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Abstract. This article is a review of our recent and new experimental works on granular compaction. The
effects of various microscopic parameters on the compaction dynamics are addressed, in particular the
influence of the grain shape, the friction and the cohesion between the grains. Two dimensionnal and three
dimensionnal systems are analysed. And the role of dimensionality will be emphasized. Theoretical and
numerical investigations provide additional informations about that phenomenon. Indeed numerical models
permit us to study the influence of some parameters not easily accessible experimentally. Our results show
that the above mentioned parameters have a deep impact on the compaction dynamics. Anisotropic grains
lead to two different compaction regimes separated by a “burst” of the packing fraction. Friction is observed
to modify how the grains are arranged in the pile. This is confirmed by numerical simulations. Cohesive
forces between particles inhibit compaction and lead to extremely low values of the packing fraction.

PACS. 45.70.-n Granular systems – 45.70.Cc Static sandpiles; granular compaction

1 Introduction

The complex collective behaviors of an assembly of par-
ticles is due to the dissipative nature of the inter-particle
forces. A wide variety of phenomena can be observed by
varying the strength of power supply to a granular system.
A low power input may induce slow relaxation in a series
of metastable states or an intermittent collective motion,
while a steady state results from a large enough energy
supply.

When a pile of granular material is gently shaked, the
packing fraction of the pile slowly increases. This phe-
nomenon is called granular compaction. Despite numerous
studies devoted to granular compaction kinetics and asso-
ciated quasistatic properties of granular packings [1–8],
the physical understanding of those phenomena in many
senses poses a serious challenge to physicists. Indeed, the
complexity results in the observation of a myriad different
states either metastable or even quasistationnary whose
appearance escorts the extremely slow dynamics of com-
paction. Moreover, the way a packing finds its way to a
denser system is strongly influenced by the preparation
of the studied sample, the experimentally accessible time
scales, the way of shaking, the existence of memory effects,
etc. And those dependences are naturally supplemented
by gravity, inelasticity, friction, cohesion and dispersion
of the particles.
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One should note that the knowledge of granular mate-
rial properties, and in particular compaction dynamics [9],
has a major economical impact on all industries, as gran-
ular materials are the second most manipulated material
in industry behind liquid water.

This paper reports our recent and new experiments,
underlining the various aspects of a complex compaction
dynamics. Our analysis provides evidences for a different
packing dynamical regimes as a function of various pa-
rameters. We will discuss 2D and 3D experimental results
obtained with cylindrical and spherical millimetric grains.
We will investigate the influence of the friction and of
the cohesion between grains on the compaction dynamics.
The case of powders will be also envisaged. Numerical ap-
proaches will also be discussed in order to check for various
effects.

2 State of the art

2.1 Compaction laws

Over the last decade, lots of works [1–7,9–13] has been
done in the field of granular compaction. It has been pro-
posed by Knight et al. [1], that the packing fraction η of a
pile submitted to a series of identical taps obeys an inverse
logarithmic law

η(n) = η∞ − η∞ − η0

1 + B ln(1 + n
τ )

, (1)



2 The European Physical Journal E

where B and τ are dimensionless parameters. The param-
eters η0 and η∞ are respectively the initial and the final
packing fraction. The dynamical parameters B and τ are
strongly correlated. Therefore, we fix the parameter B to
unity in the next sections. The inverse logarithmic law
1 was also obtained in simple numerical models like the
Tetris one [7]. The law (1) could also be derived from the-
oretical arguments [10]. Some of the arguments will be
discussed below.

More recently, Philippe and Bideau [4] found that the
compaction dynamics is better fitted by a stretched expo-
nential law, like

η(n) = η∞ − (η∞ − η0) exp
[
−

(n

τ

)β
]
. (2)

This stretched exponential law has the great advantage to
fit a saturation of the packing fraction which is sometimes
accessible in experiments (for large n values). Both param-
eters τ and β correspond respectively to a characteristic
tap number and to a stretching exponent 0 ≤ β ≤ 1.
One should notice that in the experiments of Philippe
and Bideau, the steady state corresponds to a dynami-
cal balance between convection and compaction. This is
not always the case in other experiments. For a review of
their results, see reference [3]. This stretched exponential
law (2) has been recently confirmed [11] in our 2D exper-
iments (see also Sect. 3). However, in these experiments,
the steady state corresponds to a crystallization of the
pile.

