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RELATIVISTIC CALCULATION OF OSCILLATOR STRENGTHS OF THE  RADIATION 
TRANSITIONS BETWEEN BARIUM RYDBERG STATES

The combined relativistic energy approach and relativistic many-body perturbation theory with the zeroth order Dirac-
Kohn-Sham one-particle approximation are used for preliminary estimating the energies and oscillator strengths of radiative 
transitions from the ground state to the low-excited and Rydberg states, in particular, 6s2 -6snp (n =7-30) transitions, 
of the barium atom. The comparison of the calculated oscillator strengths with available theoretical and experimental 
(compillated) data is performed. The important point is linked with non-accounting for the polarization effect contribution 
into the oscillator strength value that has led to ~40% difference between the empirical (compillated) and theoretical data.

1.  Introduction

The research in many fields of modern atom-
ic physics (spectroscopy, spectral lines theory, 
theory of atomic collisions etc), astrophysics, 
plasma physics, laser physics and quantum and 
photo-electronics requires an availability of sets 
of correct data on the energetic, spectroscopic 
and structural properties of atoms, especially in 
the high excited, Rydberg states. Naturally, the 
correct corresponding data about radiative de-
cay widths, probabilities and oscillator strengths 
of atomic transitions are needed in building ad-
equate astrophysical models, realizing regular 
astrophysical, laboratory, thermonuclear plasma 
diagnostics and in fusion research. Besides, a 
great interest to studying Rydberg atomic states 
parameters  can be easily explained by a power-
ful development of such new fields as quantum 
computing, and quantum cryptography, construc-
tion of new type Rydberg atomic lasers etc. Tra-
ditionally, considerable attention is devoted to 
studying the energetic and spectral characteristics 
of the light atoms  (H, He, Li etc) and correspond-
ing multicharged ions. However, studying spec-
tral characteristics of heavy atoms and ions in the 
Rydberg states has to be more complicated as it 
requires a necessary accounting the relativistic , 
exchange-correlations effects and possibly the 
QED corrections for superheavy atomic systems. 
There have been sufficiently many reports of cal-

culations and compilation of energies and oscil-
lator strengths for the barium and even Ba-like 
ions (see, for example, [1–3] and refs. therein), 
however, an accuracy of theses data call for fur-
ther serious analysis and calculation.  In many pa-
pers the Dirac-Fock method, model potential ap-
proach, quantum defect approximation in the dif-
ferent realizations have been used for calculating  
the energy and spectral properties of barium and 
it has been shown that an account of the polariza-
tion interelectron corrections is of a great quan-
titative importance. The consistent relativistic 
perturbation theory calculations  of the transitions 
energies and oscillator strengths for some chosen 
transitions between the Rydberg states are per-
formed in Refs. [4].  However, it should be stated 
that for majority of the barium Rydberg states and 
Ba-like ions with high values of a nuclear charge 
Z, there is not enough precise information avail-
able in literatures [1-3]. In our paper the com-
bined relativistic energy approach and relativistic 
many-body perturbation theory with the zeroth 
order Dirac-Kohn-Sham 1-particle approxima-
tion are used for preliminary estimating the en-
ergies and oscillator strengths of radiative transi-
tions from the ground state to the low-excited and 
Rydberg states, in particular, 6s2 -6snp (n =7-50) 
transitions, of the barium atom. The comparison 
of the calculated oscillator strengths with avail-
able theoretical and experimental (compillated) 
data is performed. The important point is linked 
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with non-accounting for the polarization effect 
contribution into the oscillator strength value that 
has led to ~30% difference between the empirical 
(compillated) and theoretical data

2.  The theoretical method

In the relativistic energy approach [4-9], which 
has received a great applications during solving 
numerous problems of atomic, molecular and nu-
clear physics (e.g. , see Refs. [10-59]), the imagi-
nary part of electron energy shift of an atom is  
directly connected with the radiation decay possi-
bility (transition  probability). An approach, using 
the Gell-Mann and Low formula with the QED 
scattering matrix, is used in treating the relativ-
istic atom. The total energy shift of the state is 
usually presented in the form:

