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Abstract. We present elements of the formal 
mathematical approach to the analysis, modeling and 
further prediction of the nonlinear dynamics of chaotic 
systems based on the methods of nonlinear analysis and 
neural networks. As the object of studing is the 
environmental radioactivity dynamics. Using such a 
combined method is proposed for the first time in the 
environmental radioactivity dynamnics studying. Use of 
the information about the phase space in the simulation 
of the evolution of the physical process in time can be 
considered as a major innovation in the modeling of 
chaotic processes in the complex systems. This concept 
can be achieved by constructing a parameterized non-
linear function F (x, a), which transform y (n) to y(n+1) =  
= F[y(n),a], and then use different criteria for 
determining the parameters a . Firstly to build the 
desired functions it is offered using the wavelet 
expansions. Further, since there is the notion of local 
neighborhoods, we can create a model of the process 
occurring in the neighborhood, at the neighborhood and 
by combining together these local models to construct a 
global non-linear model to describe most of the structure 
of the attractor.  

 
Key words:  environmental radioactivity dynamics, 
the ecological state, time series of concentrations, 

pollutants, analysis and prediction methods of the 
theory of chaos. 

 
1. Introduction 

One of the most actual and important problems 
of applied ecology and environment protection is 
associated with correct quantitative description of 
environmental radioactivity dynamics [1, 2]. In 
general, one should note the following actual 
problems: a long-term investigation of radionuclides 
behaviour in the environment; elucidation of the 
mechanism of radionuclides transfer in the 
environment by animals, through the food chain; 
elucidation of the mechanism of transformation and 
transportation of radioactive substances due to 
meteorological and hydrological  phenomena and 
other factors; provision of a think-tank functioning 
for the recovery of the environment; conservation of 
research materials and samples and archiving of 
research methodologies and research objects and 
many others. 

The problem of studying the dynamics of chaotic 
dynamical systems arises in many areas of science 
and technology. We are talking about classes of 
problems of identifying and estimating the 
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parameters of interaction between the sources of 
complex (chaotic) oscillations of the time series of 
experimentally observed values. Such problems arise 
in environmental sciences, such as geophysics, 
chemistry, biology, medicine, neuroscience, 
engineering, etc. [1–52]. The problem of analysis 
and forecasting of the impact of anthropogenic 
pressure on the state of atmosphere in an industrial 
city and development of consistent, adequate 
schemes for modeling the properties of 
concentration fields of air pollutions has been 
considered in details, for example, in Refs [12–22].  

In this paper we present elements of the formal 
mathematical approach to the analysis, modeling and 
further prediction of the nonlinear dynamics of chaotic 
systems based on the methods of nonlinear analysis and 
neural networks. As the object of studing is the 
environmental radioactivity dynamics. The new element 
of our approach in comparison with the first version [2] 
is associated with the first application of the neural 
networks formalism [3] into problem of modeling of the 
environmental radioactivity. 

Use of the information about the phase space in 
the simulation of the evolution of the physical 
process in time can be considered as a major 
innovation in the modeling of chaotic processes in 
the  systems. Earlier it had been successfully 
realized in case of the atmosphere (air basin) of 
large industrial cities and some hydro-ecological 
systems (regions). Keeping in mind the listed 
problems and tasks here we present   an improved 
generalized approach to the analysis and prediction 
of the nonlinear dynamics of chaotic systems based 
on the methods of nonlinear analysis and neural 
networks. As the object of study are the 
environmental radioactivity dynamics. Use of the 
information about the phase space in the simulation 
of the evolution of the physical process in time can 
be considered as a major innovation in the modeling 
of chaotic processes in the  systems. This concept 
can be achieved by constructing a parameterized 
non-linear function F (x, a), which transform y (n) to 
y(n+1) = F[y(n),a], and then use different criteria for 
determining the parameters a . Firstly to build the 
desired functions it is offered using the wavelet 
expansions. Further, since there is the notion of local 
neighborhoods, we can create a model of the process 
occurring in the neighborhood, at the neighborhood 
and by combining together these local models to 
construct a global non-linear model to describe most 
of the structure of the attractor.  