Logarithmic and stretched exponential laws look simi-
lar but fit differently the experimental data. Both scenarii
seem to be mixed in real experiments. The next subsec-
tion explains that both laws are also intimately linked in
simple kinetics theories.

2.2 Free volume kinetic model

In order to model compaction, a free volume theory [10]
is often proposed. In this framework, one can describe the
process where the solid particle (associated with the grain)
with volume ω can jump into a hole of the appropriate
size Ω distributed in their own with a certain distribu-
tion function f(ω/Ω). The simplest rate equation which
describes such a free volume kinetics takes a form

dη

dn
= kf (3)

where the variable η is the packing fraction, and k is a
kinetic coefficient. Introducing the limiting maximum val-
ues for the compactivity ηm and estimating the simplest
Poisson distribution for the free volume

Ω = ω

(
1
η
− 1

ηm

)
(4)

one has
dη

dn
= k exp

(
− ηmη

ηm − η

)
. (5)

Rigorous analytical solution of this equation which con-
nects the packing fraction η with the number of taps n
can be obtained in the following functional form

(ηm − η1) exp
(

η2
m

ηm − η1

)
+ η2E1

(
− η2

m

ηm − η1

)

− (ηm − η) exp
(

η2
m

ηm − η

)
− η2

mE1

(
− η2

m

ηm − η

)
=

k exp(ηm)n (6)

where η1 is the initial compactivity and E1(z) is an inte-
gral exponent [26]. If the initial state is already densified,
i.e. η1 → ηm

(
η2

m
ηm−η1

$ 1, η2
m

ηm−η $ 1
)

equation (6) gives

η = ηm − η2
m

ln γ + ln
(

a
γ + n

) (7)

where a = |(ηm − η1) exp( η2
m

ηm−η1
) + η2

mE1(− η2
m

ηm−η1
)| and

γ = k exp(ηm). This logarithmic law for granular com-
paction has been many times reported either by experi-
mentalists or by theoreticians [1,10] (see Eq. (1)). When
the system is initially diluted so that η2

m/(ηm − η1) < 1
and η2

m/(ηm − η) < 1, from (6) we perform

η = η1 + γn, (8)

i.e. much faster than a logarithmic behavior.
One should note that when η2

m/(ηm − η1) < 1 but
η2

m/(ηm − η) > 1, from (6) we derive again the logarith-
mic law, given by (7). Independently from how the system
was initially prepared (diluted or densified), in the limit
when η tends to ηm, the model gives the slow logarithm
rate of η growth.

This simple argumentation demonstrates the principal
possibility of getting different kinetic scenarii, i.e. loga-
rithmic dynamics and more faster stages, of compaction
already being in the framework of a mean-field arguments,
included in the origin of free volume kinetic model. Dif-
ferent scenarii are found in experiments and a mixture
of those dynamics is more appropriate for describing the
experimental data. This will be discussed in the next sec-
tions.

3 Experimental approach

3.1 Experimental set-up

A container filled with a few thousands of spherical
(Figs. 1a and 1b) or cylindrical (Figs. 1c and 1d) grains is
placed above an electromagnetic hammer. Ceramic, glass
and lead beads have been tested. In order to vary the fric-
tion between grains, we used different ceramic beads with
similar sizes and shapes but different surface properties.
The compaction dynamics of pharmaceutical powders will
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Fig. 1. Pictures of the different piles studied in our compaction
experiments. The pictures (a) and (c) correspond respectively
to snapshots of a pile of spheres and a pile of cylinders in a
2D geometry. The pictures (b) and (d) correspond to the 3D
geometry. These snapshots have been recorded in the middle
of the compaction process. Hexagonal structures are observed
in region 1. Domains of aligned grains and domains of ideally
ordered grains are observed respectively in regions 2 and 3.