                                 (1)

where G is interpreted as the level width, and the 
decay possibility P = G. The imaginary part of 
electron energy of the system, which is defined 
in the lowest order of perturbation theory as [4]: 

         (2)

where (a>n>f)  for electron and (a<n<f)  for va-
cancy. The matrix element is determined as fol-
lows:

                   (3)

The separated terms of the sum in (3) represent 
the contributions of different channels and a prob-
ability of the dipole transition is: 

                                      (4)

The corresponding oscillator strength: 

             
where g is the degeneracy degree,  l is a wave-
length in angstrems (Ǻ). Under calculating the 
matrix elements (3) one should use the angle 

symmetry of the task and write the expansion for 
potential sin|w|r12/r12  on spherical functions as 
follows [4]: 
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·

where J  is the Bessel function of first kind and 
(l)= 2l + 1. This expansion is corresponding to 
usual multipole one for probability of radiative 
decay. Substitution of the expansion (5) to matrix 
element of interaction gives as follows [5-8]: 
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where ji is the total single electron momentums, 
mi – the projections; QCul is the Coulomb part of 
interaction, QBr - the Breit part. Their detailed 
definitions are presented in Refs. [4,20]. The de-
tailed expressions for the Coulomb and Breit parts 
and the corresponding radial Rl and angular  Sl  in-
tegrals can be found in Refs. [22-32].The total 
probability of a l - pole transition is usually rep-

resented as a sum of the electric EPl  and magnetic 
MPl  parts. The electric (or magnetic) l - pole 

transition g d→  connects two states with pari-
ties which by l ( or l +1) units. In our designa-
tions 
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In our work the relativistic wave functions 
are determined  by solution of the Dirac equa-
tion with the potential, which includes the modi-
fied Kohn-Sham exchange potential  [17] insist 
of the standard Fock one. The important point of 
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where (>n>f)  for electron and (<n<f)  for 
vacancy. The matrix element is determined 
as follows: 
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The separated terms of the sum in (3) 
represent the contributions of different 
channels and a probability of the dipole 
transition is:  
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where g is the degeneracy degree,   is a 
wavelength in angstrems (Ǻ). Under 
calculating the matrix elements (3) one 
should use the angle symmetry of the task 
and write the expansion for potential 
sinr12/r12  on spherical functions as 
follows [4]:  
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where ji is the total single electron 
momentums, mi – the projections; QCul is the 
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where J  is the Bessel function of first kind 
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where ji is the total single electron 
momentums, mi – the projections; QCul is the 
Coulomb part of interaction, QBr - the Breit 
part. Their detailed definitions are presented 
in Refs. [4,20]. The detailed expressions for 
the Coulomb and Breit parts and the 
corresponding radial R and angular  S  
integrals can be found in Refs. [22-32].The 
total probability of a  - pole transition is 
usually represented as a sum of the electric 

EP  and magnetic MP  parts. The electric (or 
magnetic)  - pole transition    
connects two states with parities which by 
 ( or  +1) units. In our designations  

and experimental (compillated) data is 
performed. The important point is linked 
with non-accounting for the polarization 
effect contribution into the oscillator strength 
value that has led to ~30% difference 
between the empirical (compillated) and 
theoretical data 

 
2.  The theoretical method 

In the relativistic energy approach [4-9], 
which has received a great applications 
during solving numerous problems of atomic, 
molecular and nuclear physics (e.g. , see 
Refs. [10-59]), the imaginary part of electron 
energy shift of an atom is  directly connected 
with the radiation decay possibility 
(transition  probability). An approach, using 
the Gell-Mann and Low formula with the 
QED scattering matrix, is used in treating the 
relativistic atom. The total energy shift of the 
state is usually presented in the form: 

