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Abstract In the paper we go on our work on application of the chaos theory

and non-linear analysis technique to studying chaotic features of di�erent

nature systems. Here there are presented the results of using an advanced

chaos-geometric approach to treating chaotic dynamics in de�niete hydroe-

cological systems. Generally, an approach combines together application of

the advanced mutual information scheme, Grrasberger-Procachi algorythm,

Lyapunov exponent's analysis etc.
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1. Introduction

In this paper we go on our work on application of the chaos theory and non-

linear analysis technique to studying chaotic features of di�erent nature systems

(see, for example [1,2]). The theoretical basis's of the chaos-geometric combined

approach to treating of chaotic behaviour of complex dynamical systems are in

details in series of ref. [1-10]. Generally, an approach combines together applica-

tion of the advanced mutual information scheme, Grassberger-Procachi algory-

thm, Lyapunov exponent's analysis etc. It is important to note that this approch

has been successfully applied to studying dynamics not only mathmeatical and

physical systems. Very impressive application is the investigated dynamics of the

atmospheric pollutants concentrations and forecasting their temporal evolution.
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Besides, in Ref [2] it has been numerically vstudied a chaotic dynamics of the

pollutants concentration in some hydroecological, namely, water system. The

successful application of new chaos-geometrical approach to studying dynamics

of the di�erent nature systems demonstrates its universal character. Here we

present the improved numerical results of using an advanced chaos-geometric

approach to treating chaotic dynamics in the de�nite hydroecological system:

water basins of some rivers. It has been estimated an e�ect of anthropogenic

contamination for a number of basins of the Small Carpathian by some pollu-

tants (nitrates and sulphates) with revealing the chaos elements in the temporary

sets of the nitrates and sulphates concentrations. At �rst it has been realized am

e�ective model of the short-terminal forecast for concentrations of pollutants on

the example of forecasting the nitrates and sulphates concentrations evolution

in a number of basins of the Small Carpathian.

2. An advanced chaos-geometrical approach to hydroecological system

dynamics: Short description

Following to [1-10], further we formally consider scalar measurements s(n) =

s(t0+ n∆t) = s(n), where t0 is a start time, ∆t is time step, and n is number

of the measurements. In a general case, s(n) is any time series (f.e. atmospheric

pollutants concentration). As processes resulting in a chaotic behaviour are fun-

damentally multivariate, one needs to reconstruct phase space using as well as

possible information contained in s(n). Such reconstruction results in set of d -

dimensional vectors y(n) replacing scalar measurements. The main idea is that

direct use of lagged variables s(n + τ), where τ is some integer to be de�ned,

results in a coordinate system where a structure of orbits in phase space can

be captured. Using a collection of time lags to create a vector in d dimensions,

y(n) = [s(n), s(n + τ), s(n + 2 τ), .., s(n +(d−1 )τ)], the required coordinates

are provided. In a nonlinear system, s(n + j τ) are some unknown nonlinear

combination of the actual physical variables. The dimension d is the embedding

dimension, dE .

Let us remind that following to [2,10], the choice of proper time lag is important

for the subsequent reconstruction of phase space. If τ is chosen too small, then

the coordinates s(n + j τ), s(n +(j +1 )τ) are so close to each other in numerical

value that they cannot be distinguished from each other. If τ is too large, then

s(n+j τ), s(n+(j +1 )τ) are completely independent of each other in a statistical

sense. If τ is too small or too large, then the correlation dimension of attractor

can be under-or overestimated. One needs to choose some intermediate position

between above cases. First approach is to compute the linear autocorrelation
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function CL(δ) and to look for that time lag where CL(δ) �rst passes through

0. This gives a good hint of choice for τ at that s(n + j τ) and s(n + (j + 1 )τ)

are linearly independent. It's better to use approach with a nonlinear concept

of independence, e.g. an average mutual information. The mutual information I

of two measurements ai and bk is symmetric and non-negative, and equals to 0

if only the systems are independent. The average mutual information between

any value ai from system A and bk from B is the average over all possible

measurements of I AB (ai , bk ). In ref. [4] it is suggested, as a prescription, that

it is necessary to choose that τ where the �rst minimum of I (τ) occurs.

In [1,10] it has been stated that an aim of the embedding dimension determina-

tion is to reconstruct a Euclidean space Rd large enough so that the set of points

dA can be unfolded without ambiguity. The embedding dimension, dE , must be

greater, or at least equal, than a dimension of attractor, dA, i.e. dE > dA. In

other words, we can choose a fortiori large dimension dE , e.g. 10 or 15, since

the previous analysis provides us prospects that the dynamics of our system

is probably chaotic. The correlation integral analysis is one of the widely used

techniques to investigate the signatures of chaos in a time series. If the time

series is characterized by an attractor, then correlation integral C (r) is related

to a radius r as d = lim

r → 0, N →∞

logC(r)
log r , where d is correlation exponent.

The fundamental problem of theory of any dynamical system is in predicting

the evolutionary dynamics of a chaotic system. Let us remind following to [1-

,2,10] that the cited predictability can be estimated by the Kolmogorov entropy,

which is proportional to a sum of positive LE. As usually, the spectrum of LE

is one of dynamical invariants for non-linear system with chaotic behaviour.