Table 1. Summary of the grain characteristics (average size
and polydispersity) in our experiments.

Size Polydispersity

Spherical lead beads d = 2.4 mm 3.6%
Spherical ceramic beads d = 1.8 mm 15%
Glass rods d = 2.16 mm 3%

! = 6.73 mm
Powder (Avicel) d = 50 µm Strong

be also analyzed (Fig. 3). Table 1 summarizes the main
characteristics of the grains we used in our experiments.

For granular systems, different containers allow us to
investigate either 2D (Figs. 1a and 1c) or 3D (Figs. 1b
and 1d) systems. The 2D container corresponds to two
vertical glass plates separated by one grain diameter [11].
In this geometry, the motion of every grain can be opti-
cally tracked. The 3D container is a cylindrical tube with
a diameter fifteen times larger than a grain diameter [13].

One should remark that our experimental set-up is dif-
ferent from usual ones which generally use an oscillating
system to produce the series of taps. However, in our set-
up, an electromagnetic hammer is placed below the con-
tainer for tapping. The motion of the container during
a tap is very limited with an amplitude around 0.3 mm.
The hammer produces a shock wave in the pile, starting
at the bottom of the pile and going upward. The main ac-
celeration peak lasts 0.25 ms and the maximum intensity
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Fig. 2. Log-scale plot of the acceleration experienced by the
container in our system during a tap (plain line) and the accel-
eration experienced by the system in the Rennes experiments
(dashed line) [25]. Our container undergoes a short peak of
acceleration. The width of the main peak is 0.25 ms and the
maximum intensity is 15 g. Some damped oscillations are ob-
served during a few milliseconds. For the Rennes experiment,
the width of the main peak is 25 ms and the acceleration is
much lower.

reaches 15 g. With this shaking method, we do not ob-
serve any convection in the pile. In Figure 2, we compare
the tapping system of Philippe and Bideau [4,5] and our
system through the signals from an accelerometer placed
on both containers. We observe a clear difference between
both methods: the associated time scales are different. The
intensity, the number and the frequency of the taps can
be controlled. The “density” or packing fraction η of the
system is measured through the vertical position of the
upper grains in the container. Our experimental set-up
has been precisely reported in [12,11] for 2D experiments
and in [13] for 3D experiments.

In a second part of our experiments, we have stud-
ied the influence of the cohesion between the grains on
the compaction dynamics. For that study, we used a com-
mon pharmaceutical powder: lactose grains (Avicel). The
typical size of the grains is 50 µm. Moreover, the grains
are anisotropic objects (see Fig. 3). In order to modify
the cohesion between the grains, we added a small (0.5%)
amount of Aerosil. The Aerosil is a powder made of nano-
particles, commonly used in pharmaceutical industries to
increase the flowability of a lactose system. Indeed, after
mixing, these nano-particles are situated at the surface of
Avicel grains. They decrease the Van der Waals interac-
tions between those grains. In this study of powders, we
produced only a few thousands of taps. Indeed, after this
number of taps, the system becomes a brittle pellet. We
performed the powder compaction experiments only in the
3D cylindrical container.

3.2 Compaction curves

Typical compaction curves η(n) are presented in Figure 4
for spherical lead beads and in Figure 5 for cylindrical
grains. The curves on both Figures 4 and 5 underline the
different behaviors we expect from 2D and 3D situations.
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Fig. 3. SEM micrograph of lactose avicel grains. This picture
reveals the anisotropic nature of those grains. Picture taken by
Bodson [9].
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Fig. 4. Two compaction curves η(n) for lead spherical beads
placed onto an electromagnetic hammer. Both cases corre-
spond respectively to 2D and 3D situations. We substract the
initial packing fraction η0 in order to obtain curves starting
from the same point. The 2D data are fitted by the stretched
exponential law (2). The 3D data are better fitted by the in-
verse logarithmic law (1).

