/~2 _ 4re e2zZn3_) a3 \ - 3 k2zoT J 

in Eq. (29), one can find the well-known dispersion 
relation for an ideal plasma, 

41te22~n3 2 4~te zsn 2 
i +  - + - 0 .  

k2e0 T k2zo T 

The same result follows from Eq. (25) for the condi- 
tions mentioned above. 

If the colloidal particles are neutral and counter ions 
are absent, Eq. (29) is reduced to 

1 + 24~A(2~) - 9~flA2(~)/eo = 0. (30) 

For small values of ~, Eq. (30) has the solution 

~ - - 5  (31) 
(fl/+;o - 16) 

In the case of interest (nl >> n3, fi >> 1, ~ << 1) 

In the case of sizeless counter ions and solvent 
molecules (a2 = al = 0) this equation can be trans- 
formed to 

(1 + qg2 J (1 + 24~A(2~) 

+ 3.~/a~ ( c ° s 2 g -  47zKsin2~) - 9~flA2(~)) 

-9~2q d ( ~ ) -  ~ 5 c o s ~  +9A2(~)efl4rC~to = 0 .  

(29) 

Here P = F/Co. eo = 1 + 4xK. 

~ = - 5  - 1  . 

If n3f2 < ~o/(nj f2-Seo) ,  Eq.(30) has imaginary 
roots that corresponds to Yukawa-type effective po- 
tential. At n3f2 = ~;0/(nlf2 - Be0) the obtained solu- 
tion indicates the possibility of "soft" critical mode 
generation, 

~ .¢TO.I 1 

k ~ k  ~ .  

This gives rise to a long-range (Colomb-like) contri- 
bution to the effective potential. With increasing n3f2, 
roots of Eq. (30) become real and oscillations of the 
effective potential can appear. 
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On the other hand, taking the limit n l ~  ~ 0 in 
Eq. (29) or Eq. (25) at at = a2 = 0 (i.e. considering 
the two-component system consisting of  colloidal 
particles and sizeless counter ions) we are led to the 
equation 

(,+ 0 ~ j  (1 + 24~A(2¢) + 

( lbc°s~) 
-90~2q A(~) q ~2 = 0. (32) 

As mentioned above, taking formally A(2~) = A(~) = 
0 and a~ = a2 = 0 in Eq. (25), it is possible to repro- 
duce the secular equation derived by Hastings [22] 

3: cos2 0 ~ j ( l +  ; "  

9~2 r "2 cos 2 
- o ,  ( 3 3 )  q~4 

which in the case of  the single-component model is 
reduced to 

3~/~ 
1 + ~ -  cos 2( = 0. (34) 

It was shown in Ref. [22] that Eq. (34) has the real 
root 2~ = 2.46 at the minimum value of  the quantity 
(2 3X/'ff~)min ~ (2K00min = 2.79. With increasing ~F, 
the value of  real root of  Eq. (34) decreases, however, 
its value cannot be less than .~mi~ = re/4 --~ 0.8. 

Assuming that the appearance of  real roots of  
Eqs. (23) - (25) ,  ( 3 2 ) - ( 3 4 )  may be interpreted as a 
tendency to ordering of  the system, we may estimate 
the lattice parameter 

2~ 2rca3 
R 0  - -  

k ~ ' 

so that a/Ro~0.2  at ~ =  1.43, or a/Ro~0.13 at 

~mi~ "" ~:/4. 
These estimates differ from the experimental re- 

sults a/Ro ~- 10 -2 [9, 12]. Therefore, let us consider 
Eqs. (24), (25), (32), (33) taking into account the 
presence of counter ions and water molecules. These 
equations could not be solved analytically. The results 
of  their numerical solution at given /3 and various 
value of  q which are of  our interest are presented in 
Figs. 1 5. 

Fig. 1 shows the dependence :~(~) in the case of  the 
two-component model calculated within the frame- 
work of  Kirkwood's  theory (Eq. (33)). The similar 
dependence obtained for the three-component system 
consisting of  finite size colloidal particles and sizeless 
counter ions and water molecules on basis of  Eq. (29) 
are shown in Fig. 2. Fig. 3 is related to the solution 
of the general secular equation (28) describing the 
model with finite sizes of  all particle species. Calcula- 
tions have been performed for the following values of  
the system parameters: T - 293 K, nl 1022 cm .3 
c0 = 78, a3 = 5 × 10 -6 cm, [:t = 5.2 x 106, 2 2 ~--- 1. 
Curve numbers are related to different values of  q, 
namely: l - q =  100, 2 - q = 3 5 0 ,  3 - q = 6 8 0 ,  
4 - q = 1000. 

Figs 4 and 5 represent the solution of  the secular 
equation (25) for the case of  the three-component sys- 
tem within the framework of  the Kirkwood's  theory 

;0 ~ '  0) generalized to the case of  polar solvents ,~k 

and our modification (0~ ~' ¢; 0), respectively. As is 
seen from the figures, the general feature of  the ob- 
tained solutions is the existence of  some minimum 
value of  c~ at which the real solution of  the relevant 
equation appears. This might be interpreted as an indi- 
cation to spatial ordering in the system. In the case that 

reaches the value of  the order ~ = 2rca/(R) ((R) = 
(3/4rcn3) 1:3 is the mean distance between the col- 
loidal particles), i.e. the ordering distance R0 = 2re/( 
coincides with the distance between the particles, it is 
reasonable to assume that crystal-type structure can 
appear. Thus, the lattice parameter R0 and the cor- 
responding value of  the colloidal particle density at 
given q,/3 may be related to the points of  intersection 
of  ~(~)-curves and ~(¢) - (~/2r@ (dashed lines). 