 
                E = ReE + i /2                   (1) 

 
where  is interpreted as the level width, and 
the decay possibility P = . The imaginary 
part of electron energy of the system, which 
is defined in the lowest order of perturbation 
theory as [4]:  

 

 





fn
fn

nn
nVeBE








  

2

4
)(Im

,          (2) 
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as follows: 
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The separated terms of the sum in (3) 
represent the contributions of different 
channels and a probability of the dipole 
transition is:  
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where g is the degeneracy degree,   is a 
wavelength in angstrems (Ǻ). Under 
calculating the matrix elements (3) one 
should use the angle symmetry of the task 
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where J  is the Bessel function of first kind 
and ()= 2 + 1. This expansion is 
corresponding to usual multipole one for 
probability of radiative decay. Substitution of 
the expansion (5) to matrix element of 
interaction gives as follows [5-8]:  
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where ji is the total single electron 
momentums, mi – the projections; QCul is the 
Coulomb part of interaction, QBr - the Breit 
part. Their detailed definitions are presented 
in Refs. [4,20]. The detailed expressions for 
the Coulomb and Breit parts and the 
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integrals can be found in Refs. [22-32].The 
total probability of a  - pole transition is 
usually represented as a sum of the electric 
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where J  is the Bessel function of first kind 
and ()= 2 + 1. This expansion is 
corresponding to usual multipole one for 
probability of radiative decay. Substitution of 
the expansion (5) to matrix element of 
interaction gives as follows [5-8]:  
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where ji is the total single electron 
momentums, mi – the projections; QCul is the 
Coulomb part of interaction, QBr - the Breit 
part. Their detailed definitions are presented 
in Refs. [4,20]. The detailed expressions for 
the Coulomb and Breit parts and the 
corresponding radial R and angular  S  
integrals can be found in Refs. [22-32].The 
total probability of a  - pole transition is 
usually represented as a sum of the electric 

EP  and magnetic MP  parts. The electric (or 
magnetic)  - pole transition    
connects two states with parities which by 
 ( or  +1) units. In our designations  
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where J  is the Bessel function of first kind 
and ()= 2 + 1. This expansion is 
corresponding to usual multipole one for 
probability of radiative decay. Substitution of 
the expansion (5) to matrix element of 
interaction gives as follows [5-8]:  
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where ji is the total single electron 
momentums, mi – the projections; QCul is the 
Coulomb part of interaction, QBr - the Breit 
part. Their detailed definitions are presented 
in Refs. [4,20]. The detailed expressions for 
the Coulomb and Breit parts and the 
corresponding radial R and angular  S  
integrals can be found in Refs. [22-32].The 
total probability of a  - pole transition is 
usually represented as a sum of the electric 

EP  and magnetic MP  parts. The electric (or 
magnetic)  - pole transition    
connects two states with parities which by 
 ( or  +1) units. In our designations  
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In our work the relativistic wave functions 
are determined  by solution of the Dirac 
equation with the potential, which includes 
the modified Kohn-Sham exchange potential  
[17] insist of the standard Fock one. The 
important point of the many-body 
calculations is in accurate account of the 
exchange–correlation effects [5-15]. 
However, in this preliminary studying the 
energy and spectroscopic parameters of the 
barium spectra we are limited by non-
accounting for the polarization effect 
contribution and other correlation 
corrections. Its consistent and accurate 
accounting will be considered in the next 
paper. All calculations are performed on the 
basis of the modified numeral code 
Superatom (version 93). 

 
3.  Results and conclusion 

Table 1.2 shows the energies and oscillators 
strengths of the transitions between the terms 
of the configurations 6s2 -6snp (n~50). 
Taking into account a great size of the 
obtained data we are limited below only by 
some data. As it has been underlined above, 
here during this preliminary studying the 
energy and spectroscopic parameters of the 
barium spectra we were  limited by non-
accounting for the polarization effect 
contribution and other correlation 
corrections. By the way, it is well-known that 
the similar complicated atomic systems, 
spectra and corresponding computing the 
radiative parameters require very accurate 
accounting for the different groups of the 
many-body exchange-correlation effects (see, 
for example, refs. [5-25]). Moreover, only 
such a way is able to provide spectral data 
with sufficient accuracy for modern 
spectroscopic applications. Such calculations 
are now in progress and more full 
information will be presented in the next 
papers special Preprint.  