Table 2. Summary of the different parameters obtained from
the compaction curves presented in Figures 4 and 5.

Spherical grains Cylindrical grains
2D η0 = 0.825, η∞ = 0.862 η0 = 0.775, η∞ = 0.877

∆η = 0.037 ∆η = 0.102
3D η0 = 0.560 , η∞ = 0.595 η0 = 0.546 , η∞ = 0.738

∆η = 0.035 ∆η = 0.192

The parameters extracted from these compaction curves
are summarized in Table 2.

For spherical particles, the 2D case exhibits a fast com-
paction kinetics since the data is nearly approached by
a stretched exponential law (2), as suggested by recent
works [4,11]. This stretched exponential law can be ex-
plained by the presence of crystallization during the com-
paction process in the 2D pile [11]. Indeed, we observe
some domains of hexagonally packed grains (see region 1
in Fig. 1a). These domains grows during the compaction
process [11]. At the end of the process, nearly all the grains
are hexagonally packed in the container. The final packing
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Fig. 5. Two compaction curves η(n) for glass cylindrical grains
placed onto an electromagnetic hammer. Both cases corre-
spond respectively to 2D and 3D configurations. We substract
the initial packing fraction η0 in order to obtain curves starting
from the same point. The first stage of the curve correspond-
ing to the 2D case is fitted by a stretched exponential law (2).
The first stage of the 3D curve is better fitted by the inverse
logarithmic law (1). The second stage of the 3D curve is fitted
by a stretched exponential law (2).

fraction η∞ ≈ 0.862 is still lower than the hexagonal pack-
ing fraction ηh & 0.91. This is explained by the presence
of frozen defects in the packing. The growth of hexag-
onal domains in the pile can be modeled by the Avrami
model of crystallization [11]. This model assumes an expo-
nent β = 0.5 in the 2D geometry. One should note that,
in the experiments in Rennes [4,5], the exponential sat-
uration of the density is due to a competition between
compaction and convection. This competition induces a
clear saturation of the density at the end of the process.
In our experiment, the steady state is mainly due to the
crystallization. Therefore, we obtain the same stretched
exponential law but the mechanisms explaining this law
could have different origins.

The 3D pile of spherical grains exhibits a much slower
compaction kinetics than the 2D case. This curve is better
fitted by an inverse logarithmic law (1) proposed by inde-
pendent studies [1,2]. The parameter B is fixed to unity
in order to have only two free fitting parameters: τ and
η∞. The 3D case is fundamentally different from the 2D
case since crystallization is far to be observed in the bulk,
even if the grains situated near the walls seems to be ide-
ally ordered. Indeed, both values of the initial η0 and final
packing fraction η∞ are much lower than the random close
packed limit ηRCP & 0.64.

With cylindrical particles, the compaction dynamics
is more complicated. We observe two successive stages in
the compaction process (see Fig. 5). An exponential satu-
ration is followed by a jump of the packing fraction. The
presence of two stages can be explained by the analysis of
the grain organization. In the 2D pile, we observe some
domains of aligned grains (see region 2 in Fig. 1c) and
some domains of aligned and ordered grains (see region 3
in Fig. 1c). In the first part of the compaction process, the
domains of aligned grains are growing [12]. At the end of
the compaction process, these domains are sheared to form
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aligned and ordered domains. Those mechanisms give rise
to two successive stages in the compaction dynamics.

The compaction dynamics of the 3D pile of cylindrical
particles exhibits also two successive stages (see Fig. 5).
This particular compaction dynamics has been also ob-
served by Villaruel et al. [14]. The presence of two stages
is clearly explained by a transition between a disordered
initial state and a “nematic” final state. Indeed, at the
beginning of the compaction process, the pile is com-
pletely disordered. After a few thousands of taps, the
grains started to align themselves along the vertical di-
rection. The first compaction stage is fitted by an inverse
logarithmic law (1). At the end of the second compaction
stage, we observe a clear saturation of the density η. This
saturation is better fitted by a stretched exponential law.

