Advances in Quantum Chemistry

Quantum Systems in Physics, Chemistry and Biology–Theory, Interpretation and Results

Volume 78

Volume Editors Samantha Jenkins, Steven R. Kirk, Jean Maruani, and Erkki J. Brändas

Series Editors John R. Sabin and Erkki J. Brändas

Advances in QUANTUM CHEMISTRY

Quantum Systems in Physics, Chemistry and Biology - Theory, Interpretation, and Results

Edited by

SAMANTHA JENKINS

College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, The People's Republic of China

STEVEN R. KIRK

College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, The People's Republic of China

JEAN MARUANI LCP-MR, CNRS & UPMC, 4 place Jussieu, Paris, France

ERKKI J. BRÄNDAS

Department of Chemistry, Uppsala University, Uppsala, Sweden

7.	Nonlinear Chaotic Dynamics of Quantum Systems: Molecules in an Electromagnetic Field	149
	Anna V. Ignatenko, Anna A. Buyadzhi, Vasily V. Buyadzhi, Anna A. Kuznetsova, Alexander A. Mashkantsev, and Eugeny V. Ternovsky	
	 Introduction Regular and Chaotic Dynamics of Diatomic Molecule Interacting 	150
	With a Resonant Electromagnetic Field 3. A Chaos-Geometric Approach to Analysis and Modelling of Nonlinear	152
	Dynamics of Quantum Systems in an Electromagnetic Field A. Diatomic Molecule ZrO in a Resonant Electromagnetic Field: Computational	156
	5. Conclusions	163
	References	163
8.	Advanced Quantum Approach in Radiative and Collisional Spectroscopy of Multicharged Ions in Plasmas	171
	Vasily V. Buyadzhi, Anna A. Kuznetsova, Anna A. Buyadzhi, Eugeny V. Ternovsky, and Tatyana B. Tkach	
	1. Introduction	172
	 Radiative and Collisional Spectroscopy of Multicharged 	
	Ions: Relativistic Many-Body Perturbation Theory and Relativistic Energy	
	Approach Persuits and Constructions	174
	Acknowledgments	184
	References	184
9.	Quantum Chemistry and Spectroscopy of Pionic Atomic Systems With Accounting for Relativistic, Radiative, and Strong Interaction Effects	193
	Yuliya V. Dubrovskaya, Olga Yu Khetselius, Larisa A. Vitavetskaya, Valentin B. Ternovsky, and Inga N. Serga	
	1. Introduction	194
	2. Relativistic Theory of Pionic Atomic Systems With Accounting for the	
	Electromagnetic and Strong Interaction Effects	198
	3. Results and Conclusions	205
	Acknowledgments	215
	References	215

In this work an advanced relativistic quantum approach to computing the important radiative and collisional characteristics of multicharged ions in the Debye plasmas is presented. The approach is based on the relativistic energy formalism (the Gell-Mann and Low formalism) and relativistic many-body perturbation theory (PT) with the Dirac-Debye shielding model Hamiltonian for electron-nuclear and electron-electron systems. The optimized one-electron representation in the PT zeroth approximation is constructed by means of the correct treating the gaugedependent multielectron contribution of the lowest PT corrections to the radiation widths of atomic levels. The computational results for the oscillator strengths and energy shifts due to the plasmas environment effect, the effective collision strengths for the Be- and Ne-like ions of Fe, Zn, and Kr embedded to different types of plasmas environment (with temperature 0.02-2 keV and electron density 10^{16} - 10^{24} cm⁻³) are presented and analyzed.. V. Buyadzhi, Vasily & A. Kuznetsova, Anna & A. Buyadzhi, Anna & V. Ternovsky, Eugeny & B. Tkach, Tatyana. (2018). Advanced Quantum Approach in Radiative and Collisional Spectroscopy of Multicharged Ions in Plasmas. 10.1016/bs.aiq.2018.06.002. In this work an advanced relativistic quantum approach to computing the important radiative and collisional characteristics of multicharged ions in the Debye plasmas is presented. The approach is based on the relativistic energy formalism (the Gell-Mann and Low formalism) and relativistic many-body perturbation theory (PT) with the Dirac-Debye shielding model Hamiltonian for electron-nuclear and electron-electron systems. The optimized oneelectron representation in the PT zeroth approximation is constructed by means of the correct treating the gauge-dependent multielectron contribution of the lowest PT corrections to the radiation widths of atomic levels. The computational results for the oscillator strengths and energy shifts due to the plasmas environment effect, the effective collision strengths for the Be- and Ne-like ions of Fe, Zn, and Kr embedded to different types of plasmas environment (with temperature 0.02-2 keV and electron density $10^{16}-10^{24}$ cm⁻³) are presented and analyzed.