Let us underline that earlier we have developed 
theoretical basis of studying the corresponding  

pollution dynamics in different ecological, 
hydrometeorological  and hydroecological systems.  
Naturally, the problem concerns as different spatial as  
temporal scale levels [1–20]. As an example of 
problems whose solution lies in the problems 
considered in the article, it should be noted the analysis 
and prediction of the influence of anthropogenic 
impact on the water resources, river’s systems and 
generally specking hydroecological systems. Earlier it 
has been  considered in details (see [1, 14, 18–20]) a 
problem of using special mathematical technique for 
analysis and prediction of the influence of 
anthropogenic impact on the atmosphere of the 
industrial city , the development of adequate schemes 
modeling the properties of the fields of concentration 
of the air basin industrial city [10].  

As the key blocks of the earlier developed 
approach remain the same in a case of environmental 
radioactivity dynamics below we are limited only by 
the key topics, focusing on features of 
environmental radioactivity. 

 

2. Method of environmental analysis and 
prediction 

2.1. Basic idea and construction of the model 
prediction for environmental radioactivity 
dynamics 

The basic idea of the construction of our approach 
to prediction of chaotic properties of complex systems 
has been considered earlier (see, for example, Refs. 
[2, 13–24]) and following to these papers, it is in the use 
of the traditional concept of a compact geometric 
attractor in which evolves the measurement data, plus 
the implementation of neural network algorithms. 
Earlier this approach has been developed and used in 
problem of description of the dynamics of atmospheric 
systems such as air base in pollution pollution of 
industrial city. Here we consider the environmental 
radioactivity dynamics, more exactly, the corresponding 
radionuclide transfer. Shortly the analogous example has 
been considered in Ref. [21], namely, speech was about 
the dynamics of the air pollutants in an atmosphere of 
the industrial cities.  

As the basis idea is remained the same, we 
shortly give it following to Ref. [2, 13, 18]. The 
meaning of the concept is in fact a study of the 
evolution of the attractor in the phase space of the 
system and, in a sense, modeling (“guessing”) time-
variable evolution.. From a mathematical point of 
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view, it is a fact that in the phase space of the 
system an orbit continuously rolled on itself due to 
the action of dissipative forces and the nonlinear 
part of the dynamics, so it is possible to stay in the 
neighborhood of any point of the orbit y (n) other 
points of the orbit yr (n), r = 1, 2, ..., NB, which 
come in the neighborhood y (n) in a completely 
different times than n. Of course, then one could try 
to build different types of interpolation functions 
that take into account all the neighborhoods of the 
phase space and at the same time explain how the 
neighborhood evolve from y (n) to a whole family of 
points about y (n+1).  

Use of the information about the phase space in 
the simulation of the evolution of some geophysical 
(environmental, etc.) of the process in time can be 
regarded as a fundamental element in the simulation 
of random processes. In terms of the modern theory 
of neural systems, and neuro-informatics (e.g. [11]), 
the process of modeling the evolution of the system 
can be generalized to describe some evolutionary 
dynamic neuro-equations (miemo-dynamic 
equations) [3].  

Imitating the further evolution of a complex 
system as the evolution of a neural network with the 
corresponding elements of the self-study, self- 
adaptation, etc., it becomes possible to significantly 
improve the prediction of evolutionary dynamics of 
a chaotic system. Considering the neural network (in 
this case, the appropriate term “geophysical” neural 
network) with a certain number of neurons, as usual, 
we can introduce the operators Si j synaptic neuron to 
neuron ui uj, while the corresponding synaptic 
matrix is reduced to a numerical matrix strength of 
synaptic connections: W = | | wi j | |. The operator is 
described by the standard activation neuro-equation 
determining the evolution of a neural network in 
time: 