From these observations, we can draw a general con-
clusion about the compaction dynamics. When some crys-
tallization is observed inside the bulk, the compaction dy-
namics is better fitted by a stretched exponential law (2).
Otherwise, the compaction dynamics is logarithmic.

3.3 The role of friction

The great majority of studies on compaction dynamics
considered the geometry of the grains and the level of
disorder in the packing. The role of microscopic physical
parameters such as friction, deformation, inelasticity and
cohesion has rarely been treated experimentally.

Two kinds of polydisperse ceramic beads were stud-
ied. They are characterized by different surface roughness
values. Except this particular difference, grains are identi-
cal in size distribution, shape, weight, etc. Those grains
are considered below as “smooth” and “rough” beads.
Beads are placed in the 3D container (vertical tube). The
compaction experiments have been repeated five times for
both types of grains. The compaction curves for both sur-
face properties are presented in Figure 6. Table 3 sum-
marizes the data extracted from these compaction curves.
The high packing fraction values (0.586 < η < 0.648)
measured in the system are explained by the high poly-
dispersity (15%) of the grains. Both compaction curves
are fitted by the inverse logarithmic law (1). We observe
a relevant difference of packing fraction between “rough”
and “smooth” particles. Indeed, both initial η0 and final
packing fractions η∞ have larger values for “smooth” par-
ticles. This difference means that “smooth” grains are able
to find a better organization (a grain arrangement that
minimizes the local potential energy) than the rough par-
ticles. However, the characteristic time τ has almost the
same value within error bars. Friction does not seem to af-
fect the compaction dynamics. That experimental result
was unexpected.

3.4 The role of cohesion (for powders)

The flow properties of a powder composed by microscopic
grains are quite different from the case of granular mate-
rials made of millimetric grains [15]. This difference is due
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Fig. 6. Two typical compaction curves proving the important
role of friction. Indeed, both experiments are done with either
smooth or rough identical ceramics beads. We substract the
initial packing fraction η0 in order to obtain curves starting
from the same point. Both curves are fitted by the inverse
logarithmic law (1).

Table 3. Summary of the parameters extracted from com-
paction curves of “rough” and “smooth” ceramic beads.

“Rough” “Smooth”
η0 = 0.586 η0 = 0.594
η∞ = 0.634 η∞ = 0.651
τ = 11 ± 2 τ = 14 ± 2

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

100 101 102 103

η 
- 

η 0

n + 1

avicel
avicel + aerosil

Fig. 7. Two compaction curves proving the important role of
cohesion. We substract the initial packing fraction η0 in order
to obtain curves starting from the same point. Both curves are
fitted by the inverse logarithmic law (1).

to the Van der Waals interactions between the grains in
the powder. In this section, we study the influence of this
cohesion on the compaction dynamics.

Two kinds of powders are studied which are character-
ized by different cohesive forces between the grains. The
first compaction experiment has been performed with a co-
hesive lactose powder (Avicel). The second one has been
made with the same powder and a small amount (0.5%)
of Aerosil. The presence of Aerosil reduces drastically the
Van der Waals interactions between the grains. Figure 7
presents both compaction curves. The inverse logarithmic
law (1) fits correctly both compaction curves. The pa-
rameters extracted from the fits are presented in Table 4.



6 The European Physical Journal E

Table 4. Summary of the parameters extracted from the fit
of both compaction curves of powder presented in Figure 7.

Avicel Avicel + Aerosil
η0 = 0.224 η0 = 0.248
η∞ = 0.314 η∞ = 0.310
τ = 32 ± 2 τ = 12 ± 2

For both powders, the packing fraction is lower than the
packing fraction of a pile of millimetric grains. Moreover,
when the cohesion between the grains increases, the initial
packing fraction η0 decreases. The variation of the pack-
ing fraction η∞ − η0 increases also with cohesion. The
major difference between both curves is observed in the
compaction dynamics. Indeed, the characteristic time τ
varies strongly with the cohesion. This characteristic time
is shortens when the cohesion decreases.