Table 1. The energy (cm-1) and the oscillators 
strengths of 6s2 -6snp transitions (see text) 

Transition Terms E (cm-1) 
[2] 

gf  
[2] 

gf (our) 

6s2 -6s13p 1S-1Po 40763 2.1-4 1.3-4 
6s2 -6s15p 1S-1Po 41183 1.4-3 0.8-3 
6s2 -6s16p 1S-1Po 41306 6.0-4 3.8-4 

 
Table 2. The energy (cm-1) and the 
oscillators strengths of the 6s2 -6snp 

transitions (n = 16-30; our data) 
Transition Terms E (cm-1) gf 
6s2 -6s16p 1S-1Po 41306 3.7-4 
6s2 -6s20p 1S-1Po 41615 0.6-4 
6s2 -6s21p 1S-1Po 41662 1.8-5 
6s2 -6s30p 1S-1Po 41871 2.2-5 

 
We are planning to pay especial attention on 
the accurate accounting for the different 
groups of the many-body exchange-
correlation effects  and consider a problem of 
using the optimized one-particle 
representation and account for the 
polarization effect. It is obvious that a 
possible estimate of the gauge-non-invariant 
contributions (the difference between the 
oscillator strengths values calculated with 
using the transition operator in the form of 
length and velocity) will be of order  40%, 
i.e. results, obtained with using  different 
photon propagator gauges (Coulomb, Landau 
etc) differ  significantly (see [6, 60-62]).   
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the many-body calculations is in accurate account 
of the exchange–correlation effects [5-15]. How-
ever, in this preliminary studying the energy and 
spectroscopic parameters of the barium spectra 
we are limited by non-accounting for the polar-
ization effect contribution and other correlation 
corrections. Its consistent and accurate account-
ing will be considered in the next paper. All calcu-
lations are performed on the basis of the modified 
numeral code Superatom (version 93).

3.  Results and conclusion

Table 1, 2 shows the energies and oscillators 
strengths of the transitions between the terms of 
the configurations 6s2 -6snp (n~50). Taking into 
account a great size of the obtained data we are 
limited below only by some data. As it has been 
underlined above, here during this preliminary 
studying the energy and spectroscopic parameters 
of the barium spectra we were  limited by non-
accounting for the polarization effect contribution 
and other correlation corrections. By the way, it is 
well-known that the similar complicated atomic 
systems, spectra and corresponding computing 
the radiative parameters require very accurate 
accounting for the different groups of the many-
body exchange-correlation effects (see, for exam-
ple, refs. [5-25]). Moreover, only such a way is 
able to provide spectral data with sufficient accu-
racy for modern spectroscopic applications. Such 
calculations are now in progress and more full 
information will be presented in the next papers 
special Preprint. 

Table 1

The energy (cm-1) and the oscillators strengths 
of 6s2 -6snp transitions (see text)

Transition Terms E (cm-1)
[2]

gf 
[2]

gf (our)

6s2 -6s13p 1S-1Po 40763 2.1-4 1.3-4

6s2 -6s15p 1S-1Po 41183 1.4-3 0.8-3

6s2 -6s16p 1S-1Po 41306 6.0-4 3.8-4

Table 2 

The energy (cm-1) and the oscillators strengths 
of the 6s2 -6snp transitions (n = 16-30; our data)

Transition Terms E (cm-1) gf
6s2 -6s16p 1S-1Po 41306 3.7-4
6s2 -6s20p 1S-1Po 41615 0.6-4
6s2 -6s21p 1S-1Po 41662 1.8-5
6s2 -6s30p 1S-1Po 41871 2.2-5