In the case of  the two-component model such in- 
tersections take place in the domain ~ > 0, 8 (Fig. 1 ) 
which is almost the same as in the case of  the one- 
component model (29). As was mentioned above, it 
is not in a good agreement with the observations. In 
fact, introducing the charge number ratio in the exper- 
iments q -~ 350 [24] (this estimate is close to the one 
which could be obtained from the value q = 1400 for 
particles with a 10 -5 cm [9], if we assume, that q 
is proportional to the particle surface) we find from 
Fig. 1, ~ = 0.82 instead of  ~ -~ 0.32 in the experiment 
[9]. 

On the contrary, using Eq. (29) we find that for 
q = 350, the solution gives ~ 0.13 (Fig. 2) which is 
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about two times less than the experimental value. Sim- 
ilar pictures are observed in the case of Kirkwood's 
theory for solutions with polar solvents (Fig. 4) and 
for the general secular equation (25) (Fig. 5). 

The best agreement between theory and experiment 
is achieved, if we use Eq. (28) taking into account 
particle sizes for all species. Assuming that water 
molecules and counter ions (H30) + have sizes of 
the order of al = a2 ~ 1.5 ~, we see that ~ = 0.16 
(Fig. 3(a)). However, since water is an associated 
liquid in which molecules form water dimers, it 
is possible to estimate al ~ a2 ~ 3.5 ~ which leads 
to ~ 0 . 3  (Fig. 3(b)) in good agreement with 
experiment. 

For particles with a = 10 .6  cm, q = 1400 [9] the 
appropriate calculations give ~ = 0.28. 

4. Thus, the performed analysis shows that an 
appropriate description of the order parameter of a 
colloidal suspension can be given within the frame- 
work of the three-component model involving a two- 
component charged hard-sphere system (colloidal 
particles and counter ions) and neutral hard spheres 
with dipole moments (water molecules) with the 
assumption of strong correlation of dipole orienta- 
tions. The two-component model gives an estimate of 
a/Ro about three times larger than the experimental 
value, while the three-component model with size- 
less counter ions and water molecules, as well as 
the secular equation (25), lead to a smaller value of 
the above ratio. Obviously, the simple model used in 
the present paper gives only a qualitative indication 
of the crystallization phenomena. However, such sim- 
plified consideration may be useful, since it provides 
the possibility to study the critical behavior of the bi- 
nary distribution function without detailed computer 
experiments. 

References 

[1] G. Brady and J. Gravatt, J. Chem. Phys. 55 (1971) 5095. 
[2] B.J. Ackerson and N.A. Clark, Phys, Rev. Len, 46 (1981) 

125, 
[3] P, Pieranski, Contemp. Phys. 24 (1983) 25. 
[4] P, Pieranski and P.B. Strzelecki, Phys. Rev. Lett. 50 (1983) 

900. 
[5] D.J.W. Aastuen, N.A. Clark and L.K. Cotter, Phys. Rev. Lett. 

57 (1986) 1733. 
[6] C.A. Murray and D.H. van Winkle, Phys. Rev. Lett. 58 

(1987) 1200. 
[7] W. Van Megen and P.N. Pusey, Phys. Rev. A 43 (1991) 

5429. 
[8] W. G6tze and L. Sjogren, Phys. Rev. A 43 (1991) 5442. 
[9] J. Derksen and W. van de Water, Phys. Rev. A 45 (1992) 

5660. 
[10] H. L6wen, Phys. Rep. 237 (1994) 249. 
[11] Europhys Conf. Abstr. 2rid Liquid Matter Conf 18 22 Sept, 

1993, Firenze, Italy, 17 G. 
[12] J.H. Chu, Lin. Physica A 205 (1994) 183. 
[13] H. Temperly, J. Rowlinson and C. Rushbrooke, Physics of 

Simple Liquids (North-Holland, Amsterdam, 1968). 
[14] EB. Sirota, H.D. Ou-Yang and S.K. Sinha et al., Phys. Rev. 

Lett. 62 (1989) 1524. 
[15] I.R. Yukhnovsky and M.F. Holovko, Statistical theory of 

Classical Equilibrium Systems Kiev, Naukova Dumka, 1980 
(in Russian). 

[16] J.R. Hunsen and [.R. Mc Denald, Theory of Simple Liquids 
(Academic Press, London, 1986). 

[17] S.G. Brush, H.L. Sahlin and E.J. Teller, Chem. Phys. 45 
(1966) 2022. 

[18] Yu.L. Klimontovich, Statistical physics, Harwood, Chur 
(1986). 

[19] R. Balescu, Equilibrium Statistical Mechanics. 
[20] M.O. Robbins, K. Kremer and G.S.J. Grest, Chem. Phys. 88 

(1988) 3286. 
[21] J.G. Kirkwood, Chem. Rev. 19 (1936) 275. 
[22] R.J. Hastings, Chem. Phys. 68 (1978) 675. 
[23] O.l. Gerasimov, A.G. Zagorodny and Yu.L. Klimontovich, 

Plasma Phys. Rep. 19 (1993) 83. 
[24] M. Hoppenbrouwers, private communication. 