∑
=

−=
N

j
ijiji swsigns

1

' ),( θ                  (1) 

where 1< i <N. Here it is important for us another 
proven fact related to information behavior neuro-
dynamical system. From the point of view of the 
theory of chaotic dynamical systems, the state of the 
neuron (the chaos-geometric interpretation of the 
forces of synaptic interactions, etc.) can be 
represented by currents in the phase space of the 
system and its the topological structure is obviously 
determined by the number and position of attractors. 
To determine the asymptotic behavior of the system 
it becomes crucial information aspect of the 

problem, namely, the fact of being the initial state to 
the basin of attraction of a particular attractor. 
Modeling each geophysical attractor by a record in 
memory, the process of the evolution of neural 
network, transition from the initial state to the 
(following) the final state is a model for the 
reconstruction of the full record of distorted 
information, or an associative model of pattern 
recognition is implemented.  The domain of 
attraction of attractors are separated by  separatrices 
or certain surfaces in the phase space. Their 
structure, of course, is quite complex, but mimics 
the chaotic properties of the studied object. Then, as 
usual, the next step is a natural construction 
parameterized nonlinear function F (x, a), which 
transforms:   

 y(n) →     y(n + 1) = F(y(n), a),              (2) 
and then to use the different (including neural 
network) criteria for determining the parameters a 
(see below). The easiest way to implement this 
program is in considering the original local 
neighborhood, enter the model(s) of the process 
occurring in the neighborhood, at the neighborhood 
and by combining together these local models, 
designing on a global nonlinear model. The latter 
describes most of the structure of the attractor.  

Although, according to a classical theorem by 
Kolmogorov-Arnold -Moser, the dynamics evolves 
in a multidimensional space, the size and the 
structure of which is predetermined by the initial 
conditions, this, however, does not indicate a 
functional choice of model elements in full 
compliance with the source of random data. One of 
the most common forms of the local model is the 
model of the Schreiber type [3] (see also [10]).  

Nonlinear modeling of chaotic processes is 
based on the concept of a compact geometric 
attractor, which evolve with measurements. Since 
the orbit is continually folded back on itself by the 
dissipative forces and the non-linear part of the 
dynamics, some orbit points yr(k), r = 1, 2, …, NB 
can be found in the neighbourhood of any orbit point 
y(k), at that the points yr(k) arrive in the 
neighbourhood of y(k) at quite different times than 
k. Then one could build the different types of 
interpolation functions that take into account all the 
neighborhoods of the phase space, and explain how 
these neighborhoods evolve from y (n) to a whole 
family of points about y (n + 1). Use of the 
information about the phase space in modeling the 
evolution of the physical process in time can be 
regarded as a major innovation in the modeling of 
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chaotic processes. This concept can be achieved by 
constructing a parameterized nonlinear function  
F (x, a), which transform y (n) to y (n + 1) = F (y (n), a), 
and then using different criteria for determining the 
parameters a. Further, since there is the notion of 
local neighborhoods, one could  create a model of 
the process occurring in the neighborhood, at the 
neighborhood and by combining together these local 
models to construct a global nonlinear model that 
describes most of the structure of the attractor. 

As shown Schreiber [3], the most common form of 
the local model is very simple  

( ) ( )
0

1
( ) ( ( 1) )

Ad
n n

j
j

s n n a a s n j
=

+ ∆ = + − − τ∑          (3) 

where ∆ n – the time period for which a forecast has to 

be done. The coefficients )(k
ja , may be determined by a 

least-squares procedure, involving only points s(k) 
within a small neighbourhood around the reference 
point. Thus, the coefficients will vary throughout phase 
space. The fit procedure amounts to solving (dA + 1) 
linear equations for the (dA + 1) unknowns.  

When fitting the parameters a, several problems are 
encountered that seem purely technical in the first place 
but are related to the nonlinear properties of the system. 
If the system is low-dimensional, the data that can be 
used for fitting will locally not span all the available 
dimensions but only a subspace, typically. Therefore, 
the linear system of equations to be solved for the fit 
will be ill conditioned.  

However, in the presence of noise the equations are 
not formally ill-conditioned, but still the part of the 
solution (that relates the noise directions to the future 
point) is meaningless . Note that the method presented 
here is not only because, as noted above, the choice of 
fitting requires no knowledge of physics of the process 
itself. Other modeling techniques are described, for 
example, in [3, 10]. 

