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Abstract An advanced procedure for quantization of the quasi-stationary
states of the relativistic Dirac-Fock equation with a local potential is developed
within a gauge-invariant relativistic many-body perturbation theory ([1], [2]).
New numerical local Dirac-Fock approach to calculating spectra of the quantum
(atomic) systems with an account of relativistic and exchange-correlation

corrections is presented. Numerical test results are presented.
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1 Introduction

As it is known ([1]-[7]), the problems of calculating the eigen values and eigen
functions of the the different quantum operators is relating to a number of the
most important and actual problems of the modern quantum geometry and quan-
tum theory of the many-body systems. In this paper we present an advanced
procedure for quantization of the quasi-stationary states of the relativistic Dirac-
Fock equation with introduced local Dirac-Fock potential. All consideration, as
usually, is performed within gauge-invariant relativistic many-body perturba-
tion theory ([2], [3],[7]-[10]). In our previous papers [7]-[12] the same task has
been considered for a few classes of the relativistic differential equations (Dirac,
Dirac-Kohn-Sham, Dirac-Slater etc). The developed approaches have been tested
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on calculating a set of the energy and spectral parameters for different multi-
electron systems.Here we consider the Dirac-Fock equation with a local poten-
tial. The main difference of these equations of the standard Dirac-Fock ones is
that the standard equation contain non-local potential and correspondingly the
calculational scheme of their solving is very complicated because of the cited non-
locality (the exchange interaction term). The more details about the modern art
of state concerning calculating the eigen values of energies and eigen functions for
different operators (Hamiltonians) of the finite quantum (atomic) systems can
be found in a number of recent books (see, for example,[1]-[7] and references
therein)). we can remind such atomic multi-configuration Dirac-Fock codes as
the Desclaux program, Dirac package etc (see for example, [1]-[10]). The main
idea of our approach is in using the local Dirac-Fock equations, i.e. using suffi-
ciently simplified procedure for an account of relativistic, exchange-correlation
effects. The general potential in these equations includes the self-consistent local
mean field potential, the electric of a nucleus (within the Fermi model). New
element of the approach is connected with using ab initio consistent quantum
electrodynamics approach to construction of the optimal one-quasiparticle rep-

resentation in the local Dirac-Fock approach.

2 Local Dirac-Fock equation: quantization of the quasistationary

states

In this section we describe the key moments of our approach to quantization of
the quasistationary (stationary) states of the relativistic local Dirac-Fock equa-
tion which is indeed very similar to schemes of Refs.[7]-[10]), however contains
other potentials.

One-particle wave functions are found from solution of the relativistic local
Dirac-Fock equation, which can be written in the central field in a two-component

form (see, for example,([1], [5]):
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where all notations are standard, b is the special gauge-invariant parameter
(look below).Here we put the fine structure constant o = 1. The moment number
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The general potential Vj,.(b,r) includes the self-consistent local Dirac-Fock
potential (see, for example,([5], [11])). Further, as usually, (see [2],[7]), at large

x the radial functions F' and G vary rapidly at the origin of co-ordinates:
F(r),G(r) =, (3)
v =1/x2 - a2Z2.
This involves difficulties in numerical integration of the equations in the region
r — 0. To prevent the integration step becoming too small it is convenient
to turn to new functions isolating the main power dependence: f = Fri=Ixl,

g = Gr'~IxI. The Dirac equation for F and G components are transformed as

(in the Coulomb units):

4
g = (= DY — aZViec(b,1)f + 0ZEunf. )

Naturally, the system of Eq. (4) has two fundamental, solutions. As usually,

2
f/ = _(X + |XD£ - aZWOC(b,r)g - (aZEnX + ) g,

we are interested in the solution regular at » — 0. The boundary values of the
correct solution are found by the first term s of the expansion into the Taylor
series (see [2]):
(Vioe(0) — Epy)raZ
; =1 at 0
o1 ;o f at x <0,
2
f= (VZOC(O) — Eny — aQZ2> aZ; g=1 at x>0. (5)

The condition f,g — 0 at » — oo determines the quantified energies of the

state E,,. At correctly determined energy E,, of the asymptotic f and g at
r — 00 are:
frg ~exp(=r/n®), (6)
where n* = ,/m is the effective main quantum number. The Eq.(4) was
solved by the Runge-Kutt method (see details in ([1], [5]).
Regarding the nuclear potential of the local Dirac-Fock equation, as in
Refs.( [2], [7]) we use the Gauss model for the charge distribution in the nu-

cleus p(r). According to [2] one could write:

4 3/2
prIR) = = — exp(=7?);