The limited predictability of the chaos is quanti�ed by the local and global

LE, which can be determined from measurements. The LE are related to the

eigenvalues of the linearized dynamics across the attractor. Negative values show

stable behaviour while positive values show local unstable behaviour. For chaotic

systems, being both stable and unstable, LE indicate the complexity of the

dynamics. The largest positive value determines some average prediction limit.

Since the LE are de�ned as asymptotic average rates, they are independent of

the initial conditions, and hence the choice of trajectory, and they do comprise

an invariant measure of the attractor. An estimate of this measure is a sum

of the positive LE. The estimate of the attractor dimension is provided by the

conjecture dL and the LE are taken in descending order. The dimension dL gives

values close to the dimension estimates discussed earlier and is preferable when

estimating high dimensions. To compute LE, we use a method with linear �tted
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map, although the maps with higher order polynomials can be used too. Non-

linear model of chaotic processes is based on the concept of compact geometric

attractor on which observations evolve. Since an orbit is continually folded back

on itself by dissipative forces and the non-linear part of dynamics, some orbit

points [1,10] yr (k), r = 1 , 2 , ..,N B can be found in the neighbourhood of any

orbit point y(k), at that the points yr (k) arrive in the neighbourhood of y(k) at

quite di�erent times than k . One can then choose some interpolation functions,

which account for whole neighbourhoods of phase space and how they evolve

from near y(k) to whole set of points near y(k + 1 ). The implementation of this

concept is to build parameterized non-linear functions F(x, a) which take y(k)

into y(k + 1 ) = F(y(k), a) and use various criteria to determine parameters

a. Since one has the notion of local neighbourhoods, one can build up one's

model of the process neighbourhood by neighbourhood and, by piecing together

these local models, produce a global non-linear model that capture much of the

structure in an attractor itself.

3. The numerical results and conclusions

We continued the investigation of the pollution dynamics of the hydrological

systems, in particular, variations of the nitrates concentrations in the river's

water reservoirs in the Earthen Slovakia by using the non-linear prediction ap-

proaches and chaos theory method (in versions) [1-10]. As in Ref. [2] the initial

data had been taken from empirical observations on a number of the water-

sheds in the region of the Small Carpathians, carried out by coworkers of the

Institute of Hydrology of the Slovak Academy of Sciences [11]. The temporal

changes in the concentrations of nitrates in the catchment areas are listed in

[11]. In Ref. 2 we have listed data on values of the autocorrelation function CL ,

the �rst minimum of mutual information Imin1 , the correlation dimension (d2),

embedding dimension (dE), Kaplan-Yorke dimension (dL), and average limit of

predictability (Prmax, hours) for time series of the concentration of nitrates in

some watersheds of the Small Carpathians, namely, Manelo, Ondava, Gidra,

Vydric. Here we have maken a numerical analysis of time series for other four

watersheds, namely, Blatina,Parna, Ladomirka, Babie.

As usually, the �rst step is in computing the values of the autocorrelation func-

tion CL , the �rst minimum of mutual information Imin1 for the concentration

of nitrates in four another watersheds (Blatina,Parna, Ladomirka, Babie). The

values, where the autocorrelation function �rst crosses 0.1, can be chosen as τ ,

but in [6,9] it's showed that an attractor cannot be adequately reconstructed

for very large values of τ . So, before making up �nal decision we calculate the
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dimension of attractor for all values. The large values of τ result in impos-

sibility to determine both the correlation exponents and attractor dimensions

using Grassberger-Procaccia method [1,16]. Here the outcome is explained not

only inappropriate values of τ but also shortcomings of correlation dimension

method. If algorithm [14] is used, then a percentages of false nearest neighbours

are comparatively large in a case of large τ . If time lags determined by average

mutual information are used, then algorithm of false nearest neighbours provides

dE = 6 for all water pollutants.

Table 1 shows the correlation dimension (d2), embedding dimension (dE),

Kaplan-Yorke dimension (dL), and average limit of predictability (Prmax, hours)

for time series of the concentration of nitrates in the watershed of the Small

Carpathians.

Table 1. The Time lag (τ), correlation dimension (d2), embedding dimen-

sion (dE), Kaplan-Yorke dimension (dL), and average limit of predictability

(Prmax, hours) for time series of the concentration of nitrates in the watershed

of the Small Carpathians.

Blatina Parna Ladomirka Babie

τ 18 18 10 8

(d2) 4.91 4.17 3.88 4.89

(dE) 5 5 4 5

dL 5.02 4.83 3.12 4.46

Prmax 13 12 7 8

As usually, the sum of the positive LE determines the Kolmogorov entropy, which

is inversely proportional to the limit of predictability (Prmax. Let us remind

[1,2] since the conversion rate of the sphere into an ellipsoid along di�erent axes

is determined by the LE, it is clear that the smaller the amount of positive

dimensions, the more stable is a dynamic system. Consequently, it increases the

predictability of it. As the numerical calculation shows the presence of the two

(from six) positive λi suggests the system broadens in the line of two axes and

converges along four axes that in the six-dimensional space. The time series of

concentrations at the site of the Blatina watershed have the highest predictability

than other time series.

Therefore, we have presented the further results of an e�ective application of

an advanced chaos-geometric approach to treating of non-linear dynamics of the

complex nature, namely, hydroecological systems. The chaotic features in the

time series of the nitrates concentrations in four new river's water reservoirs in
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the Earthen Slovakia ate numerically analyzed and an availability of the middle-

D chaos has been proven.
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