 
2.2. Wavelets for construction of model 
prediction for the environmental radioactivity 
dynamics 

It is well known that the wavelets are fundamental 
building block functions, analogous to the sine and 
cosine functions [22]. Fourier transform extracts details 
from the signal frequency, but all information about the 
location of a particular frequency within the signal is 
lost. At the expense of their locality the wavelets have 
advantages over Fourier transform when non-stationary 
signals are analyzed [22–26]. Here, we use non-

decimated wavelet transform that has temporal 
resolution at coarser scales. 

The dilation and translation of the mother wavelet 
ψ(t) generates the wavelet as follows 

ψj,k(t) = 2j/2ψ(2jt – k).                       (4) 
The dilation parameter j controls how large the 

wavelet is, and the translation parameter k controls how 
the wavelet is shifted along the t-axis. For a suitably 
chosen mother wavelet ψ(t), the set {ψj,k}j,k provides an 
orthogonal basis, and the function f which is defined on 
the whole real line can be expanded as 

( ) ( ) ( )∑ ∑∑
=

∞

−∞=

∞

−∞=

ψ+ϕ=
J

j k
kjjk

k
kk tdtctf

1
,,00 ,      (5) 

where the maximum scale J is determined by the 
number of data, the coefficients c0k represent the 
lowest frequency smooth components, and the 
coefficients djk deliver information about the 
behavior of the function f concentrating on effects of 
scale around 2–j near time k × 2–j. This wavelet 
expansion of a function is closely related to the 
discrete wavelet transform (DWT) of a signal 
observed at discrete points in time.  

In practice, the length of the signal, say n, is finite 
and, for our study, the data are available monthly, i.e. 
the function s(t) in Eq. (3) is now a vector f = (f(t1),…, 
f(tn)) with ti = i/n and i = 1,…,n. With these notations, 
the DWT of a vector f is simply a matrix product d = Wf, 
where d is an n × 1 vector of discrete wavelet 
coefficients indexed by 2 integers, djk, and W is an 
orthogonal n × n matrix associated with the wavelet 
basis.  

For computational reasons, it is simpler to 
perform the wavelet transform on time series of 
dyadic (power of 2) length. One particular problem 
with DWT is that, unlike the discrete Fourier 
transform, it is not translation invariant. This can 
lead to Gibbs-type phenomena and other artefacts in 
the reconstruction of a function. The non-decimated 
wavelet transform (NWT) of the data (f(t1), …, f(tn)) 
at equally spaced points ti = i/n is defined as the set 
of all DWT's formed from the n possible shifts of 
the data by amounts i/n; i = 1, …, n.  

Thus, unlike the DWT, there are 2j coefficients on 
the jth resolution level, there are n equally spaced 
wavelet coefficients in the NWT 

( )[ ]∑ =
− −ψ= n

i i
jj

jk ynknind 1
21 22 ,        (6) 

k = 0, …, n–1, 
on each resolution level j. This results in log2(n) 
coefficients at each location. As an immediate 
consequence, the NWT becomes translation 
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invariant. Due to its structure, the NWT implies a 
finer sampling rate at all levels and thus provides a 
better exploratory tool for analyzing changes in the 
scale (frequency) behavior of the underlying signal 
in time. These advantages of the NWT over the 
DWT in time series analysis are demonstrated in 
[21]. As in the Fourier domain, it is important to 
assess the power of a signal at a given resolution. An 
evolutionary wavelet spectrum (EWS) quantifies the 
contribution to process variance at the scale j and 
time k. From the above paragraphs, it is easy to plot 
any time series into the wavelet domain. Another 
way of viewing the result of a NWT is to represent 
the temporal evolution of the data at a given scale. 
This type of representation is very useful to compare 
the temporal variation between different time series 
at given scale. To obtain the results, smooth signal 
S0 and the detail signals Dj (j =1, …, J) are  

( ) ( )∑
∞

−∞=

ϕ=
k

kk tctS ,000  

( ) ( )∑
∞

−∞=

ψ=
k

kjjkj tdtD ,
.                        (7) 

The fine scale features (high frequency 
oscillations) are captured mainly by the fine scale 
detail components DJ and DJ–1. The coarse scale 
components S0, D1, and D2 correspond to lower 
frequency oscillations of the signal. Note that each 
band is equivalent to a band-pass filter. Further one 
could use the Daubechies wavelet as mother wavelet. 
This wavelet is bi-orthogonal and supports discrete 
wavelet transform. Furthermore, formally the neural 
network algorithm is launched, in particular, in order 
to make training  the neural network system 
equivalent to the reconstruction and interim forecast 
the state of the neural network (respectively, 
adjusting the values of the coefficients).  

