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Abstract An advanced procedure for quantization of the quasi-stationary

states of the relativistic Dirac-Fock equation with a local potential is developed

within a gauge-invariant relativistic many-body perturbation theory ([1], [2]).

New numerical local Dirac-Fock approach to calculating spectra of the quantum

(atomic) systems with an account of relativistic and exchange-correlation

corrections is presented. Numerical test results are presented.
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1 Introduction

As it is known ([1]�[7]), the problems of calculating the eigen values and eigen

functions of the the di�erent quantum operators is relating to a number of the

most important and actual problems of the modern quantum geometry and quan-

tum theory of the many-body systems. In this paper we present an advanced

procedure for quantization of the quasi-stationary states of the relativistic Dirac-

Fock equation with introduced local Dirac-Fock potential. All consideration, as

usually, is performed within gauge-invariant relativistic many-body perturba-

tion theory ([2], [3],[7]-[10]). In our previous papers [7]-[12] the same task has

been considered for a few classes of the relativistic di�erential equations (Dirac,

Dirac-Kohn-Sham, Dirac-Slater etc). The developed approaches have been tested
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on calculating a set of the energy and spectral parameters for di�erent multi-

electron systems.Here we consider the Dirac-Fock equation with a local poten-

tial. The main di�erence of these equations of the standard Dirac-Fock ones is

that the standard equation contain non-local potential and correspondingly the

calculational scheme of their solving is very complicated because of the cited non-

locality (the exchange interaction term). The more details about the modern art

of state concerning calculating the eigen values of energies and eigen functions for

di�erent operators (Hamiltonians) of the �nite quantum (atomic) systems can

be found in a number of recent books (see, for example,[1]�[7] and references

therein)). we can remind such atomic multi-con�guration Dirac-Fock codes as

the Desclaux program, Dirac package etc (see for example, [1]�[10]). The main

idea of our approach is in using the local Dirac-Fock equations, i.e. using su�-

ciently simpli�ed procedure for an account of relativistic, exchange-correlation

e�ects. The general potential in these equations includes the self-consistent local

mean �eld potential, the electric of a nucleus (within the Fermi model). New

element of the approach is connected with using ab initio consistent quantum

electrodynamics approach to construction of the optimal one-quasiparticle rep-

resentation in the local Dirac-Fock approach.

2 Local Dirac-Fock equation: quantization of the quasistationary

states

In this section we describe the key moments of our approach to quantization of

the quasistationary (stationary) states of the relativistic local Dirac-Fock equa-

tion which is indeed very similar to schemes of Refs.[7]-[10]), however contains

other potentials.

One-particle wave functions are found from solution of the relativistic local

Dirac-Fock equation, which can be written in the central �eld in a two-component

form (see, for example,([1], [5]):

∂F

∂r
+ (1 + χ)

F

r
− (ε+m− Vloc(b, r))G = 0,

∂G

∂r
+ (1− χ)G

r
− (ε−m− Vloc(b, r))F = 0. (1)

where all notations are standard, b is the special gauge-invariant parameter

(look below).Here we put the �ne structure constant α = 1. The moment number

χ =

{
−(1 + 1), j > 1

1, J < 1
(2)



An advanced approach to quantization 31

The general potential Vloc(b, r) includes the self-consistent local Dirac-Fock

potential (see, for example,([5], [11])). Further, as usually, (see [2],[7]), at large

χ the radial functions F and G vary rapidly at the origin of co-ordinates:

F (r), G(r) ≈ rγ−1, (3)

γ =
√
χ2 − α2Z2.

This involves di�culties in numerical integration of the equations in the region

r → 0. To prevent the integration step becoming too small it is convenient

to turn to new functions isolating the main power dependence: f = Fr1−|χ|,

g = Gr1−|χ|. The Dirac equation for F and G components are transformed as

(in the Coulomb units):

f ′ = −(χ+ |χ|)f
r
− αZVloc(b, r)g −

(
αZEnχ +

2

αZ

)
g,

g′ = (χ− |χ|)g
r
− αZVloc(b, r)f + αZEnχf. (4)

Naturally, the system of Eq. (4) has two fundamental, solutions. As usually,

we are interested in the solution regular at r → 0. The boundary values of the

correct solution are found by the �rst term s of the expansion into the Taylor

series (see [2]):

g =
(Vloc(0)− Enχ)rαZ

2χ+ 1
; f = 1 at χ < 0,

f =

(
Vloc(0)− Enχ −

2

α2Z2

)
αZ; g = 1 at χ > 0. (5)

The condition f, g → 0 at r → ∞ determines the quanti�ed energies of the

state Enχ. At correctly determined energy Enχ of the asymptotic f and g at

r →∞ are:

f, g ∼ exp (−r/n∗) , (6)

where n∗ =
√

1
2|En=χ| is the e�ective main quantum number. The Eq.(4) was

solved by the Runge-Kutt method (see details in ([1], [5]).