We are planning to pay especial attention on 
the accurate accounting for the different groups 
of the many-body exchange-correlation effects  
and consider a problem of using the optimized 
one-particle representation and account for the 
polarization effect. It is obvious that a possible 
estimate of the gauge-non-invariant contributions 
(the difference between the oscillator strengths 
values calculated with using the transition opera-
tor in the form of length and velocity) will be of 
order  40%, i.e. results, obtained with using  dif-
ferent photon propagator gauges (Coulomb, Lan-
dau etc) differ  significantly (see [6, 60-62]).  
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RELATIVISTIC CALCULATION OF OSCILLATOR STRENGTHS OF THE   
RADIATION TRANSITIONS BETWEEN BARIUM RYDBERG STATES

Summary
The combined relativistic energy approach and relativistic many-body perturbation theory with the 

zeroth order Dirac-Kohn-Sham one-particle approximation are used for preliminary estimating the 
energies and oscillator strengths of radiative transitions from the ground state to the low-excited and 
Rydberg states, in particular, 6s2 -6snp (n =7-50) transitions, of the barium atom. The comparison of 
the calculated oscillator strengths with available theoretical and experimental (compillated) data is 
performed. The important point is linked with non-accounting for the polarization effect contribution 
into the oscillator strength value that has led to ~40% difference between the empirical (compillated) 
and theoretical data.
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E. В. Терновский, О. А. Антошкина, Т. А. Флорко, Т. Б. Ткач

РЕЛЯТИВИСТСКИЙ РАСЧЕТ СИЛ ОСЦИЛЛЯТОРОВ РАДИАЦИОННЫХ 
ПЕРЕХОДОВ МЕЖДУ РИДБЕРГОВСКИМИ СОСТОЯНИЯМИ БАРИЯ

Резюме
Комбинированный релятивистский энергитический подход и релятивистская теория 

возмущений многих тел с дирак-кон-шэмовским одночастичным приближением нулевого 
порядка используются для предварительной оценки энергий и сил осцилляторов радиационных 
переходов из основного состояния в низкие возбужденные и ридберговские состояния, в 
частности, 6s2 -6snp (n =7-50) переходоваирма бария. Выполнено cравнение расчетных сил 
осцилляторов с имеющимися теоретическими и экспериментальными данными. Важнейшая 
особенность связана с неучетом вклада в величину силы осцилятора, обусловленного эффектом 
поляризации остова и некоторіми другими  корреляционными поправками, что приводит к ~40% 
отличию между экспериментальными (компиллированными) и теоретическими данными. 

Ключевые слова: релятивистская теория, силы осцилляторов, радиационные переходы.
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РЕЛЯТИВІСТСЬКИЙ РОЗРАХУНОК СИЛ ОСЦИЛЯТОРІВ РАДІАЦІЙНИХ 
ПЕРЕХОДІВ МІЖ РІДБЕРГІВСЬКИМИ СТАНАМИ БАРІЯ 

Резюме
Комбінований релятивістський енергетичний підхід і релятивістська багаточастинкова 

теорія збурень з дірак-кон-шемівським одночастинковим наближенням нульового порядку 
використовуються для попередньої оцінки енергій і сил осциляторів радіаційних переходів 
з основного стану в низько збуджені і рідбергівські стани, зокрема, 6s2 -6snp (n = 7 -50) 
переходів атома барія. Виконано порівняння розрахункових сил осциляторів з наявними 
теоретичними і експериментальними даними. Найважливіша особливість даного розрахунку 
пов’язана з неврахуванням вкладу в величину сили осцилятора, обумовленого ефектом 
поляризації остова та  декотрими іншими кореляційними поправками, що призводить до  
~ 40% відмінності між експериментальними (компіллірованними) і теоретичними даними. 

Ключові слова: релятивістська теорія, сили осцилляторів, радіаційнні переходи, 
рідбергівські стани.