/OO drr?p(r|R) = 1; (7)
0

o0
/ drrp(r|R) = R,
0
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where v = fracdwR2, R is the effective nucleus radius. The following simple

dependence of R on Z assumed:
R=1.60-10"23 (cm). (8)

The Coulomb potential for the spherically symmetric density p(r|R) is:

1 s o
Vaual (1| R) = —;/0 dr’r’Qp(r'|R)+/ dr'r"?p(r'|R). (9)

T

It is determined by the following system of differential equations ( [1], [5]):

1 r 1
Vel (1, R) = 72/0 dr'r?p(r’,R) = T—2y(r, R);

y'(r, R) = r’p(r, R); (10)

§(1. ) = 89"/ exp(—9r%) = ~2yr0(r. ) = ~—Lop(r )
with the boundary conditions:
4

Vaue ,0) = ——;
1(r,0) r

y(0, R) = 0; (11)
4932 32

p(0, R) = =

wE

The above written equations and a whole scheme determine a procedure for
quantization of the quasi-stationary states of the relativistic Dirac-Fock equation
with introduced local Dirac-Fock potential. The key question of any approach
is performance of the gauge-invariance condition, by checking, for example, the
Yord equalities.Naturallu it requires a construction of the corresponding Green’s
function of thew Dirac-Fock equations. More efficient and simultaneously simpli-
fied recept is connected with calculating the radiation transition probabilities (os-
cillator strengths)in two different transition operator (length and velocity) forms
using the basis of the relativistic Dirac-Fock wave functions, in our case the local
Dirac-Fock scheme. Earlier it was shown ( [2], [3]) that an adequate description
of the atomic characteristics requires using the optimized basis of wave functions.
In Ref. [3] a new ab initio optimization procedure for construction of the opti-
mized basis is proposed. It is reduced to minimization of the gauge dependent
multielectron contribution ImA E,,;,, of the lowest quantum-electrodynamical
perturbation theory corrections to the radiation widths of atomic levels. In the
fourth order of quantum-electrodynamical perturbation theory(the second order
of the atomic perturbation theory) there appear the diagrams, whose contribu-
tion to the ImA E,;,, accounts for the correlation (polarization) effects (see,
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e.g., [2]). This contribution describes the collective effects and it is dependent
upon the electromagnetic potentials gauge (the gauge non-invariant contribu-
tion). All the gauge non-invariant terms are multielectron by their nature (the
particular case of the gauge non-invariance manifestation is a non-coincidence
of the oscillator strengths values, obtained in the approximate calculations with
the "length" and "velocity" transition operator forms). The corresponding ex-
pression for the imaginary part of the electron energy has been determined in
Ref. [3]. We have performed the simplified numerical test in order to check the
optimality properties of the wave functions by means the minimization of the
value ImA E,;n,(b) with the parameter b. Our test has been carried out for the
radiative 3s-3p transitions in spectra of the sodium-like ions SV I and CIVII.
The empirical values of the oscillator strengths for these ions are : 0.66 + 0.01
and 0.604 £ 0.015. The calculation results within the local Dirac-Fock scheme
(without account of the correlation effects) are 0.69 and 0.64 correspondingly
(here the gauge non-invariant contribution is 10 percents). The calculation re-
sult within the local Dirac-Fock scheme (with account of the correlation effects
by means of the method [3]) are 0.663 and 0.608 correspondingly. In the last
case, the gauge non-invariant contribution is 0.1 percents. This numerical result
has shown that our approach (without an accounting the correlation effects) can
hardly provide a high (spectroscopic) accuracy, however, an implementation of
the correct multi-body correlation potentials into the local Dirac-Fock equations
and using the formalism of the relativistic perturbation theory with the local
Dirac-Fock potential will provide a sufficiently high accuracy of calculating the

energy and spectral characteristics of the multi-electron atomic systems.

3 Conclusions

In conclusion let us underline that we have proposed a new procedure for quanti-
zation of the stationary and quasistationary states of the relativistic Dirac-Fock
equation with a local potential within a gauge-invariant relativistic many-body
perturbation theory ([2], [3]). Further we presented a numerical local Dirac-Fock
approach to calculating spectra of the quantum (atomic) systems with an ac-
count, of relativistic and exchange corrections. Within a propose scheme we have
carried out the test calculation of the oscillator strengths for the radiative 3s-3p
transitions in spectra of the sodium-like ions SV I and CIVII, which shown that
the local Dirac-Fock approach without an accounting of the correlation effects
can hardly provide a high accuracy of calculating the energy and spectral char-
acteristics (oscillator strengths)of the multi-electron atomic systems. However,
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an implementation of the correct multi-body correlation potentials into it and

using the formalism of the relativistic perturbation many-body theory with the

local Dirac-Fock potential can provide a spectroscopic accuracy.
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