Regarding the nuclear potential of the local Dirac-Fock equation, as in

Refs.( [2], [7]) we use the Gauss model for the charge distribution in the nu-

cleus ρ(r). According to [2] one could write:

ρ(r|R) = 4γ3/2√
π

exp(−γr2);∫ ∞
0

drr2ρ(r|R) = 1; (7)∫ ∞
0

drr3ρ(r|R) = R,
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where γ = frac4πR2, R is the e�ective nucleus radius. The following simple

dependence of R on Z assumed:

R = 1.60 · 10−13Z1/3 (cm). (8)

The Coulomb potential for the spherically symmetric density ρ(r|R) is:

Vnucl(r|R) = −
1

r

∫ r

0

dr′r′2ρ(r′|R) +
∫ ∞
r

dr′r′2ρ(r′|R). (9)

It is determined by the following system of di�erential equations ( [1], [5]):

Vnucl(r,R) =
1

r2

∫ r

0

dr′r′2ρ(r′, R) ≡ 1

r2
y(r,R);

y′(r,R) = r2ρ(r,R); (10)

ρ′(r,R) = −8γ5/2 r√
π
exp(−γr2) = −2γrρ(r,R) = − 8r

πr2
ρ(r,R)

with the boundary conditions:

Vnucl(r, 0) = −
4

πr
;

y(0, R) = 0; (11)

ρ(0, R) =
4γ3/2√
π

=
32

R3
.

The above written equations and a whole scheme determine a procedure for

quantization of the quasi-stationary states of the relativistic Dirac-Fock equation

with introduced local Dirac-Fock potential. The key question of any approach

is performance of the gauge-invariance condition, by checking, for example, the

Yord equalities.Naturallu it requires a construction of the corresponding Green's

function of thew Dirac-Fock equations. More e�cient and simultaneously simpli-

�ed recept is connected with calculating the radiation transition probabilities (os-

cillator strengths)in two di�erent transition operator (length and velocity) forms

using the basis of the relativistic Dirac-Fock wave functions, in our case the local

Dirac-Fock scheme. Earlier it was shown ( [2], [3]) that an adequate description

of the atomic characteristics requires using the optimized basis of wave functions.

In Ref. [3] a new ab initio optimization procedure for construction of the opti-

mized basis is proposed. It is reduced to minimization of the gauge dependent

multielectron contribution Im∆ Eninv of the lowest quantum-electrodynamical

perturbation theory corrections to the radiation widths of atomic levels. In the

fourth order of quantum-electrodynamical perturbation theory(the second order

of the atomic perturbation theory) there appear the diagrams, whose contribu-

tion to the Im∆ Eninv accounts for the correlation (polarization) e�ects (see,
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e.g., [2]). This contribution describes the collective e�ects and it is dependent

upon the electromagnetic potentials gauge (the gauge non-invariant contribu-

tion). All the gauge non-invariant terms are multielectron by their nature (the

particular case of the gauge non-invariance manifestation is a non-coincidence

of the oscillator strengths values, obtained in the approximate calculations with

the "length" and "velocity" transition operator forms). The corresponding ex-

pression for the imaginary part of the electron energy has been determined in

Ref. [3]. We have performed the simpli�ed numerical test in order to check the

optimality properties of the wave functions by means the minimization of the

value Im∆ Eninv(b) with the parameter b. Our test has been carried out for the

radiative 3s-3p transitions in spectra of the sodium-like ions SV I and ClV II.

The empirical values of the oscillator strengths for these ions are : 0.66 ± 0.01

and 0.604 ± 0.015. The calculation results within the local Dirac-Fock scheme

(without account of the correlation e�ects) are 0.69 and 0.64 correspondingly

(here the gauge non-invariant contribution is 10 percents). The calculation re-

sult within the local Dirac-Fock scheme (with account of the correlation e�ects

by means of the method [3]) are 0.663 and 0.608 correspondingly. In the last

case, the gauge non-invariant contribution is 0.1 percents. This numerical result

has shown that our approach (without an accounting the correlation e�ects) can

hardly provide a high (spectroscopic) accuracy, however, an implementation of

the correct multi-body correlation potentials into the local Dirac-Fock equations

and using the formalism of the relativistic perturbation theory with the local

Dirac-Fock potential will provide a su�ciently high accuracy of calculating the

energy and spectral characteristics of the multi-electron atomic systems.

3 Conclusions

In conclusion let us underline that we have proposed a new procedure for quanti-

zation of the stationary and quasistationary states of the relativistic Dirac-Fock

equation with a local potential within a gauge-invariant relativistic many-body

perturbation theory ([2], [3]). Further we presented a numerical local Dirac-Fock

approach to calculating spectra of the quantum (atomic) systems with an ac-

count of relativistic and exchange corrections. Within a propose scheme we have

carried out the test calculation of the oscillator strengths for the radiative 3s-3p

transitions in spectra of the sodium-like ions SV I and ClV II, which shown that

the local Dirac-Fock approach without an accounting of the correlation e�ects

can hardly provide a high accuracy of calculating the energy and spectral char-

acteristics (oscillator strengths)of the multi-electron atomic systems. However,
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an implementation of the correct multi-body correlation potentials into it and

using the formalism of the relativistic perturbation many-body theory with the

local Dirac-Fock potential can provide a spectroscopic accuracy.
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