4 Numerical approach

Because of the complexity of compaction experiments
and some limitations of theoretical approaches, numerical
models have been elaborated in order to reproduce com-
paction. Earlier models, like “Tetris-like” models, were
computed on lattices [7]. Those probabilistic models [8],
i.e. including randomness in the grain motions, reproduce
the logarithmic law (1) proposed in the first experimental
studies. More recently, off-lattice models have been also
developed [16,17]. The off-lattice models or DEM (Dis-
crete Element Method), which are deterministic ones, lead
also to the logarithmic compaction law (1). One of the ma-
jor advantages of the numerical studies is the possibility to
control some physical parameters, including microscopic
properties of grains like friction. The latter are often not
experimentally accessible.

In this section, a numerical work about the influence
of friction on the compaction kinetics is reported. Several
works have already approached the problem of friction
in granular materials [18], some of them for stress prop-
agation [19]. For example, the properties of static piles
composed by spheres versus the friction has been stud-
ied earlier [20]. However, the influence of friction on the
compaction dynamics is less known, even though “Tetris-
like” models [8,21] have been recently proposed for that
purpose.

4.1 Numerical model

The numerical model we developed is a DEM-based model
which considers Non-Smooth Contact Dynamics (NSCD)
used for granular problems [22,23]. The NSCD builds a
link between all forces in the pile and the grain motions
through the Newton’s equations. For a complete deter-
mination of all force values, the model is based on the
Signorini-Coulomb diagrams, which are non-smooth in op-
position to the case of Molecular Dynamics (MD) as pre-
sented in Figure 8.

Nµ

Nµ

Signorini Coulomb

N T

Vt

δ

MD

Vn

NSCD −

Fig. 8. (Left) Signorini diagram which links the normal
force N to the overlap δ between two grains (MD, in dark grey)
or to the relative normal velocity vn (NSCD, in light grey).
(Right) Coulomb diagram which links the tangential force T
to the relative tangential velocity vt by projection on the ex-
treme values ±µN .

The model supposes that the grains are solid particles
and that the contacts are of punctual nature. In molecu-
lar dynamics (MD), each contact is computed alone and
a contact force is evaluated from the overlap δ between
grains (see the Signorini diagram of Fig. 8). The MD
characteristic time is the collision time. In opposition, all
contacts in NSCD are computed simultaneously and the
model makes a complete stress network in the pile, at each
time step. The grain overlap δ is never considered in the
force calculation. The characteristic time is thus associ-
ated with the motion of the grains. The NSCD simulations
are thus more efficient than MD ones for modeling long
relaxation times.

For all numerical simulations in this work, the piles
were prepared by a gravitational deposition (rain-like) of
the grains. The grains are first placed on a virtual 2D ran-
dom lattice with random velocities, before relaxing until
a stable position has been reached. The taps are realized
though a sinusoidal vertical motion of the container over
one period; i.e.

z = A sin(ωt + φ) (9)

where ω = 2πf , φ = −π/2. The amplitude and frequency
are linked to the reduced acceleration Γ :

Γ =
Aω2

g
. (10)

In this work, all simulations are realized for f = 32Hz
and Γ = 6. The time between two successive taps is taken
larger than the relaxation time associated to the pile. It
should be noted that those conditions are close to the ones
of the Rennes experiment.

4.2 The effect of friction

In opposition to the experimental works described above,
the numerical simulations allow to control exactly the fric-
tion coefficient between the grains. Borders have been first
considered in the simulations in order to estimate the ef-
fect of wall friction. For high values of the friction coef-
ficient, two convection cells appear as shown in Figure 9.
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Fig. 9. Evolution of a granular packing during compaction
n = 1, 10, 100 and 1000. The friction coefficient µ is equal to
0.75. Granular mixing is observed due to convection. Indeed,
two convection rolls appear in the last picture where the arrows
represent the average displacements of the grains during the
process.