 

3. Illustrative example and conclussions 

In order to present an illustrative example of 
application of the presented approach, we use our 
data of studying dynamics of the nitrates 
concentrations in the Small Carpathians watersheds 
in the Earthen Slovakia during 1969–1996 years. 
The physical and chemical features of any 
radionuclide isotopes transfer and temporal and 
spatial distribution are in many aspects analogous to 
considered example with nirates pollutans in the 
water systems. It explaines using such an example 
here as illustration. All calculations  below are 
performed with using “Geomath” and “Quantum 

Chaos” computational codes [2–21, 52–86]. In Refs. 
[3, 5, 19] the  chaotic behaviour in the nitrates and 
sulphates concentration time series in the watersheds 
of the Small Carpathians was investigated. In this 
refs. it can be found all detailed information about 
problem. To reconstruct the corresponding attractor, 
the time delay and embedding dimension are 
calculated by the methods of autocorrelation 
function and average mutual information, and the 
latter is calculated by means of correlation 
dimension method and algorithm of false nearest 
neighbours. It is shown that low-dimensional chaos 
exists in the time series under investigation. In 
figure 1 we present the original data (solid lines) and 
8-month forecasts (dashed lines) for the nitrates 
concentrations in the watershed Ondava (Stropkov; 
Slovakia) concerning the time 1969–1996 years.  

These results can be considered as the example 
of quite successful short-range forecast for the 
concentrations of watershed pollutants. Obviously, 
one should wait for the principally same situation in 
a case of transformation and transportation of 
radioactive substances due to meteorological and 
hydrological  phenomena. The presented non-linear 
prediction method provides quite  satisfactory 
results even in the case, when the concentrations are 
sharply rising; at least, all the tendencies to the 
rising were revealed by the method. In addition, we 
have used the simplest scheme for the approximation 
of local model and more complicated methodology 
can provide hopefully the better forecasts. 

 

 

Fig. 1. Original data (solid lines) and 8-month forecasts 
(dashed lines) for the nitrates concentrations in the watershed 

Ondava (Stropkov; Slovakia) for period 1969-1996 (Axe   
X – the serial number of the term) (see text and ref. [3]) 
 
Therefore, we have presented the elements of a 

new approach to nonlinear modeling and prediction 
of chaotic processes with orientation on the 
environmental radioactivity dynamics. The approach 
is based on two key functional elements. Besides 
using other elements of starting chaos theory method 
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the proposed approach includes the application of 
the concept of a compact geometric attractor, and 
one of the neural network algorithms, or, in a more 
general definition of a model of artificial 
intelligence. The starting point is a formal 
knowledge of the time series of the main dynamic 
parameters of a chaotic system, and then to identify 
the state vector of the matrix of synaptic interactions 
||wij|| etc. The  main difficulty here lies in the 
implementation of the process of learning neural 
network to simulate the complete process of change 
in the topological structure of the phase space of the 
system and use the output results of the neural 
network to adjust the coefficients of the function 
display. The meaning of the latter is precisely the 
application of neural network to simulate the 
evolution of the attractor in phase space, and 
training most neural network to predict (or rather, 
correct) the necessary coefficients of the parametric 
form of functional display. As alternative and 
addition simultaneously, one should use our 
proposal at first to use the wavelet expansion for 
construction of the parametrized model prediction 
functions. In any case these alternative should be 
checked at concrete modelling examples, namely, 
reproducing time environmental radioactivity 
dynamics in the concrete geospheres. The concrete 
such example of application of the presented 
approach will be listed in the next paper. 
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