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.0 0.2 0.4 0.6 0.8 1.0

η

µ

n = 0
n = 1000

Fig. 10. The initial packing fraction η0 and the packing frac-
tion after n = 103 taps as a function of the friction coefficient µ.

Close to the borders, the grains are moving from top to
bottom and the grains have an upward motion in the cen-
ter of the pile.

As presented in Figure 9, the stripes of colored grains
are quickly deformed and disappear at the end of the sim-
ulation (after n = 1000 taps). Convection takes place in
the pile for all values of the coefficient of friction. For low
friction values, the characteristic time of convection could
be higher than the simulation time. Typically, for a co-
efficient of friction equals to µ = 0.5 or higher, granular
convection becomes important and the compaction pro-
cess is by convection. In order to avoid convection, the
simulations were performed periodic boundary conditions
and the same aspect ratio of the pile in Figure 9.

The simulations were realized with a limited number
of particles (N = 250) for efficient simulation runs. More-
over, the periodic boundary conditions limit the finite-
size effects due to the small number of grains. Figure 10
presents the evolution of the initial density η0 as a func-
tion of the friction coefficient µ. The case µ = 0 considered
here, is an extreme situation which could be encountered
experimentally [24]. The initial packing fraction decreases
when the friction coefficient increases. The relationship be-
tween those variables is strong. This is in agreement with
the experimental observations of the previous section.

The compaction process has been computed for five
different values of the friction coefficient µ = 0.00, 0.25,
0.50, 0.75 and 1.00. Figure 11 presents typical compaction

Fig. 11. Five typical compaction curves for different friction
coefficients µ = 0.00, 0.25, 0.50, 0.75 and 1.00. The dimension-
less acceleration of the pile during each tap is Γ = Aω2/g = 6.
We substract the initial packing fraction η0 in order to obtain
curves starting from the same point.
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Fig. 12. Normalized volume fraction (η − η0)/(η∞ − η0) as
a function of n for the five values of the friction coefficient:
µ = 0.00, 0.25, 0.50, 0.75 and 1.00.

curves for a dimensionless acceleration Γ = 6. The fric-
tionless packing has a weak compaction kinetics because
the initial packing fraction has a high value. The friction
has a strong influence on the initial state which influences
the subsequent compaction kinetics. For higher numbers
of taps, the compaction kinetics appears to reach the same
final state (η∞) which is independent of the value of the
friction coefficient (see white open circles in Fig. 10). The
final state depends mainly on grains and tap character-
istics. Figure 12 presents the normalized volume fraction
as a function of the tap number. The behaviour of com-
paction for the frictionless case is different from the others
ones. For the others values of the friction coefficient no rel-
evant difference appears. The compaction dynamics seems
to be unaffected by µ > 0. This result corroborates our
experimental data (see Sect. 3.3).

4.3 Numerical challenges

The major limitation of numerical studies is the relative
small number of grains. For considering realistic systems
like powders, a much larger number of grains is needed.
However, the simulation time depends strongly on the
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number of particles. Future efforts will be made in order
to reach higher numbers of particles in efficient simulation
times. This will allow us to consider cohesion in addition
of friction in large assemblies.

5 Conclusions

We have experimentally investigated the kinetics of granu-
lar compaction. Our analysis shows that this phenomenon
is a slow relaxation influenced by microscopic characteris-
tics of the grains. Three important observations have been
made :

(i) When a crystallization is observed during the com-
paction process, the compaction dynamics is better
fitted by a stretched exponential law (2). Otherwise,
for disordered piles, the compaction dynamics is bet-
ter fitted by a logarithmic law (1).

(ii) The friction between the grains does not change dras-
tically the characteristic time τ for compaction. How-
ever, both initial and final packing fraction values
vary strongly with the friction coefficient µ. This re-
sult has been confirmed by numerical simulations.

(iii) The cohesion between the grains affects the initial
packing fraction value η0. The cohesion increases the
range of accessible packing fraction values ∆η and
increases strongly the characteristic time τ for com-
paction.
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